Imperial College London

UNIVERSITY OF LONDON
BSc and MSci EXAMINATIONS (MATHEMATICS)
MAY-JUNE 2004

M3S8 (Solutions)

Time Series

1. (a) $\left\{X_{t}\right\}$ is second-order stationary if $E\left\{X_{t}\right\}$ is a finite constant for all $t, \operatorname{var}\left\{X_{t}\right\}$ is a finite constant for all t, and $\operatorname{cov}\left\{X_{t}, X_{t+\tau}\right\}$, is a finite quantity depending only on τ and not on t.
(b) (i) Stationary $(\mathrm{MA}(2)!) \mathrm{E}\left\{X_{t}\right\}=0$,

$$
\begin{aligned}
s_{\tau} & =\mathrm{E}\left\{\left(\epsilon_{t}-0.9 \epsilon_{t-1}\right)\left(\epsilon_{t+\tau}-0.9 \epsilon_{t+\tau-1}\right)\right\} \\
& =\mathrm{E}\left\{\epsilon_{t} \epsilon_{t+\tau}\right\}-0.9\left(\mathrm{E}\left\{\epsilon_{t} \epsilon_{t+\tau-1}\right\}+\mathrm{E}\left\{\epsilon_{t-1} \epsilon_{t+\tau}\right\}\right)+0.81 \mathrm{E}\left\{\epsilon_{t-1} \epsilon_{t+\tau-1}\right\} .
\end{aligned}
$$

So,

$$
\operatorname{var}\left\{X_{t}\right\}=s_{0}=\sigma_{\epsilon}^{2}+0.81 \sigma_{\epsilon}^{2}=1.81 \sigma_{\epsilon}^{2}
$$

and

$$
s_{\tau}= \begin{cases}0.9 \sigma_{\epsilon}^{2} & |\tau|=1 \\ 0 & |\tau|>1\end{cases}
$$

none of which depend on t and so process is stationary.
(ii) For stationarity the roots of the characteristic equation $\Phi(z)$ in the defining equation $\Phi(B) X_{t}=\epsilon_{t}$ must lie outside the unit circle.

$$
\begin{aligned}
X_{t} & =\frac{9}{4} X_{t-1}-\frac{9}{8} X_{t-2}+\epsilon_{t} \\
\left(1-\frac{9}{4} B+\frac{9}{8} B^{2}\right) X_{t} & =\epsilon_{t} \\
\left(1-\frac{3}{4} B\right)\left(1-\frac{3}{2} B\right) X_{t} & =\epsilon_{t}
\end{aligned}
$$

roots are $4 / 3$ and $2 / 3$, so process is non-statationary as $|2 / 3|<1$.
(c) (i)

$$
\begin{aligned}
\operatorname{var}\left\{X_{t}\right\}=s_{0} & =\mathrm{E}\left\{X_{t}^{2}\right\}=\mathrm{E}\left\{\left(\alpha X_{t-1}+\epsilon_{t}+\alpha \epsilon_{t-1}\right)\left(\alpha X_{t-1}+\epsilon_{t}+\alpha \epsilon_{t-1}\right)\right\} \\
& =\alpha^{2} \mathrm{E}\left\{X_{t-1}^{2}\right\}+2 \alpha^{2} \mathrm{E}\left\{X_{t-1} \epsilon_{t-1}\right\}+\mathrm{E}\left\{\epsilon_{t}^{2}\right\}+\alpha^{2} \mathrm{E}\left\{\epsilon_{t-1}^{2}\right\} \\
s_{0}\left(1-\alpha^{2}\right) & =2 \alpha^{2} \mathrm{E}\left\{\left(\alpha X_{t-2}+\epsilon_{t-1}+\alpha \epsilon_{t-2}\right) \epsilon_{t-1}\right\}+\sigma_{\epsilon}^{2}\left(1+\alpha^{2}\right) \\
s_{0}\left(1-\alpha^{2}\right) & =2 \alpha^{2} \sigma_{\epsilon}^{2}+\sigma_{\epsilon}^{2}\left(1+\alpha^{2}\right) \\
s_{0} & =\frac{\sigma_{\epsilon}^{2}\left(1+3 \alpha^{2}\right)}{\left(1-\alpha^{2}\right)}
\end{aligned}
$$

