IMPERIAL COLLEGE LONDON

UNIVERSITY OF LONDON
BSc and MSci EXAMINATIONS (MATHEMATICS)
MAY-JUNE 2005

M3S8 (Solutions)

Time Series

Setter's signature
Checker's signature
Editor's signature

1. (a)

$$
\begin{aligned}
\mathbb{E}\left(X_{t}^{2}\right) & =\mathbb{E}\left(\sigma_{t}^{2} \varepsilon_{t}^{2}\right) \\
& =\mathbb{E}\left(\left(a_{0}+a_{1} X_{t-1}^{2}\right) \varepsilon_{t}^{2}\right) \\
& =\left(a_{0}+a_{1} \mathbb{E}\left(X_{t-1}^{2}\right)\right) \mathbb{E}\left(\varepsilon_{t}^{2}\right) \\
& =a_{0}+a_{1} \mathbb{E}\left(X_{t}^{2}\right)
\end{aligned}
$$

which yields

$$
\mathbb{E}\left(X_{t}^{2}\right)=\frac{a_{0}}{1-a_{1}}
$$

(b)

$$
\begin{aligned}
X_{t}^{4} & =\left(a_{0}+a_{1} X_{t-1}^{2}\right)^{2} \varepsilon_{t}^{4} \\
& =\left(a_{0}^{2}+2 a_{0} a_{1} X_{t-1}^{2}+a_{1}^{2} X_{t-1}^{4}\right) \varepsilon_{t}^{4}
\end{aligned}
$$

Hence,

$$
\mathbb{E}\left(X_{t}^{4}\right)=3\left(a_{0}^{2}+2 a_{0} a_{1} \frac{a_{0}}{1-a_{1}}+a_{1}^{2} \mathbb{E}\left(X_{t}^{4}\right)\right)
$$

which gives

$$
\mathbb{E}\left(X_{t}^{4}\right)=\frac{3 a_{0}^{2}\left(1+a_{1}\right)}{\left(1-a_{1}\right)\left(1-3 a_{1}^{2}\right)}
$$

(c)

$$
\kappa_{X_{t}}=\frac{\mathbb{E}\left(X_{t}^{4}\right)}{\left(\mathbb{E}\left(X_{t}^{2}\right)\right)^{2}}=\frac{3 a_{0}^{2}\left(1+a_{1}\right)}{\left(1-a_{1}\right)\left(1-3 a_{1}^{2}\right)} \frac{\left(1-a_{1}\right)^{2}}{a_{0}^{2}}=\frac{3\left(1-a_{1}^{2}\right)}{1-3 a_{1}^{2}}
$$

Note that $\kappa_{X_{t}}>3$ as $1-a_{1}^{2}>1-3 a_{1}^{2}$ for $a_{1}>0$. On the other hand, if $Z \sim N\left(0, \sigma^{2}\right)$, then

$$
\kappa_{Z}=\frac{\mathbb{E}\left(Z^{4}\right)}{\left(\mathbb{E}\left(Z^{2}\right)\right)^{2}}=\frac{3 \sigma^{4}}{\left(\sigma^{2}\right)^{2}}=3
$$

Therefore, X_{t} is not Normally distributed.
(d)

$$
\rho_{1}=\frac{\mathbb{E}\left(X_{t}^{2} X_{t-1}^{2}\right)-\left(\mathbb{E}\left(X_{t}^{2}\right)\right)^{2}}{\mathbb{E}\left(X_{t}^{4}\right)-\left(\mathbb{E}\left(X_{t}^{2}\right)\right)^{2}}=: \frac{A-B^{2}}{C-B^{2}}
$$

We have already computed B and C. It remains to compute A.

$$
\begin{aligned}
\mathbb{E}\left(X_{t}^{2} X_{t-1}^{2}\right) & =\mathbb{E}\left(\varepsilon_{t}^{2}\right)\left(a_{0} \mathbb{E}\left(X_{t-1}^{2}\right)+a_{1} \mathbb{E}\left(X_{t-1}^{4}\right)\right) \\
& =a_{0} \frac{a_{0}}{1-a_{1}}+a_{1} \frac{3 a_{0}^{2}\left(1+a_{1}\right)}{\left(1-a_{1}\right)\left(1-3 a_{1}^{2}\right)} \\
& =\frac{a_{0}^{2}\left(1+3 a_{1}\right)}{\left(1-a_{1}\right)\left(1-3 a_{1}^{2}\right)}
\end{aligned}
$$

