An introduction to $\operatorname{LA} T_{E X}$

Emma McCoy
Course Notes: Emma McCoy/Phillip Kent

November 1, 2017

Resources

This course is for ${ }^{L} T_{E} X$ " 2_{ε} " (current standard).
The previous version " 2.09 " works slightly differently - beware!

Course website:
http://www.ma.ic.ac.uk/~ejm/LaTeX/Website/

References:

- $A T_{E} X$ User Guide \& Reference Manual by Leslie Lamport (Second edition, Addison-Wesley, 1994).
- A Guide to $A T_{E} X$ by Kopka \& Daly (Third edition, Addison-Wesley, 1999) (details more advanced features).

Course contents

(1) Introduction
(2) A first ${ }^{A} T_{E} X$ document
(3) Maths mode
(9) Complex documents
(5) Figures, tables, etc...

Pros

- Great for typing mathematics
- Great for complex documents - cross-referencing, labelling, bibliographies...
- ATEX output is beautiful - virtually of professional-typeset quality
- The basic $A T_{E} X$ system is FREE.
- $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ makes typing "easy":
- formatting is automatic
- emphasis on content over formatting
- $\operatorname{AT} T_{E X}$ is written as plain text
- compact, portable
- transferable across the internet/email
- accepted by all major academic publishers
- speeds up the publishing process
- reduces the chance of printing errors

Cons

When is it not appropriate?

Many ${ }^{A} T_{E X} \mathrm{X}$ users make their CV s, presentations and even address their letters in ${ }^{A T} T_{E X}$ but it's not great for:

- documents with little text and lots of pictures.
- incorporating spreadsheets etc. into text.

Where?

- Free versions of LATEX exist across all platforms - Microsoft Windows, Linux, Unix and Apple Macintosh.
- Commercial (non-free) versions offer some extra features, e.g. WYSIWYG package Scientific Word or BaKoMa TeX Word.
- Power users should use Emacs.
- We will use MiKTEX: http://miktex.org/

About $\mathrm{T}_{\mathrm{E}} \mathrm{X}$

- $A^{2} T_{E X}$ is a super-set (macro package) of the typesetting language $T_{E} X$ created by Donald Knuth
- Plain $\mathrm{T}_{\mathrm{E} X}$ needs programming skills - deliberate policy
- ${ }^{\text {LATEX }}$ E (originally created by Leslie Lamport) adds functionality
- Originally other $\mathrm{T}_{\mathrm{E}} \mathrm{m}$ macro packages - e.g. $\mathcal{A M S} \mathrm{T}_{\mathrm{EX}}$ and $\mathcal{A M S A T E X}$ - now, incorporated into LATEX
- ${ }^{A} T_{E X}$ and $T_{E X}$ are not two different languages
- Most T_{E} commands work in $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$
- Sometimes a conflict where $\operatorname{LT} T_{E X}$ has re-defined a $T_{E X}$ command
- The $T_{E} X b o o k$ by Donald Knuth - standard reference for $T_{E} X$

Writing LATEX

- Writing $E T_{E} \mathrm{EX}$ is like writing computer programs in, say, Fortran or C - and there will be similar frustrations
- ATEX source file: contains plain (ASCII) text and formatting commands
- Commands are preceded by a " \backslash ".
- Nine reserved characters:
\ \% \$ ~ _ \& \# ~ \{ \}
If you want a "\%", type:
%
- Source file must end in ".tex"

The steps of writing in $\operatorname{AT} T_{E X}$

A skeleton source file

\% the essential components of a LaTeX file
\% (N.B. \% is the comment character, everything to
$\%$ the right of it on a line is IGNORED.)
\documentclass\{article\}
\% **** PREAMBLE ****
\% title/author/date information
\% definitions, short-hands, macros etc. BUT NO text
\begin\{document\} }
\% **** BODY OF DOCUMENT
\% ...the text itself
\% N.B. the RESERVED CHARACTERS:
$\%$ \ \% \$ ~ \& \# ~ \{ \}
\end\{document\} }

