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1 Introduction – Random experiments

In general a statistical analysis may consist of:

• Summarization of data.

• Prediction.

• Decision making.

• Answering a specific question of interest.

We may view a statistical analysis as attempting to separate the signal in

the data from the noise.

The accompanying handout of datasets gives two examples of types of data

that we may be interested in.

1.1 Methods of summarizing data

Dataset 1

We need to find a simple model to describe the variability that we see.

This will allow us to answer questions of interest such as:

• What is the probability that 3 or more syntax errors will be present in

another module?

Here the number of syntax errors is an example of a discrete random variable

– it can only take one of a countable number of values.

Other examples of discrete random variables include:

• The toss of a coin where the outcome is Head/Tail.
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• No of defective items found when 10 components are selected and tested.

Can we summarize dataset 1 in a more informative manner ?

Frequency Table:

NUMBER OF ERRORS FREQUENCY PROPORTION

0 14 0.467

1 10 0.333

2 4 0.133

3 2 0.067

> 3 0 0.0

TOTAL 30 1.0

So referring to the question of interest described above the observed proportion

of 3 or more syntax errors is 0.067. This is an estimate of the ‘true’ probability.

We envisage an infinite number of modules – this is the population. We have

obtained a sample of size 30 from this population. We are really interested in

the population probability of 3 or greater syntax errors.

We are interested in finding those situations in which we can find ‘good’

estimates.

Frequency diagram (bar chart)

A frequency diagram provides a graphical representation of the data. If we

plot the proportions against number of syntax errors then we have an estimate

of the probability distribution from which the data have been generated.
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Figure 1: Frequency diagram for dataset 1

Dataset 2

Each value is a realization of what is known as a continuous random variable.

One assumption we may make is that there is no trend with time. The values

change from day to day in a way which we cannot predict – again we need to find

a model for the downloading time. For example we assume that the downloading

times are in general close to some value μ but there is some unpredictable

variability about this value which produces the day-to-day values. The way

such variability is described is via a probability distribution. For example we may

assume that the day-to-day values can be modelled by a probability distribution

which is symmetric about μ. We then may wish to estimate the value of μ.

Questions of interest here may include:

• What is our best guess (or estimate) of the average downloading time ?
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• What sort of spread around the average value would we expect ?

We can summarize the data more informatively using a histogram.

A histogram is simply a grouping of the data into a number of boxes and is

an estimate of the probability distribution from which the data arise.

This allows us to understand the variability more easily – for example are the

data symmetric or skewed? Are there any outlying (or extreme) observations?
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Figure 2: Histogram of Dataset 2

1.2 Summary statistics

Any quantity which is calculated from the data is known as a statistic. Statistics

can be used to summarize a given dataset. Most simple statistics are measures

of either the location or the spread of the data.

6



X

PR
OB

AB
IL

IT
Y 

DE
NS

IT
Y

-3 -2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4
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Figure 4: A right-skewed distribution
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Suppose that nmeasurements have been taken on the random variable under

consideration (eg number of syntax errors, downloading time).

Denote these measurements by x1, x2, . . . , xn. So x1 is the first observation,

x2 is the second observation, etc.

Definition: the sample mean (or sample expected value) of the observations is

given by:

x =
x1 + x2 + ...+ xn

n
=

∑n
i=1 xi

n
(1)

For dataset 1 we have

x1 = 1, x2 = 0, ∙ ∙ ∙ , x30 = 0 and x =
24

30
= 0.8 (2)

For dataset 2 we have

x1 = 6.36, x2 = 6.73, ∙ ∙ ∙ , x100 = 5.18 and x = 5.95

Definition: the sample median of a sample of n measurements is the middle

number when the measurements are arranged in ascending order.

If n is odd then the sample median is given by measurement x(n+1)/2.

If n is even then the sample median is given by (xn/2 + x(n/2)+1)/2.

Examples

For dataset 1 we have the value 0 occurring 14 times and the value 1 occurring

10 times and so the median is the value 1. – for data of these type the sample

median is not such a good summary of a ‘typical’ value of the data.

For dataset 2 the sample median is given by the sample average of the 50th

and 51st observations. In this case both of these values are 5.88 and so the

median is 5.88 also.
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When the distribution from which the data has arisen is heavily skewed (that

is, not symmetric) then the median may be thought of as ‘a more typical value’:

Example

Yearly earnings of maths graduates (in thousands of pounds):

24 19 18 23 22 19 16 55

For these data the sample mean is 24.5 thousand pounds whilst the sample

median is 20.5 thousand pounds. Hence the latter is a more representative

value.