(ii) Process is stationary as $|\alpha|<1$, multiply defining equation by X_{t-1} and take expectations

$$
\mathrm{E}\left\{X_{t-1} X_{t}\right\}=\alpha \mathrm{E}\left\{X_{t-1} X_{t-1}\right\}+\mathrm{E}\left\{X_{t-1} \epsilon_{t}\right\}+\alpha \mathrm{E}\left\{X_{t-1} \epsilon_{t-1}\right\}
$$

We have, from (c)(i) that $\mathrm{E}\left\{X_{t-1} \epsilon_{t-1}\right\}=\alpha \sigma_{\epsilon}^{2}$, and using the fact that $\mathrm{E}\left\{X_{t} X_{t-\tau}\right\}=s_{\tau}$, we have

$$
\begin{aligned}
s_{1} & =\alpha s_{0}+\alpha \sigma_{\epsilon}^{2} \\
\Rightarrow \rho_{1}=\frac{s_{1}}{s_{0}} & =\alpha+\alpha \frac{1-\alpha^{2}}{1+3 \alpha^{2}}=\frac{\alpha\left(1+3 \alpha^{2}\right)+\alpha\left(1-\alpha^{2}\right)}{1+3 \alpha^{2}}=\frac{2 \alpha\left(1+\alpha^{2}\right)}{1+3 \alpha^{2}}
\end{aligned}
$$

2. (a) (i) A: $\pi_{1}=0.89, \pi_{2}=0.1, \pi_{3}=0$.

B:

$$
\begin{aligned}
(1-0.1 B) \epsilon_{t} & =(1-B) X_{t} \\
\epsilon_{t} & =(1-B)(1-0.1 B)^{-1} X_{t} \\
\epsilon_{t} & =(1-B)\left(1+0.1 B+(0.1 B)^{2}+(0.1 B)^{3}+\ldots\right) X_{t} \\
\epsilon_{t} & =\left(1+(0.1-1) B+\left(0.1^{2}-0.1\right) B^{2}+\left(0.1^{3}-0.1^{2}\right) B^{3}+\ldots\right) X_{t} \\
\epsilon_{t} & =\left(1-0.9 B-(0.1) 0.9 B^{2}-(0.1)^{2} 0.9 B^{3}-\ldots\right) X_{t} \\
X_{t} & =0.9 X_{t}+0.09 X_{t-1}+0.009 X_{t-2}+\ldots+\epsilon_{t}
\end{aligned}
$$

So $\pi_{1}=0.9, \pi_{2}=0.09, \pi_{3}=0.009$.
(ii) For B: $\pi_{k}=(0.1)^{k-1} 0.9$.
(b) (i) The three properties of an LTI filter are:
[1] Scale-preservation:

$$
L\left\{\left\{\alpha x_{t}\right\}\right\}=\alpha L\left\{\left\{x_{t}\right\}\right\}
$$

[2] Superposition:

$$
L\left\{\left\{x_{t, 1}+x_{t, 2}\right\}\right\}=L\left\{\left\{x_{t, 1}\right\}+L\left\{\left\{x_{t, 2}\right\}\right\}\right.
$$

[3] Time invariance:
If

$$
L\left\{\left\{x_{t}\right\}\right\}=\left\{y_{t}\right\}, \quad \text { then } \quad L\left\{\left\{x_{t+\tau}\right\}\right\}=\left\{y_{t+\tau}\right\} .
$$

Where τ is integer-valued, and the notation $\left\{x_{t+\tau}\right\}$ refers to the sequence whose t-th element is $x_{t+\tau}$.
(ii) Model A, we have $L\left\{\left\{X_{t}\right\}\right\}=X_{t}-0.89 X_{t-1}-0.1 X_{t-2}$ so that $L\left\{\left\{X_{t}\right\}\right\}=\left\{\epsilon_{t}\right\}$.

