3. Consider the following integral:

$$\theta = \int_0^1 \frac{e^u - 1}{e - 1} \, \mathrm{d}u = \int_0^1 \phi(u) f(u) \, \mathrm{d}u.$$

- a) Write down an expression for the Monte Carlo estimator, $\hat{\theta}_1$, of θ , using uniform random variates, $U_1, \ldots, U_n \sim U(0, 1)$. That is, f(u) is the uniform density on [0, 1]. Determine an expression for the variance of the estimator $\hat{\theta}_1$.
- b) Give an expression for an estimator, $\hat{\theta}_2$, of θ , composed using antithetic variates U_i and $1 U_i$, i = 1, ..., n. State why antithetic variates are suitable for estimating θ and explain why $\hat{\theta}_2$ will have lower variance than $\hat{\theta}_1$.
- c) Determine the variance of the estimator, $\hat{\theta}_3$, of θ , composed using U as the control variate, such that,

$$\widehat{\theta}_3 = \frac{1}{n} \sum_{i=1}^n \left\{ \frac{e^{U_i} - 1}{e - 1} - \beta [U_i - \mathcal{E}(U_i)] \right\}.$$

What value of β minimizes this variance?