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Note: Throughout this paper {εt} is a sequence of uncorrelated random variables

having zero mean and variance σ2
ε , unless stated otherwise.

1. a) What is meant by saying that a stochastic process is second-order

stationary?

b) Consider the following ARMA(1,1) model,

Xt = αXt−1 + εt − 2αεt−1.

i) Express the model using the backward shift operator B.

ii) Determine constraints on α which ensure that the model is both

stationary and invertible.

iii) Assuming stationarity express the model in an infinite MA

representation.

iv) Determine var{Xt}.

2. a) Let {εt} and {ηt} be zero-mean white noise processes with variances 1

and θ2 respectively, |θ| < 1, θ 6= 0.

Show that the MA(1) processes,

Xt = εt + θεt−1 and Yt = ηt +
1

θ
ηt−1,

have the same autocovariance function.

Are either {Xt} or {Yt} invertible?

b) Consider the process defined by

Xt = εt + (−1)t−1εt−1.

i) Determine E{Xt} and cov{Xt, Xt+τ} for τ = 0,±1,±2, . . ..

ii) Giving full justification, determine whether the process is second

order stationary.
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3. a) What are the three properties of a linear time-invariant (LTI) filter?

b) i) Determine the spectral density function of the white noise process

{εt}.

ii) Find the frequency response functions associated with the following

LTI filters

L1{{εt}} = εt − 0.2εt−1,

L2{{Xt}} = Xt − 2Xt−1 +Xt−2.

iii) By determining their gain functions, describe the nature of L1{·} and

L2{·}.

iv) Determine the spectral density function for the ARMA(2,1) process,

Xt = 2Xt−1 −Xt−2 + εt − 0.2εt−1.

4. Assume that X1, X2, . . . , XN is a sample from a zero mean AR(2) process,

with defining equation,

Xt = φ1,2Xt−1 + φ2,2Xt−2 + εt.

a) Show that

ŝτ =
1

N

N−|τ |∑

t=1

XtXt+|τ | τ = 0,±1,±2, . . . ,±(N − 1),

is a biased estimator of sτ = cov{Xt, Xt+τ}.

b) By multiplying the defining equation by Xt−k and taking expectations

for k = 1, 2, derive the Yule-Walker estimators of φ1,2 and φ2,2.

c) Show that the corresponding Yule-Walker estimator of σ2
ε is given by

σ̂2
ε =

ŝ3
0 − 2ŝ0ŝ

2
1 + 2ŝ2

1ŝ2 − ŝ0ŝ
2
2

ŝ2
0 − ŝ1

2 .

d) Describe the relationship between Yule-Walker estimators and least-

squares estimators of the AR parameters.



5. Consider the following periodogram estimator of the spectral density function

of {Xt} at the Fourier frequencies fk = k
N
, k = 0, 1, . . . , N

2
,

Ŝ(p)(fk) =
1

N

∣
∣
∣
∣
∣

N∑

t=1

(Xt − c)e
−i2πfkt

∣
∣
∣
∣
∣

2

,

where c is some constant.

a) Show that

Ŝ(p)(0) = N(X − c)2,

where X = (1/N)
∑N

t=1 Xt.

b) Show that the periodogram does not depend on c for all non-zero Fourier

frequencies.

What are the implications of this result?




You may use the fact that for any complex number z 6= 1, then,

∑N
t=1 z

t = z−zN−1

1−z .





c) What type of processes are likely to produce a periodogram which is a

biased estimator of the true spectrum due to sidelobe leakage?

d) Describe a method to reduce leakage bias in the periodogram, and explain

why it is effective.
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