
Mathematical Methods Spring Term 2017

2. Notes on Tensors (Spring 2017)

References
There is a chapter on tensors in Boas. For cartesian tensors with many

applications to physics see chapter 31 of The Feynman Lectures on Physics
(volume 2). For the application of tensors to Special Relativity see ‘Intro-
duction to Special Relativity’ by Wolfgang Rindler.

Vectors
A vector V is a geometrical object with a it magnitude and direction. It

is convenient to describe a vector through components with respect to a set
of basis vectors:

V = V1e1 + V2e2 + V3e3

The basis vectors e1, e2, e3 are linearly independent vectors and the compo-
nents V1, V2, V3 are real numbers.

For example one can take e1 = i, e2 = j, e3 = k, that is unit vectors in
the x, y and z directions. Other choices are possible. For now assume that
the basis vectors are orthonormal, that is

e1 · e2 = e2 · e3 = e3 · e1 = 0

and |e1| = |e2| = |e3| = 1. This can be expressed more compactly using the
Kronecker delta:

ei · ej = δij.

The vector V can be written

V =
3∑
i=1

Viei.

The summation sign can be omitted by using Einstein’s summation conven-
tion. This convention is the understanding that any repeated indices are
summed over. With this convention we can write

V = Viei

Here i is a dummy index; as it is summed over it does not matter what letter
is used V = Viei = Vjej.
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The dot product of two vectors U and V can be written

U ·V = U1V1 + U2V2 + U3V3 = UiVi

using the Einstein summation convention. Note that this assumes that the
basis vectors are orthonormal.

The cross product of two vectors is 1

U×V =

∣∣∣∣∣∣∣
e1 e2 e3
U1 U2 U3

V1 V2 V3

∣∣∣∣∣∣∣ = (U1V2−U2V1)e3+(U2V3−U3V2)e1+(U3V1−U1V3)e2.

Alternatively the cross product can be defined using the Levi-Civita sym-
bol; the three index object εijk is defined by

ε123 = 1

and the condition that εijk is totally anti-symmetric. That is it changes sign
under any interchange of two indices. This condition forces 21 of the 27
components to be zero, eg. ε113 = 0. The six non-zero components are

ε123 = ε231 = ε312 = 1, ε213 = ε321 = ε132 = −1.

The components of the cross product U×V are given by

(U×V)i = εijkUjVk.

It is straightforward to check that this agrees with the standard definition
of the cross product (e.g., (U × V)1 = ε1jkUjVk = ε123U2V3 + ε132U3V2 =
U2V3 − U3V2).

Vector Calculus
The gradient is defined through

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

∇ = e1
∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3
= ei

∂

∂xi

where x1, x2, x3 are components of the position vector r with respect to the
orthonormal basis e1, e2, e3, that is

r = xi + yj + zk = x1e1 + x2e2 + x3e3.

1This assumes that e1, e2, e3 are a right-handed system with e1 × e2 = e3 and cyclic
permutations.
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This can also be written ∇ = ei∂i using the shorthand

∂i =
∂

∂xi
.

In component form (∇φ)i = ∂iφ.
The curl ∇× F has components

(∇× F)i = εijk∂jFk.

In this notation the divergence of a factor field F is

∇ · F = ∂iFi.

The Laplacian is
∇2 = ∇ · ∇ = ∂i∂i.

Transformation Properties
A vector V can be written V = Viei. In the following discussion the as-

sumption that the basis vectors ei are orthonormal is dropped. The position
vector r can be written r = xiei where the xi are the coordinates. Consider
a linear change of coordinates

xi = Rijxj.

Rij can be viewed as a 3× 3 matrix. Under such a transformation the basis
vectors also transform

e′i = Sijej

where Sij is another 3× 3 matrix. Claim: if S = (RT )−1 then the vector r is
unchanged by the transformation. To see this write r in two ways:

r = xiei = x′ie
′
i = RijxjSikek

which hold if RijSikek = ej which holds if RijSik = δjk. As a matrix equation
this is RTS = I or S = (RT )−1. If R is an orthogonal matrix then S = R.
Recall that an orthogonal matrix is defined by the property RRT = I. Any
rotation matrix is an example of an orthogonal matrix. This has determi-
nant 1. A parity transformation R = diag(−1,−1,−1) is also orthogonal.
However it has determinant −1. Any orthogonal matrix has determinant ±1
(proof RRT = I, take the determinant, detRRT = detRdet RT = (detR)2 so
that det R = ±1).
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An orthogonal transformation with determinant 1 is called a proper ro-
tation. An orthogonal transformation with determinant −1 is called an im-
proper rotation (this is a combination of a rotation and a parity transforma-
tion).

