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Note: throughout this paper {εt} is a sequence of uncorrelated random vari-
ables having zero mean and variance σ2

ε , unless stated otherwise.

1. What is meant by saying that a stochastic process is second-order
stationary?
Determine whether the following stochastic processes are second-order
stationary, giving full justification:
a)

Xt = (3/4)Xt−1 − (1/8)Xt−2 + εt.

b)
Yt = Xt + C,

where {Xt} is a second-order stationary process with zero mean and
autocovariance sequence {sτ,X}, and C is a random variable with zero
mean and variance σ2

C , uncorrelated with Xt for all t.

c)

Xt = µ +
L∑

l=1

Dl cos(2πflt + φl),

where µ, D1, ..., DL, f1, ..., fL are real-valued constants, and the phases
{φl} are independent and identically distributed with probability den-
sity function

g(φl) =
1
2π

(1 + sin φl), |φl| ≤ π.
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2. a) Let {Xt} be a real-valued zero mean second-order stationary moving-
average process, or MA(2),

Xt = εt − θ1,2εt−1 − θ2,2εt−2.

Derive the frequency response function G(f) associated with the LTI
filter given by

L{εt} = εt − θ1,2εt−1 − θ2,2εt−2,

and hence show that the spectral density function for the MA(2) pro-
cess {Xt} can be written

SX(f) = σ2
ε [(1+θ2

1,2+θ2
2,2)−2θ1,2(1−θ2,2) cos(2πf)−2θ2,2 cos(4πf)].

b)
(i) What is meant by saying that a moving-average process is invert-
ible?
(ii) How may we check whether such a process is invertible?
(iii) Consider the second-order stationary moving average processes
{Yt} and {Zt} defined by

Yt = εt − εt−1 + 1
4εt−2,

and
Zt = εt − 4εt−1 + 4εt−2.

Determine whether {Yt} and {Zt} are invertible processes.

c) Find the spectral density function for each of the processes {Yt}
and {Zt}. Of what is this result an example? What is its practical
significance?
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3. Let {Xt} be a zero mean stationary stochastic process, with spectral
density function SX(f).

a) Specify the three conditions which must be satisfied by a linear
time-invariant (LTI) digital filter.
b) If a filter has transfer function G(f), what is the spectrum SY (f)
of the output in terms of the spectrum SX(f) of the input?
c) Show that the first-order backward difference process

Yt = Xt −Xt−1

has the spectral density function SY (f) given by

SY (f) = 4 sin2 (πf) SX(f) .

Does a first-order backward difference filter resemble a low-pass or
high-pass filter?
d) If a two coefficient filter is now applied to the process {Yt} to give
{Zt} according to

Zt = aYt + bYt−1,

where

a =
1−
√

3
4

and b = −1 +
√

3
4

show that

SZ(f) = sin2 (πf)[1 + 2 cos2(πf)]SX(f) .

where SZ(f) is the spectral density function of {Zt}.
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4. Give one advantage and one disadvantage accruing from the use of a
single data taper in spectrum analysis.
Let {ht} be a real-valued taper, standardized so that

∑N
t=1 h2

t = 1.

a) Suppose that X1, ..., XN is a sample of length N of a second-order
stationary process {Xt} with known mean µ. The direct spectral
estimator with the mean subtracted before the time series is tapered
is defined as

Ŝ(d)(f) =

∣∣∣∣∣
N∑

t=1

ht(Xt − µ)e−i2πft

∣∣∣∣∣
2

.

Use the spectral representation Xt − µ =
∫ 1/2

−1/2
ei2πftdZ(f) , to show

that the mean of the direct spectral estimator Ŝ(d)(f) is given by

E{Ŝ(d)(f)} =
∫ 1/2

−1/2

H(f − f ′)S(f ′)df ′ ,

where H(f) =
∣∣∣∑N

t=1 hte
−i2πft

∣∣∣2 .

b) Now suppose that X1, ..., XN is in fact a segment of length N of
a white noise process (i.e., Xt = εt) with spectral density function
S(f) = σ2

ε and nonzero mean µ. If the εt’s are not centred before
computing the direct spectral estimator, show that for 0 < f < 1/2
the mean of the resulting direct estimator,

S̃(d)(f) =

∣∣∣∣∣
N∑

t=1

htεte
−i2πft

∣∣∣∣∣
2

,

is given by
E{S̃(d)(f)} = σ2

ε + µ2H(f).

c) What does a comparison of E{Ŝ(d)(f)} and E{S̃(d)(f)} tell us
about

∫ 1/2

−1/2
H(f)df ?
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5. a) Carefully explain what is meant by multitaper spectrum estima-
tion. What benefits arise from using multitapering rather than single
tapering in spectrum estimation?

b) Consider a real-valued sequence h1, . . . , hN , chosen to maximize the
fraction of energy, β(W ), concentrated in the frequency band |f | ≤
W < 1/2 :

β(W ) =

∫ W

−W
|H(f)|2df∫ 1/2

−1/2
|H(f)|2df

,

where H(f) =
∑N

t=1 hte
−i2πft.

