1. (a) (i) I: $\mathrm{P}($ exactly 1 event occurs in $[t, t+\delta t))=\lambda \delta t+o(\delta t)$,
$[o(\delta t) / \delta t \rightarrow 0$ as $\delta t \rightarrow 0]$.
II: $\mathrm{P}(2$ or more events occur in $[t, t+\delta t))=o(\delta t)$.
III: Occurrence of events after time t is independent of occurrence of events before t.
sim. seen \Downarrow
(ii) Let $X(t)$ be the number of realizations by time t and let $p(t)=$ $\mathrm{P}(X(t)=0)$

$$
\begin{aligned}
p(t+\delta t) & =\mathrm{P}(0 \text { realizations in }[0, t) \text { and } 0 \text { realizations in }[t, t+\delta t)) \\
& =p(t)(1-\lambda \delta t+o(\delta t)) \quad \text { (from axioms) } \\
\frac{p(t+\delta t)-p(t)}{\delta t} & =-p(t) \lambda+\frac{o(\delta t)}{\delta t} \\
\Rightarrow \frac{d p(t)}{d t} & =-p(t) \lambda \\
\Rightarrow-\log (p(t)) & =\lambda t+c
\end{aligned}
$$

Now $p(0)=1$, so $c=0$ giving $p(t)=e^{-\lambda t}$ as required.
(iii) For a non-homogeneous process we have

$$
p(t)=e^{-\mu(t)} \quad \text { where } \mu(t)=\int_{0}^{t} \lambda(u) d u
$$

So,

$$
\mu(t)=\int_{0}^{t} 1+\sin (u) d u=[u-\cos (u)]_{0}^{t}=t-\cos (t)+1
$$

giving

$$
p(t)=\exp (\cos (t)-t-1) .
$$

(b) Let $X\left(t_{1}, t_{2}\right)$ be the number of questions answered in in $\left[t_{1}, t_{2}\right)$, then

$$
\mathrm{E}(X(t, t+\delta t))=\frac{2}{1+t} \delta t+o(\delta t)
$$

Let $D(t)=$ number questions answered by t in deterministic model. Then

$$
\begin{aligned}
D(t+\delta t) & =D(t)+\frac{2}{1+t} \delta t+o(\delta t) \\
\Rightarrow \frac{D(t+\delta t)-D(t)}{\delta t} & =\frac{2}{1+t}+\frac{o(\delta t)}{\delta t} \\
\Rightarrow \frac{d D}{d t} & =\frac{2}{1+t} \\
\Rightarrow D(t) & =2 \log (1+t)+c
\end{aligned}
$$

and since $D(0)=0$, we have $c=0$

$$
D(t)=2 \log (1+t)
$$

2. (a) (i) Let $\Pi(s)$ be the pgf for X, and let $\mu=\mathrm{E}(X)$ and $\mu_{n}=\mathrm{E}\left(Z_{n}\right)$, so

$$
\mu=\Pi^{\prime}(1) \quad \mu_{n}=\Pi_{n}^{\prime}(1)
$$

where $\Pi_{n}^{\prime}(s)$ is the pgf of $Z_{n}=Y_{1}+\ldots+Y_{Z_{n-1}}$ with Y_{i} being the number of offspring of individual i in generation $n-1$. From standard pgf results, we have

$$
\begin{aligned}
\Pi_{n}(s) & =\Pi_{n-1}[\Pi(s)] \\
\Rightarrow \Pi_{n}^{\prime}(s) & =\Pi_{n-1}^{\prime}[\Pi(s)] \Pi^{\prime}(s) \\
\Pi_{n}^{\prime}(1) & =\Pi_{n-1}^{\prime}[\Pi(1)] \Pi^{\prime}(1) \\
& =\Pi_{n-1}^{\prime}(1) \Pi^{\prime}(1) \\
\text { so } \quad \mu & =\mu_{n-1} \mu=\mu_{n-2} \mu^{2}=\ldots=\mu^{n} .
\end{aligned}
$$

as $\mathrm{E}(X)=1$ we have $\mathrm{E}\left(Z_{n}\right)=1^{n}=1$.
(ii) Let $\sigma^{2}=\operatorname{var}(X)$ and let $\sigma_{n}^{2}=\operatorname{var}\left(Z_{n}\right)$.