Substituting into the above, we obtain $\rho_{1}=a_{1}$.
2. (a) We have

$$
\left[\begin{array}{l}
\widehat{s}_{1} \\
\widehat{s}_{2}
\end{array}\right]=\left[\begin{array}{ll}
\widehat{s}_{0} & \widehat{s}_{1} \\
\widehat{s}_{1} & \widehat{s}_{0}
\end{array}\right]\left[\begin{array}{l}
\widehat{a}^{Y W} \\
\widehat{b}^{Y W}
\end{array}\right]
$$

which gives

$$
\left[\begin{array}{c}
\widehat{a}^{Y W} \\
\widehat{b}^{Y W}
\end{array}\right]=\frac{1}{\widehat{s}_{0}^{2}-\widehat{s}_{1}^{2}}\left[\begin{array}{cc}
\widehat{s}_{0} & -\widehat{s}_{1} \\
-\widehat{s}_{1} & \widehat{s}_{0}
\end{array}\right]\left[\begin{array}{l}
\widehat{s}_{1} \\
\widehat{s}_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{\widehat{s}_{0} \widehat{s}_{1}-\widehat{s}_{1} \widehat{s}_{2}}{\widehat{s}_{0}^{2}-\widehat{s}_{1}^{2}} \\
\frac{\widehat{s}_{0} s_{2}-\widehat{\widehat{s}}_{1}^{2}}{\widehat{s}_{0}^{2}-\widehat{s}_{1}^{2}}
\end{array}\right]
$$

Substituting

$$
\widehat{s}_{\tau}=\frac{1}{n} \sum_{t=1}^{n-|\tau|} x_{t} x_{t+|\tau|}
$$

we obtain

$$
\begin{aligned}
\widehat{a}^{Y W} & =\frac{\sum_{t=1}^{n-1} x_{t} x_{t+1}\left(\sum_{t=1}^{n} x_{t}^{2}-\sum_{t=1}^{n-2} x_{t} x_{t+2}\right)}{\left(\sum_{t=1}^{n} x_{t}^{2}\right)^{2}-\left(\sum_{t=1}^{n-1} x_{t} x_{t+1}\right)^{2}} \\
\widehat{b}^{Y W} & =\frac{\sum_{t=1}^{n} x_{t}^{2} \sum_{t=1}^{n-2} x_{t} x_{t+2}-\left(\sum_{t=1}^{n-1} x_{t} x_{t+1}\right)^{2}}{\left(\sum_{t=1}^{n} x_{t}^{2}\right)^{2}-\left(\sum_{t=1}^{n-1} x_{t} x_{t+1}\right)^{2}}
\end{aligned}
$$

(b) We have

$$
\left[\begin{array}{c}
\widehat{a}^{L S} \\
\widehat{b}^{L S}
\end{array}\right]=\left(F^{T} F\right)^{-1} F^{T} \mathbf{x}_{(2)}
$$

where

$$
\begin{aligned}
F^{T} & =\left[\begin{array}{lll}
x_{2} & \cdots & x_{n-1} \\
x_{1} & \cdots & x_{n-2}
\end{array}\right] \\
\mathbf{x}_{(2)}^{T} & =\left(x_{3}, \ldots, x_{n}\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
{\left[\begin{array}{c}
\widehat{a}^{L S} \\
\widehat{b}^{L S}
\end{array}\right] } & =\left[\begin{array}{cc}
\sum_{t=2}^{n-1} x_{t}^{2} & \sum_{t=1}^{n-2} x_{t} x_{t+1} \\
\sum_{t=1}^{n-2} x_{t} x_{t+1} & \sum_{t=1}^{n-2} x_{t}^{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
\sum_{t=2}^{n-1} x_{t} x_{t+1} \\
\sum_{t=1}^{n-2} x_{t} x_{t+2}
\end{array}\right] \\
& =\frac{1}{\sum_{t=2}^{n-1} x_{t}^{2} \sum_{t=1}^{n-2} x_{t}^{2}-\left(\sum_{t=1}^{n-2} x_{t} x_{t+1}\right)^{2}} \\
& \times\left[\begin{array}{cc}
\sum_{t t=1}^{n-2} x_{t}^{2} & -\sum_{t=1}^{n-2} x_{t} x_{t+1} \\
-\sum_{t=1}^{n=2} x_{t} x_{t+1} & \sum_{t=2}^{n-1} x_{t}^{2}
\end{array}\right]\left[\begin{array}{c}
\sum_{t=2}^{n-1} x_{t} x_{t+1} \\
\sum_{t=1}^{n-2} x_{t} x_{t+2}
\end{array}\right] .
\end{aligned}
$$

