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Note: throughout this paper {¢,} is a sequence of uncorrelated random vari-

ables having zero mean and variance o2, unless stated otherwise.

1. What is meant by saying that a stochastic process is second-order
stationary?
Determine whether the following stochastic processes are second-order
stationary, giving full justification:
a)
X, =B/4)X, 1 — (1/8)X, 5 +¢.

b)
Y, =X, +C,

where {X,} is a second-order stationary process with zero mean and
autocovariance sequence {s_  }, and C is a random variable with zero
)

mean and variance 020, uncorrelated with X, for all ¢.

c)

L
Xy =p+ Z Dy cos(2mfit + &),
1=1
where u, Dy, ...,D;, f,, ..., f; arereal-valued constants, and the phases
{¢,} are independent and identically distributed with probability den-
sity function

1 )
5 (1+sin ¢,), o, < 7.

™

9(¢l) =
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2. a) Let {X,} be areal-valued zero mean second-order stationary moving-
average process, or MA(2),

X, =¢€— ‘91,2615—1 - 92,2615—2-

Derive the frequency response function G(f) associated with the LTI
filter given by

Lie,} =€ — 91,2€t—1 - 92,2%—2’

and hence show that the spectral density function for the MA(2) pro-
cess {X,} can be written

S¢(f) = 052[(1 —I—Qi2 +9§72) —29172(1 —9272) cos(2mf)— 20272 cos(4m f)].

b)

(i) What is meant by saying that a moving-average process is invert-
ible?

(ii) How may we check whether such a process is invertible?

(iii) Consider the second-order stationary moving average processes
{Y,} and {Z,} defined by

Y,

— . _ 1
t =6~ €61t 16 9

and
Z,=¢, —4e, | +4e,_,.

Determine whether {Y,} and {Z,} are invertible processes.
c) Find the spectral density function for each of the processes {Y,}

and {Z,}. Of what is this result an example? What is its practical
significance?
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3. Let {X,} be a zero mean stationary stochastic process, with spectral
density function Sy (f).

a) Specify the three conditions which must be satisfied by a linear
time-invariant (LTI) digital filter.

b) If a filter has transfer function G(f), what is the spectrum Sy (f)
of the output in terms of the spectrum S, (f) of the input?

c¢) Show that the first-order backward difference process

Y, =X, - X,

has the spectral density function Sy (f) given by

Sy (f) = 4sin® (mf) Sx(f)-

Does a first-order backward difference filter resemble a low-pass or
high-pass filter?
d) If a two coefficient filter is now applied to the process {Y,} to give
{Z,} according to

Z, =aY, +bY, ,,

where
1—-+3 1++3
= and b= — 1

a

show that

S,(f) = sin? (7 f)[1 + 2 cos? (7 f)] S (f).

where S, (f) is the spectral density function of {Z,}.
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4. Give one advantage and one disadvantage accruing from the use of a
single data taper in spectrum analysis.
Let {h,} be a real-valued taper, standardized so that Zi\il hi=1.
a) Suppose that X, ..., X is a sample of length N of a second-order
stationary process {X,} with known mean p. The direct spectral
estimator with the mean subtracted before the time series is tapered
is defined as

Use the spectral representation X, — p = f_1{§2 e tdZ(f), to show
that the mean of the direct spectral estimator S (@) (f) is given by

1/2

E{SY(f)} = H(f = £)S(f)df',

—1/2

where H(f) = ‘Zi\; hte_ﬂ’rftr.

b) Now suppose that X,,..., X is in fact a segment of length N of
a white noise process (i.e., X, = ¢,) with spectral density function
S(f) = 0% and nonzero mean p. If the €,’s are not centred before
computing the direct spectral estimator, show that for 0 < f < 1/2
the mean of the resulting direct estimator,

2
5O(f) =

Y

N

—i27 ft
E h.e.e
t=1

is given by

E{SD(f)} = o2 + p*H(f).

¢) What does a comparison of E{S@(f)} and E{S@(f)} tell us
about [0, H(f)df 7
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5. a) Carefully explain what is meant by multitaper spectrum estima-
tion. What benefits arise from using multitapering rather than single

tapering in spectrum estimation?

b) Consider a real-valued sequence h, ..., hy, chosen to maximize the
fraction of energy, S(W), concentrated in the frequency band |f| <
W <1/2:

Sl [H ()P

JY0, \H () |2df

W) =

where H(f) = S, h,e 27/t
(i) Show that
N N sin[2nW (j—k
Zj:l Zk:l hk [rrT(Iz))]hj
x .
2= b

(ii) Define the matrix A as the N x N matrix with (j, k)th element
given by sin[27W (j — k)]/[w(j — k)]. Using the result that

BW) =

d

—xT Ax = 2Ax,

dx

show that the sequence h, ..., hy, that maximizes G(WV) is the eigen-
vector corresponding to the largest eigenvalue of A.