Definition: the sample mode is that value of x which occurs with the greatest

frequency.

Examples

For dataset 1 the sample mode is the value 0.

For the yearly earnings data the sample mode is 19.

All of these sample quantities we have defined are estimates of the corre-

sponding population characteristics.

Note that for a symmetric probability distribution the mean, the median

and the mode are the same.

As well as a measure of the location we might also want a measure of the

spread of the distribution.

Definition: the sample variance s2 is given by

s2 = 1
n−1

∑n
i=1(xi − x)

2.

It is easier to use the formula:

s2 = 1
n−1 [

∑n
i=1 x

2
i − nx

2]
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The sample standard deviation s is given by the square root of the variance.

The standard deviation is easier to interpret as it is on the same scale as the

original measurements.

As a measure of spread it is most appropriate to think about the standard

deviation for a symmetric distribution (such as the normal).
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2 Probability

As we saw in Section 1 we are required to propose probabilistic models for

data. In this chapter we will look at the theory of probability. Probabilities

are defined upon events and so we first look at set theory and describe various

operations that can be carried out on events.

2.1 Set theory

2.1.1 The sample space

The collection of all possible outcomes of an experiment is called the sample

space of the experiment. We will denote the sample space by S.

Examples:

Dataset 1: S = {0, 1, 2, ...}

Dataset 2: S = {x : x ≥ 0}

Toss of a coin: S = {H,T}

Roll of a six-sided die: S = {1, 2, 3, 4, 5, 6}.

2.1.2 Relations of set theory

The statement that a possible outcome of an experiment s is a member of S is

denoted symbolically by the relation s ∈ S.

When an experiment has been performed and we say that some event has

occurred then this is shorthand for saying that the outcome of the experiment

satisfied certain conditions which specified that event. Any event can be re-

garded as a certain subset of possible outcomes in the sample space S.
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Example: roll of a die. Denote by A the event that an even number is obtained.

Then A is represented by the subset A = {2, 4, 6}.

It is said that an event A is contained in another event B if every outcome

that belongs to the subset defining the event A also belongs to the subset B.

We write A ⊂ B and say that A is a subset of B. Equivalently, if A ⊂ B, we

may say that B contains A and may write B ⊃ A.

Note that A ⊂ S for any event A.

Example: roll of a die, suppose A is the event of an even number being obtained

and C is the event that a number greater than 1 is obtained. Then A = {2, 4, 6}

and C = {2, 3, 4, 5, 6} and A ⊂ C.

Example 2.1

2.1.3 The empty set

Some events are impossible. For example when a die is rolled it is impossible

to obtain a negative number. Hence the event that a negative number will be

obtained is defined by the subset of S that contains no outcomes. This subset

of S is called the empty set and is denoted by the symbol φ.

Note that every set contains the empty set and so φ ⊂ A ⊂ S.

2.1.4 Operations of set theory

Unions

If A and B are any 2 events then the union of A and B is defined to be the

event containing all outcomes that belong to A alone, to B alone or to both A

and B. We denote the union of A and B by A ∪B.

12



A B

For any events A and B the union has the following properties:

A ∪ φ = A

A ∪ A = A

A ∪ S = S

A ∪B = B ∪ A

The union of n events A1, A2, ∙ ∙ ∙ , An is defined to be the event that contains

all outcomes which belong to at least one of the n events.

Notation: A1 ∪ A2 ∪ ∙ ∙ ∙ ∪ An or ∪ni=1Ai.

Intersections

If A and B are any 2 events then the intersection of A and B is defined to be

the event containing all outcomes that belong both to A and to B. We denote

the intersection of A and B by A ∩B.
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A B

For any events A and B the intersection has the following properties:

A ∩ φ = φ

A ∩ A = A

A ∩ S = A

A ∩B = B ∩ A

The intersection of n events A1, A2, ∙ ∙ ∙ , An is defined to be the event that con-

tains all outcomes which belong to all of the n events.

Notation: A1 ∩ A2 ∩ ∙ ∙ ∙ ∩ An or ∩ni=1Ai.

Example 2.2
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2.1.5 Compliments

The complement of an event A is defined to be event that contains all outcomes

in the sample space S which do not belong to A.

Notation: the compliment of A is written as A′.

A

The compliment has the following properties:

(A′)′ = A

φ′ = S

A ∪ A′ = S

A ∩ A′ = φ

Examples:

Dataset 1: if A = {≥ 3} errors then A′ = {0, 1, 2}.