(i) Show that

β(W ) =

∑N
j=1

∑N
k=1 hk

sin[2πW (j−k)]
π(j−k) hj∑N

t=1 h2
t

.

(ii) Define the matrix A as the N × N matrix with (j, k)th element
given by sin[2πW (j − k)]/[π(j − k)]. Using the result that

d

dx
xT Ax = 2Ax,

show that the sequence h1, . . . , hN , that maximizes β(W ) is the eigen-
vector corresponding to the largest eigenvalue of A.

(iii) Using this approach, how are the other discrete prolate tapers of
length N derived, and why are they orthogonal?
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SOLUTIONS

M3S8/M4S8 TIME SERIES

DATE: Someday, 0th June 2001 TIME: xpm — y pm



Soln. 1. {Xt} is second-order stationary if E{Xt} is a finite constant for all t,
var{Xt} is a finite constant for all t, and cov{Xt, Xt+τ} = sτ , a finite
quantity depending only on τ and not on t.

a) We have
Xt − (3/4)Xt−1 + (1/8)Xt−2 = εt.

The characteristic polynomial for this AR(2) process is

Φ(z) = 1− (3/4)z + (1/8)z2 = (1− 1
4
z)(1− 1

2
z).

The roots are z = 4 and z = 2, i.e., both outside the unit circle, so
the process is stationary.

b) First, we have E{Yt} = E{Xt + C} = E{Xt}+ E{C} = 0, so E{Yt}
is independent of t. Next, we have

cov {Yt, Yt+τ} = E{(Xt + C)(Xt+τ + C)}
= E{XtXt+τ}+ E{XtC}+ E{Xt+τC}+ E{C2}
= sτ,X + σ2

C ,

(because E{(Xt − E{Xt})(C − E{C})} = 0 for all t), which is also
independent of t, so {Yt} is a stationary process with acvs given by
sτ,Y ≡ sτ,X + σ2

C (in the above, E{XtC} = E{Xt+τC} = 0 because
C is uncorrelated with Xt for all t).

c) For the first moment, we have

E{Xt} = µ +
L∑

l=1

DlE{cos(2πflt + φl)}.

Now since a cosine integrates to zero over a whole period,

E{cos(2πflt + φl)} =
1
2π

∫ π

−π

cos(2πflt + φl)(1 + sin(φl)) dφl

=
1
2π

∫ π

−π

cos(2πflt + φl) sin(φl) dφl.
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But since cos A sinB = {sin(A + B) − sin(A − B)}/2, we have that
cos(2πflt + φl) sin(φl) = {sin(2πflt + 2φl)− sin(2πflt)}/2, and hence

E{cos(2πflt + φl)} =
1
4π

∫ π

−π

sin(2πflt + 2φl)dφl −
1
4π

sin(2πflt)2π

= 0− 1
2

sin(2πflt).

Hence,

E{Xt} = µ− 1
2

L∑
l=1

Dl sin(2πflt),

which in general is not independent of t, so that the process is non-
stationary.
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Soln. 2.
a)

L{εt} = εt − θ1,2εt−1 − θ2,2εt−2

⇒ L{ei2πft} = ei2πft(1− θ1,2e
−i2πf − θ2,2e

−i4πf )

⇒ G(f) = 1− θ1,2e
−i2πf − θ2,2e

−i4πf

⇒ |G(f)|2 = (1 + θ2
1,2 + θ2

2,2)− θ1,2(e
−i2πf + ei2πf )− θ2,2(e

−i4πf + ei4πf )

+ θ1,2θ2,2(e
−i2πf + ei2πf )

= (1 + θ2
1,2 + θ2

2,2)− 2θ1,2(1− θ2,2) cos(2πf)− 2θ2,2 cos(4πf).