$$
\begin{aligned}
L\left\{\left\{e^{i 2 \pi f t}\right\}\right\} & =e^{i 2 \pi f t}-0.89 e^{i 2 \pi f(t-1)}-0.1 e^{i 2 \pi f(t-2)} \\
& =e^{i 2 \pi f t}\left(1-0.89 e^{-i 2 \pi f}-0.1 e^{-i 4 \pi f}\right)
\end{aligned}
$$

giving,

$$
G(f)=1-0.89 e^{-i 2 \pi f}-0.1 e^{-i 4 \pi f}
$$

Since,

$$
S_{\epsilon}(f)=|G(f)|^{2} S_{A}(f) \quad \text { and } \quad S_{\epsilon}(f)=\sigma_{\epsilon}^{2}
$$

we have

$$
S_{A}(f)=\frac{\sigma_{\epsilon}^{2}}{\left|1-0.89 e^{-i 2 \pi f}-0.1 e^{-i 4 \pi f}\right|^{2}}
$$

Model B: similarly, we have $L\left\{\left\{X_{t}\right\}\right\}=\sum_{k=0}^{\infty} \pi_{k} X_{t-k}$, giving

$$
S_{B}(f)=\frac{\sigma_{\epsilon}^{2}}{\left|1-\sum_{k=1}^{\infty} \pi_{k} e^{-i 2 \pi f k}\right|^{2}}=\frac{\sigma_{\epsilon}^{2}}{\left|1-\sum_{k=1}^{\infty}(0.1)^{k-1} 0.9 e^{-i 2 \pi f k}\right|^{2}}
$$

(c) $\pi_{k}=(0.1)^{k} 0.9$ so $\pi_{k} \approx 0$ for large k, also π_{1} and π_{2} are similar for both models, so although these models have different formulation (with one being non-stationary!) they are in fact quite similar in terms of their spectral shapes.
3. (a)

$$
\mathrm{E}\left\{\widehat{s}_{\tau}^{(p)}\right\}=\frac{1}{N} \sum_{t=1}^{N-|\tau|} \mathrm{E}\left\{X_{t} X_{t+|\tau|}\right\}=\frac{1}{N}\left((N-|\tau|) s_{\tau}\right)=\left(1-\frac{|\tau|}{N}\right) s_{\tau}
$$

Hence $\widehat{s}_{\tau}^{(p)}$ is biased for s_{τ}.
Reasons for prefering the biased estimator:

1. For many stationary processes of practical interest

$$
\operatorname{mse}\left\{\widehat{s}_{\tau}^{(p)}\right\}<\operatorname{mse}\left\{\widehat{s}_{\tau}^{(u)}\right\}
$$

2. If $\left\{X_{t}\right\}$ has a purely continuous spectrum we know that $s_{\tau} \rightarrow 0$ as $|\tau| \rightarrow \infty$. It therefore makes sense to choose an estimator that decreases nicely as $|\tau| \rightarrow N-1$ (i.e. choose $\widehat{s}_{\tau}^{(p)}$).
3. We know that the acvs must be positive semidefinite, the sequence $\left\{\widehat{s}_{\tau}^{(p)}\right\}$ has this property, whereas other unbiased estimators may not.
(b)

$$
\mathrm{E}\left\{\widehat{S}^{(p)}(f)\right\}=\mathrm{E}\left\{|J(f)|^{2}\right\} \quad \text { where } \quad J(f)=\frac{1}{\sqrt{N}} \sum_{t=1}^{N} X_{t} e^{-i 2 \pi f t}, \quad|f| \leq \frac{1}{2} .
$$

We know from the spectral representation theorem that there is an orthogonal increments process $Z(f)$ s.t. $\mathrm{E}\left\{|d Z(f)|^{2}\right\}=S(f) d f$ and

$$
X_{t}=\int_{-1 / 2}^{1 / 2} e^{i 2 \pi f^{\prime} t} d Z\left(f^{\prime}\right)
$$

so that,

$$
\begin{aligned}
J(f) & =\sum_{t=1}^{N}\left(\int_{-1 / 2}^{1 / 2} \frac{1}{\sqrt{N}} e^{i 2 \pi f^{\prime} t} d Z\left(f^{\prime}\right)\right) e^{-i 2 \pi f t} \\
& =\int_{-1 / 2}^{1 / 2} \sum_{t=1}^{N} \frac{1}{\sqrt{N}} e^{-i 2 \pi\left(f-f^{\prime}\right) t} d Z\left(f^{\prime}\right)
\end{aligned}
$$