(iii) Using this approach, how are the other discrete prolate tapers of

length N derived, and why are they orthogonal?
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Soln. 1. {X,} is second-order stationary if E{X,} is a finite constant for all ¢,
var{X,} is a finite constant for all ¢, and cov{X,, X, } = s, a finite
quantity depending only on 7 and not on ¢.

a) We have
X, —B/)X, . +(1/8)X,_, =¢,.

The characteristic polynomial for this AR(2) process is

1 1
B(2)=1-(3/4)z+ (1/8)2* = (1 — 121 =52).
The roots are z = 4 and z = 2, i.e., both outside the unit circle, so
the process is stationary.
b) First, we have E{Y,} = E{X, 4+ C} = E{X,} + E{C} =0, so E{Y,}
is independent of ¢. Next, we have

cov {Y,.Y, .} = B{(X, + O)(X,, + C)}

= B{X,X, _}+ E{X,C} + FE{X,, C}+ E{C?}

t+71 —+T

_ 2
- ST,X + JC’

(because E{(X, — F{X,})(C — E{C})} = 0 for all t), which is also
independent of ¢, so {Y,} is a stationary process with acvs given by
S,y = 5, x +0& (in the above, E{X,C} = E{X,, C} = 0 because
C is uncorrelated with X, for all ¢).

c) For the first moment, we have

—+7

L
E{X,} =p+ Z D, E{cos(2m fit + ¢,)}.
=1

Now since a cosine integrates to zero over a whole period,

E{cos(2mfit + ¢;)} = s /7r cos(2m fit + ¢;)(1 4 sin(¢,)) d,

2 J_ .

1 s
=5 /_7r cos(2m fit + ¢;) sin(¢;) dg;.
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But since cos Asin B = {sin(A + B) — sin(A — B)}/2, we have that
cos(2m fit + ¢;) sin(¢,) = {sin(2n f;t + 2¢,) — sin(27 f;t)}/2, and hence

us

E{cos(2mft + ¢,)} = ﬁ/ sin(27 f;t + 2¢,)d¢p, — ﬁ sin(27 f;t)27

—Tr

1
=0- 5 sin(27 f,t).

Hence,
1L
E{X,} =pn— 3 ; D, sin(2m f,t),

which in general is not independent of ¢, so that the process is non-
stationary.
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Soln. 2.

(iii)

Lie,} = ¢, — 91,2€t—1 - 92,2€t—2
= L{6i27rft} — 6i27rft(1 o 91 267i27rf . 92 2677L47'rf)
= G(f)=1- 91,2€_i27rf — 0, 26_i47rf

)

= GNP =1+ 9%,2 + 9%,2) - 91,2(6_i2ﬂf + ey — 92,2(€_i4ﬂf + et T)

+ 0 50, 2(671‘27”” + ei%f)

=(1+ 0%’2 + 9%72) — 20, 5(1 —0,,) cos(2m f) — 20, , cos(4r f).

Hence,

Sx(f) = 052[(1 "‘Hiz +9§,2) - 291,2(1 - 92,2) cos(2mf) — 2‘92,2 cos(4m f)].

An MA process is said to be invertible if it can be written in autore-
gressive form ®(B)X, = ¢,, with the z—polynomial ®(z) admitting a
power series expansion.

We can check whether an MA process is invertible when written in
autoregressive form by determining that the poles of ®(z) are all out-
side the unit circle. For a moving average process this means that
the characteristic MA polynomial will have all roots outside the unit
circle.

The characteristic polynomial for the MA(2) process {Y,} is

1—2z+(1/4)2> = (1 — %z)(l - %z)

The roots are z = 2 (double) and so process is invertible. The char-
acteristic polynomial for the MA(2) process {Z,} is

1—4z+42% = (1 —22)(1 —22).

The roots are z = 1/2 (double) and so process is non-invertible.
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c) For {Y,} we have, wrt. (a), §,, = 1,0,, = —1/4. Putting these
parameter values into the expression for Sy (f) we get

[\V]

Sy (f) = %[33 — 40 cos(27 f) + 8 cos(4n f)].
For {Z,} we have, wr.t. (a), 0,, = 4,0,, = —4. Putting these

parameter values into the expression for S (f) we get
S, (f) = 02[33 — 40 cos(27 f) + 8 cos(47 f)].

The spectra have the same shape, differing only in a constant of pro-
portionality. This is an example of the non-identifiability of the model
from the spectrum (or autocovariance). Inverting the roots leaves the
spectral shape unchanged. The practical significance is that more in-
formation is required to identify the parameter values than simply the

spectrum (or autocovariance).
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Soln. 3.

a

) A digital filter L that transforms an input sequence {X,} into an
output sequence {Y,} is called a linear time-invariant digital filter if
it has the following three properties:

[1] Scale preservation:

L{iaX,} = al{X,}.
[2] Superposition:
L{Xt,l + Xt,Q} = L{Xt,l} + L{Xt,Q}'
[3] Time invariance:
if L{X,} = {,}, then L{X,..} = {¥;s, ),

where 7 is integer-valued and the notation {X,, } refers to the se-
quence whose tth element is X
) Sy () = IGUS (f):

) The filter is defined by L{X,} = X, — X, ;. The transfer function
is obtained by inputting X, = exp(i27 ft):

t471°

L{ei27rft} — 61'27rft o ei27‘rf(t—l) — ei27‘rft (1 . e—i27rf) — 61'271']”15611(1}0)7
where G, (f) =1 — exp(—i2n f) is the transfer function. Now
|G1(f)|2 = {e_mf(emf - e_”rf)‘2 = |e_i”f2i Sin(7rf)‘2 = 4sin®(nf).