$$
\begin{align*}
& \Pi_{n}^{\prime}(s)=\Pi_{n-1}^{\prime}[\Pi(s)] \Pi^{\prime}(s) \\
& \Pi_{n}^{\prime \prime}(s)=\Pi_{n-1}^{\prime \prime}[\Pi(s)] \Pi^{\prime}(s)^{2}+\Pi_{n-1}^{\prime}[\Pi(s)] \Pi^{\prime \prime}(s) \tag{1}
\end{align*}
$$

Now $\Pi(1)=1, \Pi^{\prime}(1)=\mu, \Pi^{\prime \prime}(1)=\sigma^{2}-\mu+\mu^{2}$.
Also, since $\sigma_{n}^{2}=\Pi_{n}^{\prime \prime}(1)+\mu_{n}-\mu_{n}^{2}$, we have

$$
\begin{aligned}
\Pi_{n}^{\prime \prime}(1) & =\sigma_{n}^{2}-\mu^{n}+\mu^{2 n} \\
\text { and } \quad \Pi_{n-1}^{\prime \prime}(1) & =\sigma_{n-1}^{2}-\mu^{n-1}+\mu^{2 n-2} .
\end{aligned}
$$

From (1),

$$
\begin{aligned}
\Pi_{n}^{\prime \prime}(1) & =\Pi_{n-1}^{\prime \prime}(1) \Pi^{\prime}(1)^{2}+\Pi_{n-1}^{\prime}(1) \Pi^{\prime \prime}(1) \\
\sigma_{n}^{2}-\mu^{n}+\mu^{2 n} & =\left(\sigma_{n-1}^{2}-\mu^{n-1}+\mu^{2 n-2}\right) \mu^{2}+\mu^{n-1}\left(\sigma^{2}-\mu+\mu^{2}\right) \\
\Rightarrow \sigma_{n}^{2} & =\mu^{2} \sigma_{n-1}^{2}+\mu^{n-1} \sigma^{2}
\end{aligned}
$$

Leading to

$$
\sigma_{n}^{2}=\mu^{n-1} \sigma^{2}\left(1+\mu+\mu^{2}+\ldots+\mu^{n-1}\right)
$$

So, as $\mu=1$ we have

$$
\operatorname{var}\left(Z_{n}\right)=\sigma_{n}^{2}=n \sigma^{2} .
$$

(b) (i) We have

$$
\Pi(s)=\sum_{i=0}^{\infty} \mathrm{P}(X=i) s^{i}=\alpha+(1-\alpha) s^{3}
$$

Giving,

$$
\Pi^{\prime}(s)=3(1-\alpha) s^{2}
$$

So $\mu=\Pi^{\prime}(1)=3(1-\alpha)$.
Let P (ultimate extinction $)=\theta^{*}$, then

1. $\mu \leq 1 \Rightarrow \theta^{*}=1 \Rightarrow$ ultimate extinction certain.
2. $\mu>1 \Rightarrow \theta^{*}<1 \Rightarrow$ ultimate extinction not certain.
$\mu>1$ when $3(1-\alpha)>1 \Rightarrow \alpha<\frac{2}{3}$.
So, when $\alpha<\frac{2}{3}$ ultimate extinction is not certain.
(ii) $\quad \theta^{*}=$ smallest positive solution of $\theta=\Pi(\theta)$, and $\theta=\frac{1}{2}$:

$$
\begin{aligned}
\theta & =\alpha+(1-\alpha) \theta^{3} \\
\frac{1}{2} \theta^{3}-\theta+\frac{1}{2} & =0 \\
\theta^{3}-2 \theta+1 & =0
\end{aligned}
$$