This leads to

$$
\begin{aligned}
\widehat{a}^{L S} & =\frac{\sum_{t=1}^{n-2} x_{t}^{2} \sum_{t=2}^{n-1} x_{t} x_{t+1}-\sum_{t=1}^{n-2} x_{t} x_{t+1} \sum_{t=1}^{n-2} x_{t} x_{t+2}}{\sum_{t=2}^{n-1} x_{t}^{2} \sum_{t=1}^{n-2} x_{t}^{2}-\left(\sum_{t=1}^{n-2} x_{t} x_{t+1}\right)^{2}} \\
\widehat{b}^{L S} & =\frac{\sum_{t=2}^{n-1} x_{t}^{2} \sum_{t=1}^{n-2} x_{t} x_{t+2}-\sum_{t=1}^{n-2} x_{t} x_{t+1} \sum_{t=2}^{n-1} x_{t} x_{t+1}}{\sum_{t=2}^{n-1} x_{t}^{2} \sum_{t=1}^{n-2} x_{t}^{2}-\left(\sum_{t=1}^{n-2} x_{t} x_{t+1}\right)^{2}}
\end{aligned}
$$

(c) (i) For $n=3, \widehat{a}^{L S}$ does not make sense as we have $\widehat{a}^{L S}=0 / 0$, so Yule-Walker should be used.
(ii) As n tends to infinity, from the above formulae it is apparent that the
corresponding Yule-Walker and least squares estimates become "closer and closer" to each other. Therefore, it "does not matter" which one is used in the case $n=10^{10}$ as the estimated values will probably be very similar for both methods.
3. (a) For $\tau>0$,

$$
\mathbb{E}\left(X_{t} X_{t-\tau}\right)=\mathbb{E}\left(a_{t}\right) \mathbb{E}\left(X_{t-1} X_{t-\tau}\right)+\sqrt{8 / 9} \mathbb{E}\left(\varepsilon_{t}\right) \mathbb{E}\left(X_{t-\tau}\right),
$$

which, from the properties of the Uniform distribution, gives

$$
s_{\tau}=\frac{1}{2} s_{\tau-1} .
$$

Also,

$$
s_{0}=\mathbb{E}\left(X_{t}^{2}\right)=\mathbb{E}\left(a_{t}^{2} X_{t-1}^{2}+2 \sqrt{8 / 9} a_{t} X_{t-1} \varepsilon_{t}+8 / 9 \varepsilon_{t}^{2}\right)=1 / 3 \mathbb{E}\left(X_{t}^{2}\right)+8 / 9,
$$

which yields $s_{0}=4 / 3$. Thus,

$$
s_{\tau}=\frac{4}{3}\left(\frac{1}{2}\right)^{|\tau|}
$$

(b) To compute the autocovariance function \widetilde{s}_{τ} of Y_{t}, we use exactly the same technique as in (a) above and find that

$$
\widetilde{s}_{\tau}=\frac{4}{3}\left(\frac{1}{2}\right)^{|\tau|}=s_{\tau}
$$

Thus, the autocovariance functions are the same.
(c) The autocovariance function of X_{t} is the same as that of Y_{t} (see above). Therefore, the spectral densities will also be the same (as the spectral density is the Fourier transform of the autocovariance sequence). Denoting the spectral density of a process Z_{t} by $S_{Z}(f)$, we have

$$
|1-1 / 2 \exp (-i 2 \pi f)|^{2} S_{X}(f)=S_{\varepsilon}(f)
$$

which simplifies to

$$
(5 / 4-\cos (2 \pi f)) S_{X}(f)=1,
$$

and therefore

$$
S_{X}(f)=(5 / 4-\cos (2 \pi f))^{-1}
$$

4. (a)