The components of a vector must transform in the same way as the po-
sition coordinates

V ′i = RijVj.

The transformation rule is sometimes used as the definition of a vector. A
vector can be understood to be three numbers Vi (i = 1, 2, 3) with the same
transformation properties as the position coordinates under an orthogonal
transformation. This approach allows us to work with vectors without using
basis vectors.

Tensors
A vector Vi a tensor of rank one which we can understand as 3 numbers

which transform in the same way as the position cordinates xi under the
orthogonal transformation x′i = Rijxj

A cartesian tensor of rank 2 is a two index object Tij (which is 9 numbers)
with the transformation property

T ′ij = RipRjqTpq.

The Kronecker delta δij is a tensor of rank two. For it to be a tensor it must
have the transformation property

δ′ij = RipRjqδpq

. But as δij is a symbol it cannot transform (by definition) so for it to be
a tensor requires δ′ij = δij = RipRjqδpq which is satisfied if R is orthogonal.
That is the Kronecker delta is a tensor even though it does not transform.
This is an isotropic tensor of rank 2.

A cartesian tensor of rank p is a p index object (3p numbers) Ti1 i2 ... ip

with the transformation property

T ′i1 i2 ... ip = Ri1j1Ri2j2 ...RipjpTj1 j2 ... jp .

A rank 3 tensor is 27 numbers Tijk with the transformation property

T ′ijk = RipRjqRkrTpqr.

Remark: ∂i = ∂/∂xi is a vector operator under an orthogonal transfor-
mation x′i = Rijxj and can be used to construct tensors (more later).

Tensor Algebra

4



Tensors of the same rank may be added to produce a new tensor of the
same rank, e.g. if Tij and Wij are tensors of rank two, then

Wij = Tij + Uij

is also a tensor of rank two. Multiplying a tensor by a scalar gives a tensor
of the same rank.

Tensors of any rank can be multiplied; if Ti1i2...ip has rank p and Uj1j2...jq
has rank q then

Wi1...ipj1...jq = Ti1i2...ipUj1j2...jq

has rank p + q. For example the tensor product of two vectors, Ui and Vj,
yields a tensor of rank 2:

Tij = UiVj.

Symmetric and Anti-symmetric Tensors
Consider tensors of rank 2 Sij with the property

Sij = Sji.

This is called a symmetric tensor. While a tensor of rank 2 is nine quantities
a symmetric tensor has six independent numbers. A tensor with the property

Aij = −Aji

is called an anti-symmetric tensor which represents three independent quanti-
ties. Much as a function can be decomposed into even and odd parts a tensor
of rank 2 can be decomposed into symmetric and anti-symmetric parts:

Tij =
Tij + Tji

2
+
Tij − Tji

2
.

Here 1
2
(Tij + Tji) is the symmetric part of Tij and 1

2
(Tij − Tji) is the anti-

symmetric part.
If rank > 2 the situation is more complicated. A tensor can be symmetric

or anti-symmetric in two of the n indices. For example Tijk = Tjik. Tijk can
be be totally symmetric or totally anti-symmetric. Note that if a rank 3
tensor is totally anti-symmetric it is proportional to εijk. At rank 4 there is
no totally anti-symmetric tensor apart from the zero tensor.

Contraction
Given a tensor of rank p ≥ 2 a new tensor of rank p− 2 can be obtained

by contraction. This is a sum over two of the indices of a tensor (using
the summation convention this amounts to setting two induces ‘equal’). For
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example the rank two tensor Tij can be contracted to yield the scalar (or
rank 0 tensor) Tii. For example δiiis the number three (not one) as δii =
δ11 + δ22 + δ33 = 3.

Contraction can be viewed as a generalisation of the dot product as

U ·V = UiVi

which is a contraction of the rank two tensor UiVj. The Laplacian can be
viewed as a contraction of the tensor operator ∂i∂j.