Dataset 2: if
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A = {x : 3 ≤ x ≤ 5}

then

A′ = {x : 0 ≤ x < 3, x > 5}.

Example 2.3

2.1.6 Disjoint events

It is said that 2 events A and B are disjoint or mutually exclusive if A and B

have no outcomes in common. It follows that A and B are disjoint if and only

if A ∩B = φ.

Example: roll of a die: suppose A is the event of an odd number and B is

the event of an even number then A = {1, 3, 5}, B = {2, 4, 6} and A and B are

disjoint

Example: roll of a die: suppose A is the event of an odd number and C is the

event of a number greater than 1 then A = {1, 3, 5}, C = {2, 3, 4, 5, 6} and A

and C are not disjoint since they have the outcomes 3 and 5 in common.

Example 2.4

2.1.7 Further results

a) DeMorgan’s Laws: for any 2 events A and B we have

(A ∪B)′ = A′ ∩B′

(A ∩B)′ = A′ ∪B′

b) For any 3 events A, B and C we have:
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A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

Examples 2.5–2.7

2.2 The definition of probability

Probabilities can be defined in different ways:

Physical.

Relative frequency.

Subjective.

Probabilities, however assigned, must satisfy three specific axioms:

Axiom 1: for any event A, P(A) ≥ 0.

Axiom 2: P(S) = 1.

Axiom 3: For any sequence of disjoint events A1, A2, A3, ∙ ∙ ∙

P (∪∞i=1Ai) =
∑∞
i=1 P(Ai).

The mathematical definition of probability can now be given as follows:

Definition: A probability distribution, or simply a probability on a sample space

S is a specification of numbers P(A) which satisfy Axioms 1–3.

Properties of probability:

(i) P(φ) = 0.

(ii) For any event A, P(A′) = 1− P(A).

(iii) For any event A, 0 ≤ P(A) ≤ 1.

(iv) The addition law of probability
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For any 2 events A and B:

P(A ∪B) = P(A) + P(B)− P(A ∩B).

So if A and B are disjoint

P(A ∪B) = P(A) + P(B).

For any 3 events A, B and C:

P(A ∪B ∪ C) = P(A) + P(B) + P(C)

−P(A ∩B)− P(A ∩ C)− P(B ∩ C)

+P(A ∩B ∩ C).

Example 2.8

2.2.1 Conditional probability

We now look at the way in which the probability of an event A changes after it

has been learned that some other event B has occurred. This is known as the

conditional probability of the event A given that the event B has occurred. We

write this as P(A | B).

Definition: if A and B are any 2 events with P(B) > 0, then

P(A | B) = P(A ∩B)/P(B)

Note that now we can derive the multiplication law of probability:

P(A ∩B) = P(A | B)P(B) = P(B | A)P(A)
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2.2.2 Independence

Two events A and B are said to be independent if

P(A | B) = P(A),

that is, knowledge of B does not change the probability of A.

So if A and B are independent we have

P(A ∩B) = P(A)P(B)

Examples 2.9–2.10

2.2.3 Bayes Theorem

Let S denote the sample space of some experiment and consider k events

A1, ∙ ∙ ∙ , Ak in S such that A1, ∙ ∙ ∙ , Ak are disjoint and ∪ni=1Ai = S. Such a

set of events is said to form a partition of S.

Consider any other event B, then

A1 ∩B,A2 ∩B, ∙ ∙ ∙ , Ak ∩B

form a partition of B. Note that Ai ∩B may equal φ for some Ai.

So

B = (A1 ∩B) ∪ (A2 ∩B) ∪ ∙ ∙ ∙ ∪ (Ak ∩B)

Since the k events on the right are disjoint we have

P(B) =
∑k
j=1 P(Aj ∩B) (Addition Law of Probability)

Now P(Aj ∩B) = P(Aj)P(B|Aj) so
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P(B) =
∑k
j=1 P(Aj)P(B|Aj)

Recall that

P(Ai|B) = P(B|Ai)P(Ai)/P(B)

using the above we can therefore obtain Bayes Theorem:

P(Ai|B) = P(B|Ai)P(Ai)/
∑k
j=1 P(Aj)P(B|Aj)

Example 2.11
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3 Systems reliability

Consider a system of components put together so that the whole system works

only if certain combinations of the components work. We can represent these

components as a NETWORK.

3.1 Series system

S •
e1 •

e2 •
e3 •

e4 • T

If any component fails ⇒ system fails. Suppose we have n components each

operating independently:

Let Ci be the event that component ei fails, i = 1, ..., n.