$$
\begin{aligned}
\operatorname{MSE}(\widehat{\mu}, \mu) & =n^{-2} \sum_{s, t=1}^{n} s_{t-s} \\
& =n^{-2}\left(n s_{0}+2(n-1) s_{1}+\ldots+2 s_{n-1}\right) \\
& \leq 2 n^{-1}\left(s_{0}+\ldots+s_{n-1}\right) \\
& =2 s_{0} n^{-1}+2 n^{-1} \sum_{\tau=1}^{n-1} \frac{1}{\tau}\left(1+\ldots+\frac{1}{\tau}\right) \\
& =2 s_{0} n^{-1}+2 n^{-1} \sum_{\tau=1}^{n-1} \frac{1}{\tau} O(\log (\tau)) \\
& \leq 2 s_{0} n^{-1}+2 O(\log (n)) n^{-1} \sum_{\tau=1}^{n-1} \frac{1}{\tau} \\
& =2 s_{0} n^{-1}+2 O\left(\log ^{2}(n)\right) n^{-1} \\
& \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

(b)

$$
\begin{aligned}
0 & =n\left(\frac{1}{n} \sum_{s=1}^{n}\left(x_{s}-\widehat{\mu}\right)\right)^{2} \\
& =\frac{1}{n} \sum_{s=1}^{n} \sum_{t=1}^{n}\left(x_{s}-\widehat{\mu}\right)\left(x_{t}-\widehat{\mu}\right) \\
& =\frac{1}{n} \sum_{|\tau|<n} \sum_{t=1}^{n-|\tau|}\left(x_{t}-\widehat{\mu}\right)\left(x_{t+|\tau|}-\widehat{\mu}\right) .
\end{aligned}
$$

(c) Recall the spectral representation theorem

$$
X_{t}=\int_{-1 / 2}^{1 / 2} e^{i 2 \pi f^{\prime} t} d Z\left(f^{\prime}\right)
$$

We have $\mathbb{E}(\widehat{S}(f))=\mathbb{E}|J(f)|^{2}$, where

$$
\begin{aligned}
J(f) & =\frac{1}{\sqrt{n}} \sum_{t=1}^{n} X_{t} e^{-i 2 \pi f t} \\
& =\sum_{t=1}^{n}\left(\int_{-1 / 2}^{1 / 2} \frac{1}{\sqrt{n}} e^{i 2 \pi f^{\prime} t} d Z\left(f^{\prime}\right)\right) e^{-i 2 \pi f t} \\
& =\int_{-1 / 2}^{1 / 2} \sum_{t=1}^{n} \frac{1}{\sqrt{n}} e^{-i 2 \pi\left(f-f^{\prime}\right) t} d Z\left(f^{\prime}\right)
\end{aligned}
$$

We find that,

$$
\begin{aligned}
\mathbb{E}\{\widehat{S}(f)\} & =\mathbb{E}\left\{|J(f)|^{2}\right\}=\mathbb{E}\left\{J^{*}(f) J(f)\right\} \\
& =\mathbb{E}\left\{\int_{-1 / 2}^{1 / 2} \sum_{t=1}^{n} \frac{1}{\sqrt{n}} e^{i 2 \pi\left(f-f^{\prime}\right) t} d Z^{*}\left(f^{\prime}\right) \int_{-1 / 2}^{1 / 2} \sum_{s=1}^{n} \frac{1}{\sqrt{n}} e^{-i 2 \pi\left(f-f^{\prime \prime}\right) s} d Z\left(f^{\prime \prime}\right)\right\} \\
& =\int_{-1 / 2}^{1 / 2} \int_{-1 / 2}^{1 / 2} \sum_{t=1}^{n} \frac{1}{\sqrt{n}} e^{i 2 \pi\left(f-f^{\prime}\right) t} \sum_{s=1}^{n} \frac{1}{\sqrt{n}} e^{-i 2 \pi\left(f-f^{\prime \prime}\right) s} \mathbb{E}\left\{d Z^{*}\left(f^{\prime}\right) d Z\left(f^{\prime \prime}\right)\right\} \\
& =\int_{-1 / 2}^{1 / 2} \mathcal{F}\left(f-f^{\prime}\right) S\left(f^{\prime}\right) d f^{\prime},
\end{aligned}
$$

where

$$
\mathcal{F}(f)=\left|\sum_{t=1}^{n} \frac{1}{\sqrt{n}} e^{-i 2 \pi f t}\right|^{2}
$$