We find that,

$$
\begin{aligned}
\mathrm{E}\left\{\widehat{S}^{(p)}(f)\right\} & =\mathrm{E}\left\{|J(f)|^{2}\right\}=\mathrm{E}\left\{J^{*}(f) J(f)\right\} \\
& =\mathrm{E}\left\{\int_{-1 / 2}^{1 / 2} \sum_{t=1}^{N} \frac{1}{\sqrt{N}} e^{i 2 \pi\left(f-f^{\prime}\right) t} d Z^{*}\left(f^{\prime}\right) \int_{-1 / 2}^{1 / 2} \sum_{s=1}^{N} \frac{1}{\sqrt{N}} e^{-i 2 \pi\left(f-f^{\prime \prime}\right) s} d Z\left(f^{\prime \prime}\right)\right\} \\
& =\int_{-1 / 2}^{1 / 2} \int_{-1 / 2}^{1 / 2} \sum_{t=1}^{N} \frac{1}{\sqrt{N}} e^{i 2 \pi\left(f-f^{\prime}\right) t} \sum_{s=1}^{N} \frac{1}{\sqrt{N}} e^{-i 2 \pi\left(f-f^{\prime \prime}\right) s} \mathrm{E}\left\{d Z^{*}\left(f^{\prime}\right) d Z\left(f^{\prime \prime}\right)\right\} \\
& =\int_{-1 / 2}^{1 / 2} \mathcal{F}\left(f-f^{\prime}\right) S\left(f^{\prime}\right) d f^{\prime}
\end{aligned}
$$

by the orthogonality of the increments process, and where \mathcal{F} is Féjer's kernel defined by

$$
\mathcal{F}(f)=\left|\sum_{t=1}^{N} \frac{1}{\sqrt{N}} e^{-i 2 \pi f t}\right|^{2}
$$

(c) Dataset 1 Periodogram B [periodic - spectral peak]

Dataset 2 Periodogram C [slowly varying - more power at low frequencies]
Dataset 3 Periodogram A [rapidly varying - more power at high frequencies]
(d) The periodogram of processes with a high dynamic range (defined as $\left.10 \log _{10}\left\{\max _{f} S(f) / \min _{f} S(f)\right\}\right)$ can suffer from bias.
Periodogram B could be biased at high frequencies due to leakage from the spectral peak.
To counter bias we can use a technique known as tapering: We form the product $\left\{h_{t} X_{t}\right\}$ where $\left\{h_{t}\right\}$ is a sequence of real-valued constants called a data taper. Define

$$
J(f)=\sum_{t=1}^{N} h_{t} X_{t} e^{-i 2 \pi f t} \quad|f| \leq 1 / 2
$$

By the spectral representation theorem,

$$
X_{t}=\int_{-1 / 2}^{1 / 2} e^{i 2 \pi f^{\prime} t} d Z\left(f^{\prime}\right)
$$

so that,

$$
\begin{aligned}
J(f) & =\sum_{t=1}^{N} h_{t}\left(\int_{-1 / 2}^{1 / 2} e^{i 2 \pi f^{\prime} t} d Z\left(f^{\prime}\right)\right) e^{-i 2 \pi f t} \\
& =\int_{-1 / 2}^{1 / 2} \sum_{t=1}^{N} h_{t} e^{-i 2 \pi\left(f-f^{\prime}\right) t} d Z\left(f^{\prime}\right) \\
& =\int_{-1 / 2}^{1 / 2} H\left(f-f^{\prime}\right) d Z\left(f^{\prime}\right)
\end{aligned}
$$

where,

$$
H(f)=\sum_{t=1}^{N} h_{t} e^{-i 2 \pi f t}
$$

We define our direct spectral estimator as,

$$
\widehat{S}^{(d)}(f)=|J(f)|^{2}=\left|\sum_{t=1}^{N} h_{t} X_{t} e^{-i 2 \pi f t}\right|^{2}
$$

