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Abstract

We investigate the properties of a simple discrete time stochastic epidemic model. The model is Markov-
ian of the SIR type in which the total population is constant and individuals meet a random number of
other individuals at each time step. Individuals remain infectious for R time units, after which they become
removed or immune. Individual transition probabilities from susceptible to diseased states are given in
terms of the binomial distribution. An expression is given for the probability that any individuals beyond
those initially infected become diseased. In the model with a finite recovery time R, simulations reveal large
variability in both the total number of infected individuals and in the total duration of the epidemic, even
when the variability in number of contacts per day is small. In the case of no recovery, R =1, a formal
diffusion approximation is obtained for the number infected. The mean for the diffusion process can be
approximated by a logistic which is more accurate for larger contact rates or faster developing epidemics.
For finite R we then proceed mainly by simulation and investigate in the mean the effects of varying the
parameters p (the probability of transmission), R, and the number of contacts per day per individual. A
scale invariant property is noted for the size of an outbreak in relation to the total population size. Most
notable are the existence of maxima in the duration of an epidemic as a function of R and the extremely
large differences in the sizes of outbreaks which can occur for small changes in R. These findings have prac-
tical applications in controlling the size and duration of epidemics and hence reducing their human and
economic costs.
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1. Introduction

Infectious diseases are an important and often dramatic cause of human illness and mortality
across the globe. New diseases, such as ebola, severe acute respiratory syndrome (SARS), avian or
bird ‘flu’, and West Nile virus emerge, and historically significant diseases, such as diptheria and
polio, re-emerge. Smallpox, considered to have been driven to extinction many years ago, has re-
emerged as a threat due to the possibility of bioterrorists procuring laboratory samples of the bac-
terium (see [1], for a quantitative analysis). Human immunodeficiency virus (HIV) is currently
threatening to cause more deaths than the great outbreaks of plague in the 14th century (of the
order of 25 million deaths or one in four Europeans at the time) and influenza, which caused
about 20 million deaths in the early 20th century [2]. Furthermore, epidemics in agricultural ani-
mals may have catastrophic economic consequences such as in the recent outbreaks of foot and
mouth disease in Britain.

Some well-known classic models of infectious disease population dynamics have been determin-
istic (see for example [3]). General models, such as the SIR (susceptible, infective, recovered) dif-
ferential equation model of Kermack and McKendrick [4] have proven useful in ascertaining
gross factors affecting rate of growth and final size of an epidemic. However, it seems apparent
that the nature of epidemic growth and spread is for the most part stochastic. Probabilistic models
have indeed a long and illustrious history going back to Bernoulli [5] and earlier. Reviews of sto-
chastic epidemiological models are contained in [6–8].

It is apparent that some diseases do not fit general simplified schemes and require special con-
sideration of their details as they have characteristic modes of transmission as is the case for
malaria. Our approach is in accordance with the views expressed in Isham [8], namely that simple
models may be nevertheless useful for understanding underlying principles. In this paper we con-
sider therefore a discrete time, discrete state space stochastic model which includes certain ele-
ments of reality, thus extending previous similar models.

There are two classical discrete time stochastic models, both of the so called chain-binomial
type. These are the Greenwood [9] model and the Reed-Frost model, which evidently was pro-
posed in 1928 in biostatistics lectures at Johns Hopkins, not published by the proponents but sub-
sequently related in [10]. In these models there are successive generations, indexed by
t = 0,1,2, . . ., of infectives which are only capable of infecting susceptibles for one generation after
which they do not participate in the epidemic process. Suppose the population size is n, a constant
and let the numbers of susceptibles and (new) infectives of generation t be X(t) and Y(t), respec-
tively. Then the initial condition is X(0) + Y(0) = n and X(t + 1) + Y(t + 1) = X(t), t =
0,1,2, . . ., as the infectives and susceptibles of generation t + 1 are drawn from the susceptibles
of generation t. Thus,
X ðtÞ þ
Xt