We know that $\theta=1$ is a solution:

$$
\theta^{3}-2 \theta+1=(\theta-1)\left(\theta^{2}+\theta-1\right)
$$

roots of $\theta^{2}+\theta-1$ are $-\frac{1}{2} \pm \frac{\sqrt{5}}{2}$, therefore

$$
\text { Probability of extinction }=\frac{\sqrt{5}-1}{2}
$$

3. (a) (i) Show that

$$
\begin{aligned}
\mathrm{P}(\text { ever reach } 0 \mid \text { starts at } i)= & \mathrm{P}(\text { ever reach } i-1 \mid \text { starts at } i) \\
& \times \mathrm{P}(\text { ever reach } i-2 \mid \text { starts at } i-1) \\
& \vdots \\
& \times \mathrm{P}(\text { ever reach } 0 \mid \text { starts at } 1) \\
= & \underbrace{A_{1} \times A_{1} \times \ldots \times A_{1}}_{i \text { times }} \quad \text { (spatial homogeneity) } \\
= & \left(A_{1}\right)^{i}
\end{aligned}
$$

(ii) condition on first step:

$$
\begin{aligned}
A_{1} & =\mathrm{P}(\text { visit origin } \mid \text { start from } 1) \\
& =q \mathrm{P}(\text { visit origin } \mid \text { start from } 0)+p \mathrm{P}(\text { visit origin } \mid \text { start from } 3) \\
& =q+p A_{3} \\
\Rightarrow p A_{1}^{3}-A_{1}+q & =0
\end{aligned}
$$

(iii) Solving $p A_{1}^{3}-A_{1}+q=0$ gives

$$
A_{1}=1 \quad \text { or } \quad A_{1}=\frac{-1 \pm \sqrt{1+\frac{4 q}{p}}}{2}
$$

Now look for solutions in $[0,1]$:

$$
\frac{-1-\sqrt{1+\frac{4 q}{p}}}{2}<0
$$

also,

$$
\begin{array}{rlrr}
\frac{-1+\sqrt{1+\frac{4 q}{p}}}{2} \leq 1 \Rightarrow & 1+\frac{4 q}{p} \leq 9 \\
\Rightarrow \frac{1-p}{p} & \leq 2 \Rightarrow & p \geq \frac{1}{3}
\end{array}
$$

take positive solutions:

$$
A_{1}=\left\{\begin{array}{cl}
\frac{-1+\sqrt{1+\frac{4 q}{p}}}{2} & \text { if } p>1 / 3 \\
1 & \text { if } p \leq 1 / 3
\end{array}\right.
$$

(Noting that when $p=1 / 3, A_{1}=1$).
(b) (i) Let X_{t} be the value of the share on day t.

Let Y_{t} be the change in value of the share on day t.
Then,

$$
X_{t}=X_{0}+Y_{1}+\ldots+Y_{t}
$$

$X_{0}=100 \quad Y_{i}=\left\{\begin{array}{cl}0.4 & \text { with probability } 0.5 \\ -0.2 & \text { with probability } 0.3 \\ 0 & \text { with probability } 0.2\end{array}\right.$

$$
\begin{aligned}
\mathrm{E}\left(Y_{i}\right) & =0.4 \times 0.5-0.2 \times 0.3=0.2-0.06=0.14 \\
\operatorname{var}\left(Y_{i}\right) & =\mathrm{E}\left(Y_{i}^{2}\right)-\mathrm{E}^{2}\left(Y_{i}\right) \\
\mathrm{E}\left(Y_{i}^{2}\right) & =0.4^{2} \times 0.5+(0.2)^{2} \times 0.3=0.16 \times 0.5+0.04 \times 0.3 \\
& =0.08+0.012=0.092 \\
\operatorname{var}\left(Y_{i}\right) & =0.092-0.14^{2}=0.092-0.0196=0.0724
\end{aligned}
$$

Giving

$$
\begin{aligned}
\mathrm{E}\left(X_{t}\right)=100+0.14 t & =\mu_{t} \\
\operatorname{var}\left(X_{t}\right)=0.0724 t & =\sigma_{t}^{2}
\end{aligned}
$$

(ii) For large t

$$
\begin{gathered}
X_{t}-X_{0}=\sum_{i=1}^{t} Y_{i} \sim N(0.014 t, 0.0724 t) \\
\Rightarrow \frac{X_{t}-X_{0}-0.14 t}{\sqrt{0.0724 t}} \sim N(0,1) \\
\mathrm{P}\left(X_{365}>110\right)=1-\Phi\left(\frac{110-(100+0.14 \times 365)}{\sqrt{0.0724 \times 365}}\right) \\
=1-\Phi\left(\frac{110-\mu_{365}}{\sqrt{\sigma_{365}^{2}}}\right)
\end{gathered}
$$