Then,

$$
|J(f)|^{2}=J^{*}(f) J(f)=\int_{-1 / 2}^{1 / 2} H^{*}\left(f-f^{\prime}\right) d Z^{*}\left(f^{\prime}\right) \int_{-1 / 2}^{1 / 2} H\left(f-f^{\prime \prime}\right) d Z\left(f^{\prime \prime}\right)
$$

and hence by the orthogonality of the increments process,

$$
\begin{aligned}
\mathrm{E}\left\{\widehat{S}^{(d)}(f)\right\} & =\mathrm{E}\left\{|J(f)|^{2}\right\} \\
& =\int_{-1 / 2}^{1 / 2}\left|H\left(f-f^{\prime}\right)\right|^{2} S\left(f^{\prime}\right) d f^{\prime}=\int_{-1 / 2}^{1 / 2} \mathcal{H}\left(f-f^{\prime}\right) S\left(f^{\prime}\right) d f^{\prime}
\end{aligned}
$$

where $\mathcal{H}(f)=|H(f)|^{2}$, we take $\sum_{t=1}^{N} h_{t}^{2}=1$.
The shape of $\mathcal{H}(f)$ determines the bias properties of the estimator - we choose a taper whose associated $\mathcal{H}(f)$ has low sidelobes to reduce sidelobe leakage and thus reduce the bias due to sidelow leakage.
4. (a)

$$
\begin{aligned}
\mathrm{E}\left\{X_{t} X_{t-\tau}\right\} & =\mathrm{E}\left\{X_{t-\tau}\left(\phi X_{t-6}+\epsilon_{t}\right)\right\} \\
& =\phi \mathrm{E}\left\{X_{t-\tau} X_{t-6}\right\}+\mathrm{E}\left\{X_{t-\tau} \epsilon_{t}\right\}
\end{aligned}
$$

When $\tau=0$, we have

$$
\begin{equation*}
s_{0}=\phi s_{6}+\sigma_{\epsilon}^{2} \tag{1}
\end{equation*}
$$

Now $\mathrm{E}\left\{X_{t-\tau} \epsilon_{t}\right\}=0$ for all $\tau>0$. So,

$$
s_{\tau}=\phi s_{\tau-6} \quad \text { for } \tau>0
$$

Consider s_{τ}, for $\tau=1,2,3,4,5$, we have

$$
s_{1}=\phi s_{5} ; \quad s_{2}=\phi s_{4} ; \quad s_{3}=\phi s_{3} ; \quad s_{4}=\phi s_{2} ; \quad s_{5}=\phi s_{1}
$$

as $|\phi|<1$ we must have $s_{1}=\ldots=s_{5}=0($ as $\phi \neq 0)$

$$
s_{6 k}=\phi s_{6 k-6}=\phi s_{6(k-1)} \quad k=1,2, \ldots
$$

We have,

$$
\begin{equation*}
s_{6}=\phi s_{0}, \tag{2}
\end{equation*}
$$

thus, from equation (??),

$$
s_{6}=\phi\left(\phi s_{6}+\sigma_{\epsilon}^{2}\right) \text { and } s_{6}=\frac{\phi \sigma_{\epsilon}^{2}}{1-\phi^{2}}
$$

and

$$
s_{0}=\frac{\sigma_{\epsilon}^{2}}{1-\phi^{2}},
$$

s_{0} is non-zero and therefore $s_{6 k}$ is non-zero, for $k=1,2, \ldots$
(b) (i) The Y-W estimators are obtained from (a) by replacing the acvs in equations (??) and (??) with their biased estimators, giving

$$
\widehat{\phi}=\frac{\widehat{s_{6}}}{\widehat{s_{0}}}=\frac{\sum_{t=1}^{N-6} X_{t} X_{t+6}}{\sum_{t=1}^{N} X_{t}^{2}}
$$

and

$$
\widehat{\sigma_{\epsilon}^{2}}=\widehat{s_{0}}-\widehat{\phi} \widehat{s_{6}}=\frac{1}{N} \sum_{t=1}^{N} X_{t}^{2}-\frac{1}{N} \frac{\left(\sum_{t=1}^{N-6} X_{t} X_{t+6}\right)^{2}}{\sum_{t=1}^{N} X_{t}^{2}}
$$