Hence,

SX(f) = σ2
ε [(1+θ2

1,2+θ2
2,2)−2θ1,2(1−θ2,2) cos(2πf)−2θ2,2 cos(4πf)].

b)
(i) An MA process is said to be invertible if it can be written in autore-

gressive form Φ(B)Xt = εt, with the z−polynomial Φ(z) admitting a
power series expansion.

(ii) We can check whether an MA process is invertible when written in
autoregressive form by determining that the poles of Φ(z) are all out-
side the unit circle. For a moving average process this means that
the characteristic MA polynomial will have all roots outside the unit
circle.

(iii) The characteristic polynomial for the MA(2) process {Yt} is

1− z + (1/4)z2 = (1− 1
2
z)(1− 1

2
z).

The roots are z = 2 (double) and so process is invertible. The char-
acteristic polynomial for the MA(2) process {Zt} is

1− 4z + 4z2 = (1− 2z)(1− 2z).

The roots are z = 1/2 (double) and so process is non-invertible.
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c) For {Yt} we have, w.r.t. (a), θ1,2 = 1, θ2,2 = −1/4. Putting these
parameter values into the expression for SX(f) we get

SY (f) =
σ2

ε

16
[33− 40 cos(2πf) + 8 cos(4πf)].

For {Zt} we have, w.r.t. (a), θ1,2 = 4, θ2,2 = −4. Putting these
parameter values into the expression for SX(f) we get

SZ(f) = σ2
ε [33− 40 cos(2πf) + 8 cos(4πf)].

The spectra have the same shape, differing only in a constant of pro-
portionality. This is an example of the non-identifiability of the model
from the spectrum (or autocovariance). Inverting the roots leaves the
spectral shape unchanged. The practical significance is that more in-
formation is required to identify the parameter values than simply the
spectrum (or autocovariance).
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Soln. 3.
a ) A digital filter L that transforms an input sequence {Xt} into an

output sequence {Yt} is called a linear time-invariant digital filter if
it has the following three properties:
[1] Scale preservation:

L{αXt} = αL{Xt}.

[2] Superposition:

L{Xt,1 + Xt,2} = L{Xt,1}+ L{Xt,2}.

[3] Time invariance:

if L{Xt} = {Yt}, then L{Xt+τ} = {Yt+τ},

where τ is integer-valued and the notation {Xt+τ} refers to the se-
quence whose tth element is Xt+τ .

b ) SY (f) = |G(f)|2SX(f).
c ) The filter is defined by L{Xt} = Xt −Xt−1. The transfer function

is obtained by inputting Xt = exp(i2πft):

L{ei2πft} = ei2πft − ei2πf(t−1) = ei2πft
(
1− e−i2πf

)
= ei2πftG1(f),

where G1(f) ≡ 1− exp(−i2πf) is the transfer function. Now

|G1(f)|2 =
∣∣e−iπf (eiπf − e−iπf )

∣∣2 =
∣∣e−iπf2i sin(πf)

∣∣2 = 4 sin2(πf).

Hence, SY (f) = 4 sin2(πf)SX(f).
Now |G1(f)|2 increases from 0 to Nyquist (1/2) so the first difference
filter resembles a high-pass filter.

d ) The filter is defined by L{Xt} = aXt + bXt−1. The transfer function
is obtained by inputing Xt = exp(i2πft):

L{ei2πft} = aei2πft+bei2πf(t−1) = ei2πft
(
a + be−i2πf

)
= ei2πftG2(f),
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Now SZ(f) = |G2(f)|2SY (f) = 4 sin2(πf)|G2(f)|2SX(f). But

|G2(f)|2 =

[
1−
√

3
4

− 1 +
√

3
4

e−i2πf

] [
1−
√

3
4

− 1 +
√

3
4

ei2πf

]

=

[
(1−

√
3)2

16
− (1−

√
3)(1 +

√
3)

16
(
e−i2πf + ei2πf

)
+

(1 +
√

3)2

16

]

=
1
4
(2 + cos(2πf))

=
1
4
(1 + 2 cos2(πf)),

since cos(2x) = 2 cos2(x)− 1. Hence,

SZ(f) = sin2(πf)(1 + 2 cos2(πf))SX(f).
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Soln. 4. The main advantage of data tapering in spectrum analysis is reduc-
tion in sidelobe leakage by changing the default Fejér blurring kernel
into something with smaller sidelobes. Main disadvantages: the main
lobe of the blurring kernel is made wider, reducing resolution. [Other
correct answers accepted].

a ) Let

J(f) ≡
N∑

t=1

ht(Xt − µ)e−i2πft.