Document class

\documentclass[options]\{style\}

style:	book report article
	letter
options:	11 pt
	12 pt
	a4paper

Sectioning Commands

- \chapter
- \section
- \subsection
- \subsubsection

Example: \chapter\{title\}

Margin sizes

If you are not happy with margin sizes they can be adjusted:

- \setlength\{\textwidth\}\{5.7cm\}
- \setlength\{\oddsidemargin\}\{0.6in\}
- \setlength\{\topmargin\}\{-0.5in\}
- \setlength\{\textheight\}\{246mm alternatively use:
\addtolength\{\topmargin\}\{-5mm\}

Font size

- \small
- \normalsize
- \large \Large \LARGE \huge \Huge

Example: \{\Large this will be large\}

Font style

- Bold: \bf
- Example: $\{\backslash$ bf this will be bold\}
- Italics: \it
- There are usually several command to achieve the same result: \{\em italic\} \textit\{italic\} \emph\{italic\} \{\it italic\} will all produce: italic

Numbered list

For a numbered list:
\backslash begin\{enumerate\}
- This is the first item
- here's the second
\(\backslash\) begin \(\{\) enumerate \(\}\)
- this will be part 1 of number 2
- this is part 2
\end\{enumerate\} }
\end\{enumerate\} }
Output of above commands:
(1) This is the first item
(2) here's the second
(1) this will be part 1 of number 2
(2) this is part 2

Replace enumerate with itemise for bullet points

Extra critical commands

- to go to a new page use:

- to go to a new line use: \newline or

- to start a new paragraph: leave a blank line
- to prevent indenting use: \noindent
- For double spacing, in the preamble:
\{1.6\}

Other useful commands

- Quotation marks: use ' 'a'' to produce "a"
- Accents: use \’e, \"e , \^e to produce é, ë, ê.
- Dashes: use --, --- to produce - and -

Preliminary Exercise

- Open TEXworks
- Follow the instructions on the sheet

Exercise 1

http://www2.imperial.ac.uk/~ejm/ LaTeX/Website/exercises/exercise1.html

Math mode

Maths is "expensive":
$\backslash[\quad \backslash]$ or $\$ \$ \quad \$ \$$ - displayed formula
$\backslash(\backslash)$ or $\$ \$$ - in-text formula
E.g.

I could put $\$ x=y+2 z+3 w \$$ in the text
or as a displayed equation:
$\backslash[\mathrm{x}=\mathrm{y}+2 \mathrm{z}+3 \mathrm{w} \backslash]$

gives:

I could put $x=y+2 z+3 w$ in the text or as a displayed equation:

$$
x=y+2 z+3 w
$$

Subscript/superscripts:

$x^{2 y} \quad \$ x^{\wedge}\{2 y\} \$$
$x_{1}^{y^{2}} \quad \$ x _1^{\wedge}\left\{y^{\wedge}\{2\}\right\} \$$
Note bracketing, more than one argument in the sub/superscript must be enclosed in $\{\ldots\}$.

$$
\int_0^\infty \(f(t)\), \(d t\)
$$

Output of above:

$$
\int_{0}^{\infty} f(t) d t
$$

Greek letters

Remember your Greek letters: $\$ \backslash$ alpha\$, $\$ \backslash$ beta\$, $\$ \backslash$ gamma\$, \$\kappa\$, produce:
$\alpha, \beta, \gamma, \kappa$.
...and just capitalise to get (non-Arabic) capital Greek letters, e.g. $\$ \backslash$ Gamma\$ produces Γ.

Numbered equations

\backslash begin\{equation\}
S_2 = \sum_\{i=1\}^N x_i^2 +
\sum_\{i=1\}~N (y_i-\overline\{y\})~2
\end\{equation\} }
Output of above commands:

$$
\begin{equation*}
S_{2}=\sum_{i=1}^{N} x_{i}^{2}+\sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2} \tag{1}
\end{equation*}
$$

Fractions

$$
x=\frac{y+z / 2}{y^{2}+1}
$$

\

$$
x=\backslash f r a c\{y+z / 2\}\left\{y^{\wedge} 2+1\right\}
$$

\]

It's considered bad practice to \backslash frac in in-text formulas because it basically looks ugly: $x=\frac{y+z / 2}{y^{2}+1}$.