If the rank is greater than two there are several ways to contract. For
example Tijk has three possible contractions, Tiik, Tiji, Tijj which are three
distinct vectors (tensors of rank one). The cross product can also be obtained
via a contraction. Now

(U×V)i = εijkUjvk

can be viewed as a double contraction of the rank 5 object εijkUpVq.
Completely contracting a symmetric and anti-symmetric tensor gives zero

SijAij = 0.

This is because SijAij has six non-zero contributions which cancel in pairs.
What about a partial contraction such as SijAjk?

Is εijk a rank 3 tensor? Almost! It is a tensor under proper rotations (if
R is orthogonal with detR = 1). In general

RipRjqRkrεpqr = detR εijk.

εijk is called a pseudo-tensor as it picks up an ‘extra’ minus sign under an ‘im-
proper’ rotation. Ti1i2...in is rank n pseudo tensor if it has the transformation
properly

T ′i1i2...in = det R Ri1j1 ...RinjnTj1j2...jn .

δij is an isotropic tensor of rank 2 and εijk is an isotropic pseudo tensor
of rank 3.

Such additional minus signs can also occur when transforming ‘vectors’.
Under an orthogonal transformation x′i = Rijxj a three-vector (also called a
polar vector) transforms according to V ′i = RijVk. The magnetic field has
the transformation property

V ′i = detR RijVj.

Such a vector is called or pseudo-vector or axial vector. That is it transforms
like a three vector under proper rotations but picks up an extra minus sign
under improper rotations. Note that
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the cross product of two polar vector is axial

the cross product of a polar and axial vector is polar

the cross product of two axial vectors is axial

One can see why the magnetic field is an axial vector from the Lorentz
force law

dp

dt
= q(E + v ×B).

The momentum p and electric field E are polar. Accordingly, v × B must
be polar which forces B to be axial.

Angular momentum L = r × p is axial as it is a cross product of two polar
vectors. The magnetic field is an axial vector. To see this consider the
Lorentz force law

dp

dt
= q(E + v ×B).

The momentum p and electric field E are polar. Accordingly, v × B must
be polar which forces B to be axial.

The epsilon symbol can be used to convert an axial vector into a (non-
pseudo) tensor of rank 2. The angular momentum tensor can be defined
Lij = εijkLk which is a rank two (non-pseudo) tensor. Note that Lij is anti-
symmetric. The three numbers Li are encoded in an anti-symmetric tensor
of rank 2. L12 = ε12kLk = ε123L3 = L3. Similarly L23 = L1, L31 = L2 and
L11 = L22 = L33 = 0. For the magnetic field one can define

Fij = εijkBk

which is a (non-pseudo) anti-symmetric tensor of rank 2. Much as for the
angular momentum F12 = −F21 = B3, F23 = −F32 = B1, F31 = −F13 = B2.
The Lorentz force law can be written without reference to pseudo tensors:

dpi
dt

= q(Ei + Fijvj).

Recall that the magnetic field can be written B = ∇ × A. The vector
potential A is polar. In index notation

Bi = εijk∂jAk.

. We have
Fij = εijkBk = εijkεkpq∂pAq

Now consider the (isotropic non-pseudo) tensor of rank 4

εijkεkpq = δipδjq − δiqδjp.
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Therefore
Fij = (δipδjq − δiqδjp)∂pAq = ∂iAj − ∂jAi

(this is an alternative formulation of the curl where the curl of a vector field
is a tensor field). Similarly,

Lij = xipj − pixj.

Maxwell’s Equations

∇ · E =
ρ

ε0

∇×B = µ0j + µ0ε0
∂E

∂t

∇× E = −∂B
∂t

∇ ·B = 0.

In index notation the first equation is

∂iEi =
ρ

ε0
.

Try to wire the second equation using Fij instead of B (see problems).
The preceding discussion assumed that the basis vectors are orthonormal

ei ·ej = δij. In order to preserve this property we only considered orthogonal
transformations. Now drop this assumption. Define the metric gij as

gij = ei · ej.

The position vector r will be written r = xiei using superscripts for the co-
ordinate indices. Use a summation convention with upper and lower indices.
Expressions such as Tii are meaningless as both indices are subscripts. The
transformation properties are

xi
′
= Ri

jx
j,

where Ri
j is not necessarily orthogonal. The basis vectors transform accord-

ing to
e′i = S j

i ej.