P(Ci) = θ, i = 1, ..., n, P(C
′
i) = 1− θ

P(system functions) = P(C ′1 ∩ C
′
2 ∩ ∙ ∙ ∙ ∩ C

′
n)

= P(C ′1)× P(C
′
2)× ∙ ∙ ∙ × P(C

′
n) since the events are independent

= (1− θ)n

Example: n = 3, θ = 0.1, P(system functions) = 0.93 = 0.729
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3.2 Parallel system

S •

e1

e3

e2 • T

Again suppose we have n components each operating independently:

Again let P(Ci) = θ.

The system fails if all n components fail and

P(system functions) = 1 − P(system fails)

P(system fails) = P(C1 ∩ C2 ∩ ∙ ∙ ∙ ∩ Cn)

= P(C1)× P(C2)× ∙ ∙ ∙ × P(Cn) since independent

So

P(system functions) = 1 − θn

Example: n = 3, θ = 0.1, P(system functions) = 1 − 0.13 = 0.999.

3.3 Mixed system

– in lectures.
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4 Random Variables and their distributions

4.1 Definition and notation

Recall:

Dataset 1: number of errors X, S = {0, 1, 2, ...}.

Dataset 2: time Y , S = {x : x ≥ 0}.

Other example: Toss of a coin, outcome Z: S = {H,T}.

In the above X, Y and Z are examples of random variables.

Important note: capital letters will denote random variables, lower case let-

ters will denote particular values (realizations).

When the outcomes can be listed we have a discrete random variable, oth-

erwise we have a continuous random variable.

Let pi = P(X = xi), i = 1, 2, 3, .... Then any set of pi’s such that

i) pi ≥ 0, and

ii)
∑∞
i=1 pi = P(X ∈ S) = 1

forms a probability distribution over x1, x2, x3, ...

The distribution function F (x) of a discrete random variable is given by

F (xj) = P(X ≤ xj) =
j∑

i=1

pi = p1 + p2 + ...+ pj.

We now give some examples of distributions which can be used as models for

discrete random variables.
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4.2 The uniform distribution

Suppose that the value of a random variable X is equally likely to be any one

of the k integers 1, 2, ..., k.

Then the probability distribution of X is given by:

P(X = x) =






1
k
for x = 1, 2, ..., k

0 otherwise

The distribution function is given by

F (j) = P(X ≤ j) =
j∑

i=1

pi = p1 + p2 + ...+ pj =
j

k
for j = 1, 2, ..., k.

Examples:

Outcome when we roll a fair die.

Outcome when a fair coin is tossed.

4.3 The Binomial Distribution

Suppose we have n independent trials with the outcome of each being either a

success denoted 1 or a failure denoted 0. Let Yi, i = 1, ..., n be random variables

representing the outcomes of each of the n trials.

Suppose also that the probability of success on each trial is constant and is

given by p. That is,

P(Yi = 1) = p

and

P(Yi = 0) = 1− p.
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for i = 1, ..., n.

Let X denote the number of successes we obtain in the n trials, that is

X =
n∑

i=1

Yi.

The sample space of X is given by S = 0, 1, 2, ..., n, that is, we can obtain

between 0 and n successes. We now derive the probabilities of obtaining each

of these outcomes.

Suppose we observe x successes and n− x failures.

Then the probability distribution of X is given by:

P(X = x) =










n

x




 px(1− p)n−x for x = 0, 1, 2, ..., n

0 otherwise

where 



n

x




 =

n!

x!(n− x)!
.

Derivation in lectures.

Examples 4.1–4.2

4.4 The Poisson Distribution

Many physical problems are concerned with events occurring independently of

one another in time or space.

Examples

(i) Counts measured by a Geiger counter in 8-minute intervals

(ii) Traffic accidents on a particular road per day.

(iii) Number of imperfections along a fixed length of cable.

25



(iv) Telephone calls arriving at an exchange in 10 second periods.

A Poisson process is a simple model for such examples. Such a model as-

sumes that in a unit time interval (or a unit length) the event of interest occurs

randomly (so there is no clustering) at a rate λ > 0.

Let X denote the number of events occurring in time intervals of length t.

Since we have a rate of λ in unit time, the rate in an interval of length t is λt.

The random variable X then has the Poisson distribution given by

P(X = x) =






e−λt(λt)x

x!
for x = 0, 1, 2, ...

0 otherwise

Note: the sample here space is S = {0, 1, 2, ...}.

We can simplify the above by putting μ = λt. We then obtain

P(X = x) =






e−μμx

x!
for x = 0, 1, 2, ...