4. (a) (i) A Markov chain is irreducible if it has only one communicating class, i.e. again for all i, j in the sample space.
(ii) A Markov chain is aperiodic if all states have period 1, i.e. if

$$
\operatorname{gcd}\left\{n: p_{i j}^{(n)}>0\right\}=1
$$

where $p_{i j}^{(n)}$ is the probability of going from i to j in n steps.
(b) (i) State space $=\{0,1,2,3\}$ (Number of balls in the first urn).

$$
P=\begin{aligned}
& 0 \\
& 1 \\
& 2 \\
& 3
\end{aligned}\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
\frac{1}{3} & 0 & \frac{2}{3} & 0 \\
0 & \frac{2}{3} & 0 & \frac{1}{3} \\
0 & 0 & 1 & 0
\end{array}\right)
$$

(ii) transition diagram:

(iii) Irreducible, finite state space \Rightarrow there is a unique stationary distribution.
(iv) Need aperiodicity for this distribution to also be limiting. Here the Markov chain is periodic with period 2, so the stationary distribution is not limiting.
(v) Find stationary distribution, $\boldsymbol{\pi}$ from, $\boldsymbol{\pi}=\boldsymbol{\pi} P, \quad \sum_{i=0}^{3} \pi_{i}=1$

$$
\left.\begin{array}{rl}
\pi_{0} & =\frac{1}{3} \pi_{1} \\
\pi_{0}+\frac{2}{3} \pi_{2} & =\pi_{1} \\
\frac{2}{3} \pi_{1}+\pi_{3} & =\pi_{2} \\
\frac{1}{3} \pi_{2} & =\pi_{3}
\end{array}\right\} \Rightarrow \begin{aligned}
\pi_{1} & =3 \pi_{0} \\
\pi_{2} & =3 \pi_{0} \\
\pi_{3} & =\pi_{0}
\end{aligned}
$$

and

$$
\pi_{0}+\pi_{1}+\pi_{2}+\pi_{3}=1 \Rightarrow \pi_{0}+3 \pi_{0}+3 \pi_{0}+\pi_{0}=1 \Rightarrow \pi_{0}=\frac{1}{8}
$$

Giving,

$$
\boldsymbol{\pi}=\left(\frac{1}{8}, \frac{3}{8}, \frac{3}{8}, \frac{1}{8}\right)
$$

Mean recurrence time to state $0, \mu_{0}$ is given by:

$$
\mu_{0}=\frac{1}{\pi_{0}}=8
$$

5. (a) (i) Define

$$
Q=\left.\frac{d}{d t} P(t)\right|_{t=0}
$$

the transition rate matrix with elements $q_{i j}$, and let $P(t)$ have element $p_{i j}(t), i, j$ in the sample space. The forward differential equations are given by:

$$
\begin{aligned}
\frac{d}{d t} P(t) & =P(t) Q \\
\Rightarrow \frac{d}{d t} p_{i j}(t) & =\sum_{k} p_{i k}(t) q_{j k} \quad \forall i, j .
\end{aligned}
$$

(ii)

$$
\sum_{i} \pi_{i}=1, \quad \boldsymbol{\pi} Q=\mathbf{0} \quad(\text { or } \boldsymbol{\pi}=P(t) \boldsymbol{\pi}, \forall t)
$$

(b) (i) Let state $0 \equiv$ good mood, and state $1 \equiv$ bad mood.

$$
\begin{aligned}
& p_{01}(\delta t)=\mathrm{P}(0 \rightarrow 1 \quad \text { in }[t, t+\delta t))=\alpha \delta t+o(\delta t) \\
& p_{10}(\delta t)=\mathrm{P}(1 \rightarrow 0 \quad \text { in }[t, t+\delta t))=\beta \delta t+o(\delta t)
\end{aligned}
$$

We have, by definition,

$$
p_{i j}(\delta t)=\left\{\begin{aligned}
1+\delta t q_{i i}+o(\delta t) & i=j \\
\delta t q_{i j}+o(\delta t) & i \neq j
\end{aligned} \text { small } \delta t\right.
$$