As matrices S = (RT )−1. The gradient

∂i =
∂

∂xi
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transforms like the basis vectors

∂′i =
∂

∂xi′
= S j

i ∂j.

Define two kinds of vectors. Consider the transformation xi
′
= Ri

jx
j. If V i

are three numbers transform in the same way as the coordinates, that as

V i′ = Ri
jV

j,

then V i is called a contravariant vector. If Vi transforms according to

V ′i = S j
i Vj

then Vi is said to be a covariant vector. For example the gradient of a scalar
field is a covariant vector field. Tensors can have both contravariant and
covariant indices. A tensor of type (p, q) is 3p+q numbers

T
i1i2...ip

j1j2...jq

with the transformation property

T
i1i2...ip

j1j2...jq

′
= Ri1

k1
...R

ip
kp
S l1
j1 ...S

lq
jq T

k1k2...kp
l1l2...lq

.

The Kronecker delta is a tensor of type (1, 1). δij. One can write

δij =
∂xi

∂xj
= ∂jx

i,

which clearly has one contravariant and on covariant index, gij is a tensor of
type (0, 2). The inverse metric, written gij, is a tensor of type (2, 0). The
metric can be used to convert a contravariant vector into a covariant one

Vi = gijV
j.

Similarly the inverse metric can be used to convert a covariant vector into a
contravariant one

V i = gijVj.

The kinetic energy of a particle is T = 1
2
mv ·v. Now r = xiei. Assuming

the basis vectors are static v = ṙ = ẋiei. This gives

T =
1

2
mxiei · ẋjej =

1

2
mgijẋ

iẋj.
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The formalism is based on linear transformations of coordinates. Now
consider a general change of coordinates (in particular non-linear teansforma-
tions). We have seen a hint of this in Lagrangian mechanics where the Euler-
Lagrange equations have the same form in any coordinate system. However,
this is not fully coordinate independent as the Lagrangian changes form un-
der a coordinate transformation. For example a particle moving in three
dimensional space has the Lagrangian

L = T − V =
m

2

(
ẋ2 + ẏ2 + ż2

)
− V (x, y, z),

where x, y and z are cartesian coordinates. In spherical polar coordinates
(r, θ, φ) the Lagrangian is

L =
m

2

(
ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2

)
− V (r, θ, φ).

This change of variables is useful when the potential energy takes a simpler
form in spherical polar coordinates.

In this example the form of the Lagrangian changes. The ‘new’ V is the
‘old’ V written as a function of the new coordinates. However, the form of the
kinetic energy is different. In spherical polars the kinetic term is quadratic
in the velocities but picks up position dependent coefficients. For example
φ̇2 is multiplied by 1

2
mr2 sin2 θ. Now try to exploit the fact that the kinetic

energy is quadratic in the velocities to write a general form for T . Let x1,
x2, x3 be coordinates of a particle (these can be any coordinates, cartesian,
polar or otherwise) or

xi i = 1, 2, 3.

Write T as a quadratic form in the velocities

T =
m

2
gij(x)

dxi

dt

dxj

dt
.

where the gij(x) can be viewed as the entries of a 3 × 3 symmetric matrix.
It is 9 quantities (or 6 when taking into account that gij is symmetric)

gij = gji.

Essentially, the elements of gij are the coefficients of the quadratic terms in
T . gij is called the metric tensor.

Examples Returning to the discussion of T in cartesian and spherical polar
coordinates: In cartesian coordinates we have gxx = gyy = gzz = 1 and
gxy = gyz = gzx = 0. In spherical polar coordinates grr = 1, gθθ = r2,
gφφ = r2 sin2 θ, with all other components zero grθ = gθφ = gφr = 0.
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In both examples the metric is diagonal (gij = 0 for i 6= j). In general,
there will be off-diagonal terms due to ‘cross terms’ (eg. a term proportional
to ẋ1ẋ2) in the kinetic energy.

An alternative definition of the metric is (again using the summation
convention)

(ds)2 = gij(x)dxidxj

Here ds is the distance between ‘neighbouring’ points with coordinates
gij(x) is a tensor of type (2, 0). A general contravariant vector V i trans-

forms like dxi. A general covariant vector Vi transforms like ∂i

V i′ =
∂xi
′

∂xj
V j

Vi
′ =

∂xj

∂xi′
Vj.

That is the matrices R and S become Jacobian matrices.
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