0 otherwise

The distribution function is given by

F (j) = P(X ≤ j) =
j∑

i=0

P(X = i) for j = 0, 1, 2, ....

Example 4.3

4.5 Continuous Distributions

For a continuous random variable X we have a function f , called the probability

density function (pdf). Every probability density function must satisfy:

(i) f(x) ≥ 0, and

(ii)
∫∞
−∞ f(x)dx = 1.

For any interval A we have
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P(X ∈ A) =
∫

A
f(x)dx.
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Figure 5: Probability density function

The distribution function is given by

F (x0) = P(X ≤ x0) =
∫ x0

−∞
f(x)dx.

Notes:

(i) P(X = x) = 0 for a continuous random variable X.

(ii) d
dx
F (x) = f(x).

(iii)

P(a ≤ X ≤ b) = F (b)− F (a) =
∫ b

−∞
f(x)dx−

∫ a

−∞
f(x)dx =

∫ b

a
f(x)dx
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Figure 6: Probability density function and distribution function
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4.6 The Uniform Distribution

Suppose we have a continuous random variable that is equally likely to occur

in any interval of length c within the range [a, b]. Then the probability density

function of this random variable is

f(x) =






1
b−a for a ≤ x ≤ b.

0 otherwise

Notes: show that this is a pdf and derive distribution function in lectures.

4.7 The exponential distribution

Suppose we have events occurring in a Poisson process of rate λ but we are in-

terested in the random variable describing the time between events T . It can be

shown that this random variable has an exponential distribution with parameter

λ. The probability density function of an exponential random variable is given

by:

f(t) =






λ exp(−λt) for t > 0.

0 otherwise, that is for t ≤ 0

This probability density function is shown with various values of λ in Fig-

ure 7.

Notes: show that this is a probability density function and derive in lectures

the distribution function, which is given by

F (t0) = 1− exp(−λt0) for t0 > 0.
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Figure 7: Exponential probability density functions with (a) λ = 0.5, (b) λ =

1.0, (c) λ = 2.0, (d) λ = 3.0
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Figure 8: Exponential distribution function for λ = 2.0
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As well as arising naturally as the time between events in a Poisson process

the exponential distribution is also used to model the lifetimes of components

which do not fail – the reason for this is the lack of memory property of the

exponential distribution which will be discussed in lectures. This property states

that:

P(T > s+ t|T > s) = P(T > t).

4.8 The normal distribution

The normal distribution is of great importance for the following reasons:

1. It is often suitable as a probability model for measurements of weight, length,

strength, etc.

2. Non-normal data can often be transformed to normality.

3. The central limit theorem states that when we take a sample of size n from

any distribution with a mean μ and a variance σ2, the sample mean X̄ will have

a distribution which gets closer and closer to normality as n increases.

4. Can be used as an approximation to the binomial or the Poisson distributions

when we have large n or λ respectively (though this is less useful now that

computers can be used to evaluate binomial/Poisson probabilities).

5. Many standard statistical techniques are based on the normal distribution.

If the continuous random variable X has probability density function

φ(x) = f(x) =
1

(2π)1/2
exp

(
−x2/2

)
−∞ < x <∞

then we say that X has the (standard) normal distribution with mean 0 and

variance 1.
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We write X ∼ N(0, 1).

The standard normal distribution is symmetric about 0 and is shown in

Figure 1.

The distribution function is given by:

F (x0) = P(X ≤ x0) = Φ(x0) =
∫ x0

−∞

1

(2π)1/2
exp

(
−x2/2

)
dx.

This integral cannot be evaluated analytically hence its values are calculated

numerically and are widely-tabulated. The density and distribution function of

the standard normal distribution is shown in Figure 6.

Example 4.4: how to use standard normal tables.

4.9 Mean and variance

Recall in Section 1 we informally discussed measures of location and spread

for sets of data. Here we define the mean and the variance as summaries of a

distribution. Note that for some distributions the mean is not a good measure

of the location of the distribution and the variance is not a good measure of the

spread of a distribution. For normal data the mean and the standard deviation

(which is the square root of the variance) are good summaries of location and

spread.

For a discrete random variable X the expected value (or mean) is defined as

E(X) =
∞∑

i=1

xiP(X = xi).

For a continuous random variable with probability density function f(x) the

expected value (or mean) is defined as

E(X) =
∫ ∞

−∞
xf(x)dx.
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Example 4.5:

Properties:

(i) For constants a and b we have

E(aX + b) = aE(X) + b.

(ii) For random variables X and Y we have

E(X + Y ) = E(X) + E(Y ).