Adjustable brackets

Use \left and \right for correct sizing

$$
\left\{\left[\frac{1}{2}\right]-\left[\frac{1}{4}\right]\right\}
$$

\
\left } \backslash \{ left [\backslash f r a c \{ 1 \} \{ 2 \} \backslash right] - \left[\frac\{1\}\{4\}\right] \right
$}$
\]

You can use \left } \backslash \{ , \backslash l e f t [, \ l e f t (, \backslash l e f t / , ~ \ l e f t . ~ e t c . . . ~

Spacing

The \quad command leaves some space, other spaces in maths mode can be created with the following commands (smallest first):

, \; \quad \qquad

$$
x x x \quad x \quad x
$$

is produced by:

$$
x \\, x \; x \quad x \qquad x
$$

Arrays

$$
x=\left\{\begin{array}{cl}
y & \text { if } y>0 \\
z+y & \text { otherwise }
\end{array}\right.
$$

$$
\(x=\backslash l e f t \backslash\{\)
\begin\{array\}\{cl\} }
y \quad \& \mbox\{if \$y>0\$\} \\
\(z+y\) \quad \& \mbox\{otherwise\}
\end\{array\} }
\right.
$$

Lining up in columns

To produce:

$$
\begin{aligned}
\rho_{t}+(\rho u)_{x}+(\rho v)_{y} & =0, \\
u_{t}+u u_{x}+v u_{y}+\frac{1}{\rho} p_{x} & =0, \\
v_{t}+u v_{x}+v v_{y}+\frac{1}{\rho} p_{y} & =0 .
\end{aligned}
$$

\begin\{align*\} }
\rho_t + (\rho u)_x + (\rho v)_y \&= 0,

u_t + uu_x + vu_y + \frac\{1\}\{\rho\} p_x $\&=0, \backslash \backslash$
v_t + uv_x + vv_y + \frac\{1\}\{\rho\} p_y \&= 0 .
\end\{align*\} }
Use the \& symbol to line up the columns.

Numbered lines

Use \begin\{align\} for numbered equations - you can suppress } numbering for an individual equation by using the \nonumber command before $\backslash \backslash$.

$$
\begin{align*}
\rho_{t}+(\rho u)_{x}+(\rho v)_{y} & =0, \tag{2}\\
u_{t}+u u_{x}+v u_{y}+\frac{1}{\rho} p_{x} & =0, \\
v_{t}+u v_{x}+v v_{y}+\frac{1}{\rho} p_{y} & =0 . \tag{3}
\end{align*}
$$

\begin\{align\} }
\rho_t + (\rho u)_x + (\rho v)_y \& = 0,

$u_{-} t+u_{-} x+u_{-} y+\backslash f r a c\{1\}\{\backslash r h o\} p_{-} x \&=0, \backslash n o n u m b e r \backslash \backslash$
v_t + uv_x + vv_y + \frac\{1\}\{\rho\} p_y \&= 0.
\end\{align\} }

Matrices

$$
P=\left(\begin{array}{ccc}
1 & \cdots & 3 \\
\vdots & \ddots & \vdots \\
1 & \cdots & 3
\end{array}\right)
$$

is produced by:
$\backslash[P=\backslash \operatorname{left}(\backslash$ begin\{array\}$\{c c c\}$
1 \& \cdots \& 3

\vdots \& $\backslash d d o t s ~ \& ~ \ v d o t s \backslash \backslash$
1 \& \cdots \& 3
\end\{array\}\right)\] }

Commands/Functions:

Often you will find yourself repeating the same commands to produce complicated constructions, e.g. you might find yourself repeatedly typesetting \int_0^\infty to produce

$$
\int_{0}^{\infty}
$$

Save yourself time with \newcommand in the preamble:
\newcommand\{\myint\}\{\int_0^\infty\}
Then in the document type (for example) \myint $\mathrm{x} \backslash, \mathrm{dx}$ to obtain:

$$
\int_{0}^{\infty} x d x
$$

Multiple arguments

You can give arguments to \newcommand:
E.g. if we want to type:

$$
\frac{x^{2}+a}{b}
$$

where the values of a and b can change,
\newcommand\{\myfrac\}[2]\{\frac\{x^2+\#1\}\{\#2\}\}
Then use

$$
\(y=\backslash\) myfrac \(\{2\}\{4\}\)
$$

to produce

$$
y=\frac{x^{2}+2}{4}
$$

New environments

In the preamble:
\newenvironment\{proof\}\{\{\scshape Proof. \}\itshape \} \{\hfill\$\spadesuit\$\par\}

Then in body:
\begin\{proof\} }
Let us start by considering whether there is actually anything to prove. Turns out there isn't. \end\{proof\} }
gives:
Proof. Let us start by considering whether there is actually anything to prove. Turns out there isn't.

Theorems

In preamble:
\newtheorem\{theorem\}\{Theorem\}[section]
\newtheorem\{conj\}[theorem] \{Conjecture\}
Then in body:
\begin\{theorem\}[Something] something \end\{theorem\} } \begin\{conj\}[Something else] something else \end\{conj\} } gives:

Theorem (Something)

something

Conjecture (Something else)

 something else
Exercise 2

http://www2.imperial.ac.uk/~ejm/ LaTeX/Website/exercises/exercise2.html

Tables:

To produce the following table:

	Statistic	
Distribution	Expected value	Variance
Binomial (n, p)	$n p$	$n p(1-p)$
Uniform (α, β)	$(\beta+\alpha) / 2$	$(\beta-\alpha)^{2} / 12$
Exponential (λ)	$1 / \lambda$	$1 / \lambda^{2}$

Table: Means and variances

Table code

The code:

```
\renewcommand{\arraystretch}{1.4}
\begin{table}[h]
\begin{center}
\begin{tabular}{|l|c|c|} \hline
& \multicolumn{2}{|c|}{Statistic} \\ \hline
Distribution & Expected value & Variance \\ \hline\hline
Binomial($n,p$) & $np$ & $np(1-p)$ \\ \hline
Uniform($\alpha, \beta$) & $(\beta+\alpha)/2$ &
    $(\beta-\alpha)^2/12$ \\ \hline
Exponential($\lambda$) & $1/\lambda$ &
    $1/\lambda^2$ \\ \hline
\end{tabular}
\end{center}
\caption{Means and variances}
\end{table}
```


Extra useful table commands:

Can have a fixed width box as one of the columns (to allow line breaks):
\begin\{tabular\}\{|l|p\{5cm\}|\} \hline }
First \& extremely clear and accurate description of the school, the role in the classroom and the teaching methods used
 \hline Upper Second \& clear and accurate description of the school, the role in the classroom and the teaching methods used
 \hline Lower Second \& a description of the school, the role in the classroom and the teaching methods used
 \hline \end\{tabular\} }

The table

First	extremely clear and accurate description of the school, the role in the classroom and the teach- ing methods used
Upper Second	clear and accurate description of the school, the role in the classroom and the teaching methods used
Lower Second	a description of the school, the role in the class- room and the teaching methods used

Multirow

There is also a tirowcommand,butyouneedtoadd\usepackage\{multirow\}usage:\multirow\{numberofrowstospan\}\{alignment\}cansetalignmentto$*$forbestfit.Similarly,\usepackage\{multicolumn\}.undefined

Aligning to decimal point

\begin\{tabular\}\{r@\{.\}l\}
 $2 \& 1 \backslash \backslash$
 $16 \& 2 \backslash \backslash$
 2\&456

 \end\{tabular\} }
}

gives: | 16.1 |
| :---: |
| 16.2 |
| 2.456 |

Figures

To produce the following picture from a PDF file:

Figure: Random figure

Code

In the preamble use the graphicx package:
kage\{graphicx\}Thenusethefollowingcommands:\begin\{figure\}[h]}\begin\{center\}}\caption\{Randomfigure\}\end\{center\}}\end\{figure\}}undefined

Rotating figures and tables

To rotate figures and tables use the rotating package: include the following line in the preamble:
ating\}Thenuse\begin\{sidewaysfigure\}or}\begin\{sidewaystable\}.}undefined

Exercise

(1) Pick a random picture from the web and put it in your document.
(2) Tables:

$$
\begin{array}{r}
\text { http://www2.imperial.ac.uk/~ejm/LaTeX/ } \\
\text { Website/exercises/table.html }
\end{array}
$$

Title

In the preamble type:

\title\{A snappy title\}

\author\{Emma McCoy\}
\date\{\today\}

Then after the \backslash begin\{document\} command type:
\maketitle

Contents etc...