So, as the rows of Q sum to zero, we have

$$
Q=\left(\begin{array}{rr}
-\alpha & \alpha \\
\beta & -\beta
\end{array}\right)
$$

(ii) assume true for $n=k$, let $n=k+1$

$$
\begin{gathered}
Q^{k+1}=Q^{k} Q \\
=\left((-\alpha-\beta)^{k-1} Q\right) Q \text { from assumption } \\
=(-\alpha-\beta)^{k-1} Q^{2} \\
Q^{2}=\left(\begin{array}{cc}
\alpha^{2}+\alpha \beta & -\alpha^{2}-\alpha \beta \\
-\alpha \beta-\beta^{2} & \alpha \beta+\beta^{2}
\end{array}\right)=(-\alpha-\beta)\left(\begin{array}{rr}
-\alpha & \alpha \\
\beta & -\beta
\end{array}\right)=(-\alpha-\beta) Q \\
Q^{k+1}= \\
(-\alpha-\beta)^{k-1}(-\alpha-\beta) Q=(-\alpha-\beta)^{k} Q
\end{gathered}
$$

true for $n=k+1$ if true for $n=k$, as true for $n=1\left(Q^{1}=(-\alpha-\beta)^{0} Q\right)$,
result follows by induction.

$$
\begin{aligned}
\exp (t Q) & =I+\sum_{n=1}^{\infty} \frac{t^{n}}{n!}(-\alpha-\beta)^{n-1} Q \\
& =I+\frac{Q}{-\alpha-\beta} \sum_{n=0}^{\infty} \frac{(t(-\alpha-\beta))^{n-1}}{n!} \\
& =I+\frac{Q}{-\alpha-\beta}\{\exp (t(-\alpha-\beta)-1\} \\
& =I+\frac{Q}{\alpha+\beta}+\frac{Q}{-\alpha-\beta} \exp (t(-\alpha-\beta))
\end{aligned}
$$

(iii) Backward differential equations:

$$
\begin{aligned}
\frac{d}{d t} P(t) & =\frac{d}{d t}\left\{I+\frac{Q}{\alpha+\beta}+\frac{Q}{-\alpha-\beta} \exp (t(-\alpha-\beta))\right\} \\
& =\exp (t(-\alpha-\beta)) Q \\
Q P(t) & =Q\left\{I+\frac{Q}{\alpha+\beta}+\frac{Q}{-\alpha-\beta} \exp (t(-\alpha-\beta))\right\} \\
& =Q+\frac{Q^{2}}{\alpha+\beta}+\frac{Q^{2}}{-\alpha-\beta} \exp (t(-\alpha-\beta)) \\
& =Q+\frac{(-\alpha-\beta) Q}{\alpha+\beta}+\frac{(-\alpha-\beta) Q}{-\alpha-\beta} \exp (t(-\alpha-\beta)) \\
& =Q \exp (t(-\alpha-\beta))
\end{aligned}
$$

i.e. $P(t)$ satisfies the backward differential equations:

$$
\frac{d}{d t} P(t)=Q P(t)
$$

(iv) stationary distribution satisfies

$$
\begin{aligned}
\left(\begin{array}{ll}
\pi_{0} & \pi_{1}
\end{array}\right)\left(\begin{array}{rr}
-\alpha & \alpha \\
\beta & -\beta
\end{array}\right) & =\left(\begin{array}{ll}
0 & 0
\end{array}\right) \quad \pi_{0}+\pi_{1}=1 \\
-\alpha \pi_{0}+\beta \pi_{1} & =0 \quad \text { and } \quad \pi_{0}+\pi_{1}=1 \\
-\alpha \pi_{0}+\beta\left(1-\pi_{0}\right) & =0 \Rightarrow \pi_{0}=\frac{\beta}{\alpha+\beta} \\
\pi_{1} & =1-\frac{\beta}{\alpha+\beta}=\frac{\alpha}{\alpha+\beta}
\end{aligned}
$$

giving

$$
\boldsymbol{\pi}=\left(\frac{\beta}{\alpha+\beta}, \frac{\alpha}{\alpha+\beta}\right)
$$