(d) Define the process

We have

$$
s_{0}=\operatorname{Var}\left(X_{t}\right)=\sum_{k=1}^{\infty} k^{-2}=\pi^{2} / 6
$$

and for $\tau \geq 1$,

$$
\begin{aligned}
s_{\tau} & =\mathbb{E}\left(\sum_{k=1}^{\infty} \frac{1}{k} \varepsilon_{t-k+1} \sum_{l=1}^{\infty} \frac{1}{l} \varepsilon_{t+\tau-l+1}\right) \\
& =\sum_{k=1}^{\infty} \frac{1}{k(k+\tau)} \\
& =\sum_{k=1}^{\infty} \frac{1}{\tau}\left(\frac{1}{k}-\frac{1}{k+\tau}\right) \\
& =\frac{1}{\tau}\left(1+\frac{1}{2}+\ldots+\frac{1}{\tau}\right) .
\end{aligned}
$$

So s_{τ} is a valid autocovariance function.
5. (a) We want to minimize,

$$
\begin{aligned}
\mathrm{E}\left\{\left(X_{t+l}-X_{t}(l)\right)^{2}\right\} & =\mathrm{E}\left\{\left(\sum_{k=0}^{\infty} \psi_{k} \varepsilon_{t+l-k}-\sum_{k=0}^{\infty} \delta_{k} \varepsilon_{t-k}\right)^{2}\right\} \\
& =\mathrm{E}\left\{\left(\sum_{k=0}^{l-1} \psi_{k} \varepsilon_{t+l-k}+\sum_{k=0}^{\infty}\left[\psi_{k+l}-\delta_{k}\right] \varepsilon_{t-k}\right)^{2}\right\} \\
& =\sigma_{\varepsilon}^{2}\left\{\left(\sum_{k=0}^{l-1} \psi_{k}^{2}\right)+\sum_{k=0}^{\infty}\left(\psi_{k+l}-\delta_{k}\right)^{2}\right\} .
\end{aligned}
$$

The first term is independent of the choice of the $\left\{\delta_{k}\right\}$ and the second term is clearly minimized by choosing $\delta_{k}=\psi_{k+l}, k=0,1,2, \ldots$
(b) We have $X_{t}=\Psi(B) \varepsilon_{t} \Rightarrow \varepsilon_{t}=\Psi^{-1}(B) X_{t}$, and so

$$
\begin{aligned}
X_{t}(l) & =\sum_{k=0}^{\infty} \psi_{k+l} \varepsilon_{t-k}=\Psi^{(l)}(B) \varepsilon_{t} \quad\left[=\delta(B) \varepsilon_{t}\right] \\
& =\Psi^{(l)}(B) \Psi^{-1}(B) X_{t}=G^{(l)}(B) X_{t}
\end{aligned}
$$

Now

$$
X_{t}-a X_{t-1}=\varepsilon_{t} \Rightarrow(1-a B) X_{t}=\varepsilon_{t}
$$

So that,

$$
\Rightarrow \Psi(B)=(1-a B)^{-1}=1+a B+a^{2} B^{2}+\ldots
$$

So $\delta_{k}=\psi_{k+l}=a^{k+l}$ and when $l=1, \delta_{k}=a^{k+1}$ giving

$$
\Psi^{(1)}(B)=\left(a+a^{2} B+a^{3} B^{2}+\ldots\right)
$$

We have,

$$
G^{(1)}(B)=\Psi^{(1)}(B) \Psi^{-1}(B)=\left(a+a^{2} B+a^{3} B^{2}+\ldots\right)(1-a B)=a
$$

Giving

$$
X_{t}(1)=G^{(1)}(B) X_{t}=a X_{t}
$$

(c) Recalling that $s_{\tau}=a^{|\tau|} /\left(1-a^{2}\right)$, it is easily seen that

$$
\Gamma_{(n)} \mathbf{a}=\gamma_{(n)}
$$

The result follows upon applying $\Gamma_{(n)}^{-1}$ to both sides of the above equation.