(ii) The forward least squares estimator is given by

$$
\begin{aligned}
\widetilde{\phi} & =\left(F^{\top} F\right)^{-1}\left(F^{\top} X_{F}\right)=\left(\sum_{t=7}^{N} X_{t}^{2}\right)^{-1} \sum_{t=1}^{N-6} X_{t} X_{t+6}=\frac{\sum_{t=1}^{N-6} X_{t} X_{t+6}}{\sum_{t=7}^{N} X_{t}^{2}} \\
\widetilde{\sigma_{\epsilon}^{2}} & =\frac{\left(X_{F}-F \widetilde{\phi}\right)^{\top}\left(X_{F}-F \widetilde{\phi}\right)}{N-6-1}=\frac{1}{N-7} \sum_{t=7}^{N}\left(X_{t}-\widetilde{\phi} X_{t-6}\right)^{2} \\
& =\frac{1}{N-7}\left(\sum_{t=7}^{N} X_{t}^{2}-2 \frac{\sum_{t=1}^{N-6} X_{t} X_{t+6}}{\sum_{t=7}^{N} X_{t}^{2}} \sum_{t=7}^{N} X_{t} X_{t-6}+\frac{\left(\sum_{t=1}^{N-6} X_{t} X_{t+6}\right)^{2}}{\left(\sum_{t=7}^{N} X_{t}^{2}\right)^{2}} \sum_{t=7}^{N} X_{t-6}^{2}\right) \\
& =\frac{1}{N-7}\left(\sum_{t=7}^{N} X_{t}^{2}-2 \frac{\left(\sum_{t=1}^{N-6} X_{t} X_{t+6}\right)^{2}}{\sum_{t=7}^{N} X_{t}^{2}}+\frac{\left(\sum_{t=1}^{N-6} X_{t} X_{t+6}\right)^{2}}{\left(\sum_{t=7}^{N} X_{t}^{2}\right)^{2}} \sum_{t=7}^{N} X_{t-6}^{2}\right)
\end{aligned}
$$

(iii) as N increases, the value of $\sum_{t=7}^{N} X_{t-6}^{2}, \sum_{t=7}^{N} X_{t}^{2}$ and $\sum_{t=1}^{N} X_{t}^{2}$ all become closer (X_{t} is stationary), and $N /(N-7) \rightarrow 1$ so the the least squares and Yule-Walker estimators become closer in value (in fact they are asymptotically equivalent).
5. (a) We want to minimize,

$$
\begin{aligned}
\mathrm{E}\left\{\left(X_{t+l}-X_{t}(l)\right)^{2}\right\} & =\mathrm{E}\left\{\left(\sum_{k=0}^{\infty} \psi_{k} \epsilon_{t+l-k}-\sum_{k=0}^{\infty} \delta_{k} \epsilon_{t-k}\right)^{2}\right\} \\
& =\mathrm{E}\left\{\left(\sum_{k=0}^{l-1} \psi_{k} \epsilon_{t+l-k}+\sum_{k=0}^{\infty}\left[\psi_{k+l}-\delta_{k}\right] \epsilon_{t-k}\right)^{2}\right\} \\
& =\sigma_{\epsilon}^{2}\left\{\left(\sum_{k=0}^{l-1} \psi_{k}^{2}\right)+\sum_{k=0}^{\infty}\left(\psi_{k+l}-\delta_{k}\right)^{2}\right\} .
\end{aligned}
$$

The first term is independent of the choice of the $\left\{\delta_{k}\right\}$ and the second term is clearly minimized by choosing $\delta_{k}=\psi_{k+l}, k=0,1,2, \ldots$.
(b) (i) We have $X_{t}=\Psi(B) \epsilon_{t} \Rightarrow \epsilon_{t}=\Psi^{-1}(B) X_{t}$, and so

$$
\begin{aligned}
X_{t}(l) & =\sum_{k=0}^{\infty} \psi_{k+l} \epsilon_{t-k}=\Psi^{(l)}(B) \epsilon_{t} \quad\left[=\delta(B) \epsilon_{t}\right] \\
& =\Psi^{(l)}(B) \Psi^{-1}(B) X_{t}=G^{(l)}(B) X_{t}
\end{aligned}
$$

Now

$$
X_{t}-\frac{1}{2} X_{t-1}=\epsilon_{t} \Rightarrow\left(1-\frac{B}{2}\right) X_{t}=\epsilon_{t}
$$