Hence, Sy-(f) = 4sin®(7f) Sy (f).

Now |G, (f)|? increases from 0 to Nyquist (1/2) so the first difference
filter resembles a high-pass filter.

) The filter is defined by L{X,} = aX, +bX, ;. The transfer function
is obtained by inputing X, = exp(i27 ft):

L{ei27rft} — qe?mfty pei2nf(t=1) _ gi2nft (a—l— be—izwf) - ei27rftG2(f)’
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Now S, (f) = [Go(F)[2Sy (f) = 4sin®(xf)| G, (f)]2Sx (f). But

-]‘_\/g_ 1+\/§e—i2ﬁf

2 1_\/§ 1+\/§i27r
1G5 ()] = 1 [ T 1 ¢ f]
Cla=vB?2 A-VBATVE) [ ans ey, (L VE)?
- 16 16 (7 4+ *) + 25 ]
= — (24 cos(27f))

N S

(14 2cos?(7f)),
since cos(2r) = 2cos?(z) — 1. Hence,

S,(f) = sin? (7 f)(1 + 20082(7rf))SX(f).
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Soln. 4. The main advantage of data tapering in spectrum analysis is reduc-
tion in sidelobe leakage by changing the default Fejér blurring kernel
into something with smaller sidelobes. Main disadvantages: the main
lobe of the blurring kernel is made wider, reducing resolution. [Other

correct answers accepted].
a ) Let

By the spectral representation theorem

12

X,—p= [ ertaz(p)
~1/2

where {Z(-)} is a process with orthogonal increments, and E{dZ(f)} =

0. Thus

1/2

J(f)=§ht (/

ei27rf’t dZ(f/) e—iQTrft
—~1/2

1/2 N ‘ )
= / Z hte—l%(f—f )t dZ(f")
—1/24
1/2

= H(f = f")dZ(f"),
-1/2
where {h,} and H(-) form a Fourier transform pair under the assump-
tion that {h,} is an infinite sequence with h, = 0 for ¢t <1 and t > N;

i.e.,
N

H(f)=> he It

t=1

Now it is given that,

2

N
SO = TP =D hy(X, — p)e= 2Tt
t=1
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Because {Z(-)} has orthogonal increments, we therefore have

R 1/2
B8O = [ R =SS
where
N 2
H(P) = [H(NE = 3 b
t=1
b)

E{SY(f}=E

N
Z h L€,€ —i2m ft

N N
Z Z hjth{ejek}e_’Qﬂf(k_J) )

=1 k=1

<.

But €, here has a nonzero mean y, so that E{ejz} =c2+p? (j=k)
and E{e e, } = u? (j #k). So

E{S(d) — 22h2+M ii h e —i2n f(k—j)

2

N
= o2 4 2 the—i27rft
t=1
= o + W H(f).
¢) For white noise, E{S@(f o? |- 1{32 f)df, since H has unit

perlodlclty When p = 0, thls must be the same as for E{S®(f)}, and
hence f 12 H(f)df = 1, (which also follows from Parseval’s relation

since thl h?=1.)
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Soln. 5.

a

) Multitaper spectrum estimation is carried out by computing a set
of K direct spectrum estimates, each using a taper, where the set of
K tapers are orthonormal. The set of direct spectrum estimates are
averaged to produce the final spectrum estimate.

A single taper will protect the spectrum estimate against side-lobe
leakage, but the estimate will look very ragged; multitapering confers
the same protection against leakage, but using several tapers reduces
the variance (by a factor of K.)

b) (i) We can write B(W) as

w —i27 fg 127
Tor1/2 ; : .
f {/2 Zj hje—z27rfj Zk hk€z27rfkdf

5, S byt [y eI df
= Zj Zk hjhk f—162 e—2mf(i=k)df
3 S by {sin2r s G = )/ = By )
B Zj Zk hjhk(sj,k
3, S ydsin2eW (G = )/ — R)]}
) T |

(i) Write B(W) = hT Ah/hTh. Then differentiate:

i/)’(W) _ h"h-L(hT"Ah) — h" Ah-4 (h'h)
dh (hTh)?2
2Ah 2h
= wn Py

Setting the derivative to zero gives Ah = (W )h, so that the maxi-
mum of 3(W) is the largest eigenvalue of A.

(iii) The next K — 1 discrete prolate tapers (K < N) are the next
K — 1 eigenvectors (in decreasing order of their eigenvalues) and are

guaranteed orthogonal as they are just eigenvectors.
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