(iii) For constants a1, ..., ak and b and random variables X1, ..., Xk we have

E(a1X1 + ...+ akXk + b) = a1E(X1) + ...+ akE(Xk) + b.

The variance of a random variable X is defined as

var(X) = E[(X − μ)2]

where

μ = E(X).

So the variance is the mean of the squared distances from the mean.

The standard deviation is defined as

sd(X) = var(X)1/2.

Note that the standard deviation is on the same scale as the data.
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Properties:

(i) For constants a and b we have

var(aX + b) = a2var(X).

(ii) For independent random variables X and Y we have

var(X + Y ) = var(X) + var(Y ).

(iii) For constants a1, ..., ak and b and independent random variables X1, ..., Xk

we have

var(a1X1 + ...+ akXk + b) = a
2
1var(X1) + +...+ a

2
kvar(Xk).

Examples:

Binomial distribution: E(X) = np, var(X) = np(1− p).

Poisson distribution: E(X) = μ, var(X) = μ.

Uniform distribution: E(X) = (b+ a)/2, var(X) = (b− a)2/12.

Exponential distribution: E(X) = λ−1, var(X) = λ−2.

Proofs: in class.

4.10 The normal distribution revisited

If the continuous random variable X has probability density function

f(x) =
1

σ(2π)1/2
exp

(

−
(x− μ)2

2σ2

)

,−∞ < x <∞
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Figure 9: Normal distributions with: (a) μ = 0, σ2 = 1, (b) μ = 0, σ2 = 9, (c)

μ = 2, σ2 = 1,(d) μ = −1, σ2 = 4
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then X has a normal distribution with mean μ and standard deviation σ. We

write X ∼ N(μ, σ2). Figure 4 shows the effect of changing the values of μ and

σ.

Important result: if X ∼ N(μ, σ2) then the random variable Z defined by

Z =
X − μ
σ

is distributed as Z ∼ N(0, 1). This is useful for looking up in tables the values

of the distribution function for arbitrary normal distributions, that is, we don’t

need a separate set of tables for each value of μ and σ.

Example 4.6: how to use the normal tables for arbitrary normal distributions.

Further important results:

1. If X1 and X2 are independent random variables with distributions N(μ1, σ
2
1)

and N(μ2, σ
2
2) respectively, then the random variable defined by

Z = X1 +X2

is also normal with mean

E(Z) = E(X1) + E(X2) = μ1 + μ2

and variance

var(Z) = var(X1 +X2) = var(X1) + var(X2) = σ
2
1 + σ

2
2.

2. If X1 and X2 are independent random variables with distributions N(μ1, σ
2
1)

and N(μ2, σ
2
2) respectively, then the random variable defined by

Z = X1 −X2
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is also normal with mean

E(Z) = E(X1)− E(X2) = μ1 − μ2

and variance

var(Z) = var(X1 −X2) = var(X1) + var(X2) = σ
2
1 + σ

2
2.

3. General result If X1, ..., Xn are independent random variables with Xi ∼

N(μi, σ
2
i ) and a1, ..., an are constants then the random variable defined by

Z =
n∑

i=1

aiXi

has a normal distribution with mean

E(Z) = E

(
n∑

i=1

aiXi

)

=
n∑

i=1

aiμi

and variance

var(Z) = var

(
n∑

i=1

aiXi

)

=
n∑

i=1

a2iσ
2
i .

Very important result

Definition: a random sample of size n from a distribution f(x) is a set of

independent and identically distributed random variables X1, ..., Xn each with

the distribution f(x).

If X1, ..., Xn are a random sample from the normal distribution N(μ, σ
2)

then the random variable

X̄ =
1

n

n∑

i=1

Xi

has a normal distribution with mean
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E(X̄) = μ

and variance

var(X̄) =
σ2

n
.

Note here that X̄ is a random variable. Suppose we carry out an experiment

where we draw random samples of size n from a normal distribution – if we do

this repeatedly and evaluate the mean then each time we will get a different

answer. If we were to repeat the experiment an infinite number of times then

the distribution of the X̄’s that we obtain is N(μ, σ2/n).
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5 Statistical Analysis

5.1 Introduction

Probability theory provides us with models for random experiments. Such ex-

periments provide realizations x of random variables X. The observation X = x

is only one of many possible values of X. We wish to learn about the probabil-

ity distribution or probability density function which produced x – this will us

allow us to make inference about the process under study.

For example, we will be able to predict future outcomes/summarize the under-

lying system.

The notation we shall now use to represent our probability model is p(x|θ)

where θ represents the parameter of the model – this notation makes explicit

that to evaluate the probability of seeing a particular observation we need to

know the value of θ.