Based on your chapters, sections, subsections, subsubsections:
\tableof contents
If you have figures and tables you can also produce
\listoftables
\listoffigures

Numbers

Many environments produce numbers: (e.g. \section, \begin\{equation\} } \begin\{enumerate\}, \begin\{table\}) }

If it is numbered it can be labelled and referred to :

\section\{A subsection\} \label\{seclabelex\}

\backslash begin\{equation\}
$\mathrm{x}=\mathrm{y}{ }^{\wedge} 2$ \label\{eq1\}
\end\{equation\} }
Then later in the text:
In equation (\backslash ref $\{$ eq1\}) in subsection $\backslash r e f\{s e c l a b e l e x\}$ on page \backslash pageref $\{$ intro\} we discussed....

Output

$$
\begin{equation*}
x=y^{2} \tag{4}
\end{equation*}
$$

In equation (4) in subsection 3 on page 49 we discussed....

The bibliography

The notes explain how to use a simple within-document bibliography.

My advice: record anything you've ever read in a separate $B i b T_{E} X$ file.

References will only appear if they are cited in the current document.

A BibTEX file

... should finish with .bib. Example syntax:

```
@Article{LillyPark,
author={Jonathan Lilly and Jeffrey Park},
title={Multiwavelet Spectral and Polarization Analysis of Seismic Records},
journal={Geophysical Journal International},
year={1995},
volume={122},
pages={1001--1021}
}
@Book{Daub,
author={Ingrid Daubechies},
title={Ten Lectures on Wavelets},
publisher={SIAM Press},
year={1992},
address={Philadelphia, USA}
}
```


Entry types

Example entry types: article, book, manual, phdthesis, inproceedings, any many more.

Each has its own mandatory and optional fields.

See e.g.
http://en.wikipedia.org/wiki/BibTeX

Placing and citing in document

Just before \end\{document\}: }
\bibliographystyle\{plain\}
\bibliography\{name\}
To cite in the document, use e.g. \cite[p.12]\{label\}.

Compiling

This depends on the editor but traditionally:

- whenever the global numbering has changed (e.g. you have added a new section), $\mathrm{A}_{\mathrm{E}} \mathrm{EX}$ needs to be compiled twice.
- whenever you input a new reference, compile ${ }^{A} T_{E} X$ once, then $B i B T_{E} X$ once, then ${ }^{A} T_{E X}$ twice!

To change numbering

Use the following counters:

numbering:
For enumerate:
\setcounter\{section\}\{5\}
\addtocounter\{section\}\{-2\}

page
chapter
section, subsection
equation
figure
table
enumi
enumii
enumiii
enumiv

Printing counter numbers

```
\setcounter{page}{7}
\arabic{page}
\roman{page}
\Roman{page}
\alph{page}
\Alph{page}
```

produces: 7 vii VII g G

To change numbering, add a \backslash the to the front of the counter name, e.g. to relabel the 4th subsection of the 2nd section "Il-D":
\{\Roman\{section\}\}
\{\thesection-\Alph\{subsection\}\}

Input and include

To split a lot of code into multiple files use \input, e.g.
\input\{chap1\}
\input\{chap2\}
\input\{chap3\}
If you only want to print part of the document, use \include, e.g. to only print chapters 2 and 3:
\includeonly\{chap2, chap3\}
\documentclass\{article\}
\begin\{document\} }
\include\{chap1\}
\include\{chap2\}
\include\{chap3\}
\end\{document\} }

Exercise 3

> http://www2.imperial.ac.uk/~ejm/LaTeX/ Website/exercises/exercise3.html