By the spectral representation theorem

Xt − µ =
∫ 1/2

−1/2

ei2πf ′t dZ(f ′),

where {Z(·)} is a process with orthogonal increments, and E{dZ(f)} =
0. Thus

J(f) =
N∑

t=1

ht

(∫ 1/2

−1/2

ei2πf ′t dZ(f ′)

)
e−i2πft

=
∫ 1/2

−1/2

N∑
t=1

hte
−i2π(f−f ′)t dZ(f ′)

=
∫ 1/2

−1/2

H(f − f ′) dZ(f ′),

where {ht} and H(·) form a Fourier transform pair under the assump-
tion that {ht} is an infinite sequence with ht = 0 for t < 1 and t > N ;
i.e.,

H(f) ≡
N∑

t=1

hte
−i2πft.

Now it is given that,

Ŝ(d)(f) ≡ |J(f)|2 =

∣∣∣∣∣
N∑

t=1

ht(Xt − µ)e−i2πft

∣∣∣∣∣
2

.
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Because {Z(·)} has orthogonal increments, we therefore have

E{Ŝ(d)(f)} =
∫ 1/2

−1/2

H(f − f ′)S(f ′) df ′,

where

H(f) ≡ |H(f)|2 =

∣∣∣∣∣
N∑

t=1

hte
−i2πft

∣∣∣∣∣
2

.

b)

E{S̃(d)(f)} = E




∣∣∣∣∣
N∑

t=1

htεte
−i2πft

∣∣∣∣∣
2



=
N∑

j=1

N∑
k=1

hjhkE{εjεk}e−i2πf(k−j) .

But εt here has a nonzero mean µ, so that E{ε2j} = σ2
ε + µ2 (j = k)

and E{εjεk} = µ2 (j 
= k). So

E{S̃(d)(f)} =


σ2

ε

N∑
j=1

h2
j + µ2

N∑
j=1

N∑
k=1

hjhke−i2πf(k−j)


 .

= σ2
ε + µ2

∣∣∣∣∣
N∑

t=1

hte
−i2πft

∣∣∣∣∣
2

= σ2
ε + µ2H(f).

c) For white noise, E{Ŝ(d)(f)} = σ2
ε

∫ 1/2

−1/2
H(f)df, since H has unit

periodicity. When µ = 0, this must be the same as for E{S̃(d)(f)}, and
hence

∫ 1/2

−1/2
H(f)df = 1, (which also follows from Parseval’s relation

since
∑N

t=1 h2
t = 1.)
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Soln. 5.
a ) Multitaper spectrum estimation is carried out by computing a set

of K direct spectrum estimates, each using a taper, where the set of
K tapers are orthonormal. The set of direct spectrum estimates are
averaged to produce the final spectrum estimate.
A single taper will protect the spectrum estimate against side-lobe
leakage, but the estimate will look very ragged; multitapering confers
the same protection against leakage, but using several tapers reduces
the variance (by a factor of K.)
b) (i) We can write β(W ) as

β(W ) =

∫ W

−W

∑
j hje

−i2πfj
∑

k hkei2πfkdf∫ 1/2

−1/2

∑
j hje

−i2πfj
∑

k hkei2πfkdf

=

∑
j

∑
k hjhk

∫ W

−W
e−i2πf(j−k)df∑

j

∑
k hjhk

∫ 1/2

−1/2
e−i2πf(j−k)df

=

∑
j

∑
k hjhk{sin[2πf(j − k)]/[2π(j − k)]|W−W }∑

j

∑
k hjhkδj,k

=

∑
j

∑
k hk{sin[2πW (j − k)]/[π(j − k)]}hj∑

j h2
j

.

(ii) Write β(W ) = hT Ah/hT h. Then differentiate:

d

dh
β(W ) =

hT h d
dh (hT Ah)− hT Ah d

dh (hT h)
(hT h)2

=
2Ah
hT h

− β(W )
2h

hT h
.

Setting the derivative to zero gives Ah = β(W )h, so that the maxi-
mum of β(W ) is the largest eigenvalue of A.

(iii) The next K − 1 discrete prolate tapers (K ≤ N) are the next
K − 1 eigenvectors (in decreasing order of their eigenvalues) and are
guaranteed orthogonal as they are just eigenvectors.
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