In Section 4 the probability models which we looked at contained parameters,

for example

(i) a binomial random variable with probability of success p so θ = p,

(ii) a Poisson random variable with rate λ so θ = λ,

(iii) a normal random variable with mean μ and variance σ2 so θ = (μ, σ2).

In Section 3 these parameters were assumed known and we could predict

the outcomes we were likely to see, for example we could evaluate probabilities

such as P(X > 3).

In statistical applications we are in the opposite situation – we obtain realiza-

tions (that is, observations) from some unknown probability model and we wish

to guess the values of the parameters of the model.
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After observing outcomes x1, x2, ...,xn we may be interested in:

Point estimation: guessing the value of θ.

Interval estimation: giving an interval in which we are ‘confident’ that θ lies.
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5.2 Point estimation

Suppose we obtain a random sample of size n from some probability model

f(x|θ). That is, we obtain measurements x= (x1, ..., xn) on n independent and

identically distributed random variables X = (X1, ..., Xn) each with the same

distribution f(x|θ).

In this case we have the joint distribution

f(x|θ) = f(x1, ..., xn|θ) = f(x1|θ)...f(xn|θ) =
n∏

i=1

f(xi|θ).

Viewing the joint distribution as a function of θ gives what is known as the

likelihood function.

Example: dataset 2, downloading times.

We could assume that x1, ...,x100 are a random sample from f(xi|μ, σ2) where

f(.|.) is a normal distribution, that is:

Xi ∼ N(μ, σ
2).

Definition: any real-valued function T = g(x1, ..., xn) of the observations in

the random sample is called a statistic.

T is known as an estimator if we use it as a guess of the value of some

unknown parameter.

Example 5.1: A random sample of size 10 of response times were obtained (in

seconds) for an online holiday booking query:

5.3, 4.9, 6.2, 5.7, 4.8

5.4, 6.1, 6.3, 5.6, 5.5.
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Suppose it were assumed that these measurements formed a random sample of

size 10 from a normal distribution with mean μ and known variance σ2 = 0.52.

How could we guess the value of μ ?

Various possibilities are open to us: we could try the mean, the median, the

average of the smallest and the largest ,...

How do we judge an estimator ?

Important idea: our estimator T = g(X) is a function of the random variables

X1, ...,Xn and so the estimator itself has a distribution which is known as the

sampling distribution.

We would like the distribution of our estimator to be ‘close to the unknown

parameter θ’ with high probability.

If we have a distribution for our estimator then how could we summarize

this distribution?

(i) The average value: the estimator T = g(X) is said to be unbiased if

E[T ] = θ

– on average we obtain the correct answer. If we repeated the experiment an

infinite number of times then our average answer would be the correct answer.

(ii) The variance: if we have two estimators that are unbiased then we would

rather use the one which has the smaller variance.

Recall the result from Section 4 that if we have a random sample of size n

from the normal distribution N(μ, σ2) then

X̄ =
1

n

n∑

i=1

Xi

has a normal distribution with E[X̄] = μ and var(X̄) = σ2

n
.
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So the sample mean is an unbiased estimator of μ.

Example 5.1 revisited

Result: if we have a random sample of size n from the normal distribution

N(μ, σ2) with μ and σ2 both unknown then the estimator

T =
1

n− 1

n∑

i=1

(Xi − X̄)
2

is an unbiased estimator of σ2.
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5.3 Maximum Likelihood Estimation

One way of estimating the parameter θ, is by choosing the value of θ that

maximises the likelihood:

L(θ) =
n∏

i=1

f(xi|θ).

In other words, we choose θ to give the highest probability to the observed data.

This value of θ is known as the Maximum Likelihood Estimator (MLE).

Example 5.2:

5.4 Interval estimation

We have seen that associated with any point estimator of an unknown parameter

θ there is a measure of the uncertainty of that estimator.

Example: Consider a random sample of size n X1, ..., Xn from N(μ, σ
2) with

σ known but μ unknown. The estimator μ̂ = X̄ has

E[X̄] = μ

and

var(X̄) =
σ2

n
.

An alternative method of describing the uncertainty associated with an esti-

mate is to give an interval within which we think that θ lies. One way of doing

this is via a confidence interval.

In lectures derive the confidence interval for the mean μ of a normal distri-

bution when the variance σ2 is known. The 100(1 − α)% confidence interval is

given by:
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(

x̄−
zα/2σ√
n
, x̄+

zα/2σ√
n

)

where zα/2 is that value such that

1− α = P (−zα/2 < Z < zα/2)

where Z ∼ N(0, 1). So for example for α = 0.10 we have z = 1.6449, for

α = 0.05 we have z = 1.9600 and for α = 0.01 we have z = 2.5758. These 3

cases are appropriate for confidence intervals of, respectively, 90 % , 95 % and

99 %.

