## Introduction to $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$

## EXERCISE 2

Try to do the following with hrm{EAT}_{\mathrm{E}}\mathrm{X}\).Theirhardnessincreases,butnotmonotonically.Consulttheon-line$\mathrm{IAT}_{\mathrm{E}}\mathrm{Xg}$uides(listedinAppendixA)toidentifytheappropriatecommands.Notethat,tousethealignenvironment,youwillhavetoinclude:\usepackage\{amsmath\}inthepreamble.undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

1. Typeset:

$$
x_{1}, x_{2}=\frac{-\beta \pm \sqrt{\alpha^{2}-4 \cdot \alpha \omega \cdot \gamma}}{2 \alpha \omega}, \quad\left(\alpha^{2}-4 \alpha \omega \gamma\right)>0 .
$$

Hint: remember <br>, and \qquad. \cdot makes a centred dot (•).
2. Typeset:

$$
\begin{align*}
x^{2}+2 x-15 & =0,  \tag{1}\\
\Rightarrow(x+5)(x-3) & =0, \\
\Rightarrow x & =-5,3 . \tag{2}
\end{align*}
$$

Hint: $\backslash$ Rightarrow makes $\Rightarrow$.
3. Typeset:

$$
\sin 30^{\circ}=\frac{1}{2}=\frac{1}{\sqrt{3}} \sin 60^{\circ}=\cos (\pi / 3) .
$$

Hint: you can make the degree symbol $\circ$ with \circ.
4. Typeset:

$$
\arccos x=\int_{x}^{1} \frac{\mathrm{~d} u}{\sqrt{1-u^{2}}}
$$

Hint: \int is $\int$, put the limits on it using sub- and super-scripts. Try to get the roman d in $\mathrm{d} u$.
5. Use the math superscript operator to create things like

$$
n^{\text {th }}, \quad 1^{\text {st }}, \quad 2^{\text {nd }} .
$$

Hint: the "th" etc. must be roman.
6. Use newcommand to define a command $\backslash$ fork so that $\$ \backslash$ fork $(f) \$$ outputs "Fork ( $f$ )".
7. Use the array or pmatrix environment to create this matrix

$$
\left(\begin{array}{ccc}
F[1,1] & \cdots & F[1, m] \\
\vdots & \ddots & \vdots \\
F[n, 1] & \cdots & F[n, m]
\end{array}\right)
$$

Hint: the following kinds of dots are available in math mode
\cdots Horizontal (center) ...
··· Horizontal (bottom) ...
Ivdots Vertical :
\ddots Diagonal $\ddots$.
8. Typeset:

$$
\alpha=\frac{e^{2}}{2 h \epsilon_{0} c} \approx \frac{1}{137}, \quad k=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} .
$$

9. Typeset with \align*:

$$
\begin{aligned}
f(x) & =\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \\
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x \mathrm{~d} x, \quad n=1,2, \ldots \\
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x \mathrm{~d} x, \quad n=1,2, \ldots
\end{aligned}
$$

10. Define (and test) a proof environment which has text printed in slanted face and that terminates with the final "Q.E.D." in roman font. Example:
Proof. Since the Grolfuss norm of $f$ is upwardly mobile, Fork $(f)$ is necessarily Axiom- .
Q.E.D.
11. Use \newcommand to define a command \defint with 1 argument, so that typing:
$\backslash$ defint $\{\backslash$ frac $\{\backslash \sin \backslash$ theta $+\backslash \cos \backslash$ theta $\}\{\backslash$ Theta $\}\}$
outputs

$$
\left[\frac{\sin \theta+\cos \theta}{\Theta}\right]_{0}^{\frac{\pi}{2}}
$$

12. In the previous question, change \defint so that the limits on the right bracket are also input as arguments.