So that,

$$
\Rightarrow \Psi(B)=\left(1-\frac{B}{2}\right)^{-1}=1+\frac{B}{2}+\frac{B^{2}}{4}+\frac{B^{3}}{8}+\ldots
$$

So $\delta_{k}=\psi_{k+l}=2^{-(k+l)}$ and when $l=1, \delta_{k}=2^{-(k+1)}$ giving

$$
\Psi^{(1)}(B)=\left(\frac{1}{2}+\frac{B}{4}+\frac{B^{2}}{8}+\ldots\right)
$$

We have,

$$
G^{(1)}(B)=\Psi^{(1)}(B) \Psi^{-1}(B)=\left(\frac{1}{2}+\frac{B}{4}+\frac{B^{2}}{8}+\ldots\right)\left(1-\frac{B}{2}\right)=\frac{1}{2}
$$

Giving

$$
X_{t}(1)=G^{(1)}(B) X_{t}=\frac{1}{2} X_{t}
$$

Similarly, when $l=2$ we have $\delta_{k}=2^{-(k+2)}$ and

$$
G^{(2)}(B)=\Psi^{(2)}(B) \Psi^{-1}(B)=\left(\frac{1}{4}+\frac{B}{8}+\frac{B^{2}}{16}+\ldots\right)\left(1-\frac{B}{2}\right)=\frac{1}{4}
$$

Giving

$$
X_{t}(2)=G^{(2)}(B) X_{t}=\frac{1}{4} X_{t}
$$

(ii) From (a)(i) we have

$$
\sigma^{2}(l)=\sigma_{\epsilon}^{2}\left\{\left(\sum_{k=0}^{l-1} \psi_{k}^{2}\right)+\sum_{k=0}^{\infty}\left(\psi_{k+l}-\delta_{k}\right)^{2}\right\}
$$

When $\delta_{k}=\psi_{k+l}$ the second term vanishes, and we have,

$$
\sigma^{2}(l)=\mathrm{E}\left\{\left(X_{t+l}-X_{t}(l)\right)^{2}\right\}=\sigma_{\epsilon}^{2} \sum_{k=0}^{l-1} \psi_{k}^{2}
$$

Giving,

$$
\begin{aligned}
\sigma^{2}(1) & =\sigma_{\epsilon}^{2} \psi_{0}^{2}=\sigma_{\epsilon}^{2} \\
\sigma^{2}(2) & =\sigma_{\epsilon}^{2}\left(\psi_{0}^{2}+\psi_{1}^{2}\right)=\sigma_{\epsilon}^{2}\left(1+\frac{1}{4}\right)=\sigma_{\epsilon}^{2} \frac{5}{4}
\end{aligned}
$$

3

(iii) We have

$$
\begin{aligned}
X_{t+1}(1) & =\sum_{k=0}^{\infty} \psi_{k+1} \epsilon_{t+1-k} \\
& =\psi_{1} \epsilon_{t+1}+\psi_{2} \epsilon_{t}+\psi_{3} \epsilon_{t-1}+\ldots
\end{aligned}
$$

but,

$$
\begin{aligned}
X_{t}(2) & =\sum_{k=0}^{\infty} \psi_{k+2} \epsilon_{t-k} \\
& =\psi_{2} \epsilon_{t}+\psi_{3} \epsilon_{t-1}+\psi_{4} \epsilon_{t-2}+\ldots
\end{aligned}
$$

and,

$$
\begin{aligned}
X_{t+1}(1) & =X_{t}(2)+\psi_{1} \epsilon_{t+1} \\
& =X_{t}(2)+\psi_{1}\left(X_{t+1}-X_{t}(1)\right) \\
& =X_{t}(2)+\frac{1}{2}\left(X_{t+1}-X_{t}(1)\right)
\end{aligned}
$$

Hence, to forecast X_{t+2} we can modify the 2 -step ahead forecast at time t by producing an 1-step ahead forecast at time $t+1$ using X_{t+1} as it becomes available.
Note that we have

$$
X_{t+1}(1)=\frac{1}{4} X_{t}+\frac{1}{2}\left(X_{t+1}-\frac{1}{2} X_{t}\right)=\frac{1}{2} X_{t+1}
$$

as expected.