Example 5.3:

Suppose now that X1, ..., Xn are a random sample from the normal distri-

bution N(μ, σ2) where now both μ and σ2 are unknown.

In the case where σ2 was known we used the fact that

Z =
(X̄ − μ)
σ/
√
n

has the standard normal distribution N(0, 1). We cannot do this here since σ

is unknown.

We can, however, replace σ by the estimator

s =

[
n∑

i=1

(Xi − X̄)
2/(n− 1)

]1/2

consider the new random variable

T =
X̄ − μ
s/
√
n
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This random variable does not have a normal distribution but what is known

as the (student’s) t-distribution with n − 1 degrees of freedom. The t-

distribution is widely tabulated for different degrees of freedom. Like the normal

distribution it is symmetrical about zero but has ‘fatter tails’, that is, there is

more probability in the tails. As the degrees of freedom n tends to infinity the

t-distribution tends to the normal distribution. The intuition here is that as

we obtain more and more data our estimator for σ, namely s, becomes better

and better in the sense that with high probability we will be close to the true

value. Hence it is ‘as if’ we knew σ and can use the normal distribution. Figure

1 shows a selection of t-distributions.

The confidence interval for μ is given by:

(

x̄−
tα/2s√
n
, x̄+

tα/2s√
n

)

where tα/2 is that value such that

1− α = P (−tα/2 < T < tα/2)

where T has a t-distribution with n− 1 degrees of freedom.

Note: this interval is wider than when the variance σ2 is known, reflecting the

extra uncertainty in the estimate of σ2.

Example 5.4:
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6 Product Reliability

Let

T =






failure – time

life – time

of a product e.g. an automobile, stereo, computing equipment.

The random variable, T is non-negative, by its nature and has distribution

function F (t), the failure-time distribution, and probability density function

f(t), the failure-time density.

The probability that the product will fail before time t0:

P(T ≤ t0) = F (t0) =
∫ t0

0
f(t) dt.

The probability that the product will survive until time t0:

P(T > t0) = 1− F (t0) = R(t0), say.

R(t0) is the probability of reliability.

We note that,

f(t)dt ≈ P(t < T < t + dt) = probability that a product will fail in (t, t+ dt).

6.1 Alternative ways to describe life characteristics of a

product

Here we use a measure of the probability of failure as the product gets older –

the probability that the product will fail in (t, t+dt) given that it has survived

to time t.
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Let A be event ‘Product fails in (t, t+ dt)’

B be event ‘Product survives until t’

Probability of failure in (t, t+ dt), given survival until t, is

P(A|B) =
P(A ∩B)
P(B)

=
P(A)

P(B)
≈
f(t) dt

1− F (t)
=
f(t) dt

R(t)
.

The quantity

z(t) =
f(t)

R(t)
∝ P(A|B)

and is called the hazard rate of the product.

Knowledge about a product’s hazard rate often helps us to select the appro-

priate failure time density function for the product.

6.2 Examples of Hazards

Figure 11 shows some examples of hazard functions.

6.3 Examples of commonly used failure-time densities

6.3.1 Exponential Distribution

A positive random variable T has an exponential distribution with parameter

λ (λ > 0) if its pdf is

f(t) =






λe−λt t > 0

0 otherwise.

The exponential distribution is used as the model for the failure time distribu-

tion of systems under ‘chance’ failure conditions, e.g.

1. Lifetime of an electron tube.
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2. Time intervals between successive breakdowns of an electronics system.

Figure 12 shows the reliability and hazard function for an exponential distribu-

tion with λ = 1.

Example 6.1:

Show

R(t) = e−λt t > 0

z(t) = λ t > 0 constant hazard rate.

6.3.2 Two parameter Weibull Distribution

A positive random variable T has a Weibull distribution with parameters λ, β

(λ, β > 0) if its pdf is

f(t) =






λβ(λt)β−1e−(λt)
β
t ≥ 0

0 t < 0.

β is a shape parameter, λ is a scale parameter. Figure 13 shows the reliability

and hazard functions for a Weibull distribution with λ = 1, and β = 0.5 and 3.

Example 6.2:

Show

R(t) = e−(λt)
β

t > 0.

z(t) = λβ(λt)β−1 t > 0 not memoryless.

Example 6.3:
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