Y ðjÞ ¼ n;

j¼0
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and the total number infected up to and including generation t is
Pt

j¼0Y ðjÞ. It is assumed that the
number of infectives of generation t + 1 is a binomial random variable with parameters X(t) and
p(Y(t)), the latter being the probability that an existing susceptible will become infected when the
number of infectives is Y(t). Thus,
PðY ðt þ 1Þ ¼ kjX ðtÞ ¼ x; Y ðtÞ ¼ yÞ ¼
x

k

� �
pðyÞkð1� pðyÞÞx�k

;

for k = 0,1, . . . ,x. In the Greenwood model, p(y) = p is a constant not depending on the number y
of infectives. In the Reed-Frost model it is supposed that the probability any susceptible escapes
being infected when there are y infectives is
1� pðyÞ ¼ ð1� pÞy ;

where p = p(1) is the probability a susceptible is infected by one given infective.

The Reed-Frost model has been used to analyze data on meningococcal disease [11]. It has been
extensively employed in the analysis of agricultural epidemics such as foot and mouth disease in
Japanese beef cattle [12], tuberculosis in Argentinian dairy cows [13,14] and Swedish deer [15]. De-
spite its apparent simplicity, the Reed-Frost model is not readily analyzed for large n, so that
approximations have been sought, such as branching processes in the early stages and a normal
approximation for estimating the final size of the epidemic; i.e., the total number infected [16].
However, Ball and O’Neill [19] have succeeded, via a construction of the epidemic process due
to Sellke [20], to find the distribution of the final size of an epidemic in the Reed-Frost and other
models – see also [21]. See [22] for some generalizations of the Reed-Frost model with application
to HIV. A review of continuous time models may be found in [20].

We will explore a mathematical model which incorporates some important features of disease
transmission in a discrete time stochastic framework. One of these concerns the group of individuals
encountered by a given individual on a particular day. The most realistic situation would make this
group consist of a core subgroup which was met almost on a daily basis, such as family members or
colleagues, together with a random subgroup whose numbers and composition would change each
day, consisting of persons met in travelling or other activities, such as sporting events, shopping or
entertainment. Some interesting results have recently been found for models with some such features
[17,23] but here it was decided to simplify the model by making the group met by each individual not
necessarily the same each day, consisting of a fixed number plus a random number, all being chosen
at random from the rest of the population. The second feature consists of a period of R days after the
infection of an individual such that only during this period is the individual infected and capable of
infecting susceptible individuals. We will mainly be concerned with ascertaining the total number of
diseased individuals and how long it takes for the disease to vanish from the population (if ever). The
case R =1 is considerably simpler, so we give some analytical formulas for this case and consider a
formal diffusion approximation for the number infected as a random function of time.
2. Description of the model

The model we employ is similar to that of Reed-Frost but has some modifications to make it
more realistic and adaptable for different diseases. Because the time scale for data on epidemics is
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usually daily at its finest, it is natural to use a discrete time model with a time step which is usually
thought of as one day, although in some applications the time step is taken as several days [12].

2.1. Assumptions

We consider a relatively simple stochastic SIR model with assumptions as follows:

(a) The total population size is fixed at n.
(b) Time is discrete, with epochs t = 0,1,2, . . . The natural unit for the duration of an epoch is

one day.
(c) For individual i, i = 1, . . . ,n, the random process Yi = {Yi(t), t = 0,1,2, . . .} is such that

Yi(t) = 1 if that individual is infected and capable of infecting others (called diseased or infec-
tious) at time t; otherwise Yi(t) = 0. Thus the total number of diseased and hence infectious
individuals at time t is
Y ðtÞ ¼
Xn

i¼1

Y iðtÞ; t P 0:
(d) Individual i encounters a fixed number (not random) ni of other individuals each day,
drawn randomly from the population. Individual i also meets a randomly chosen and
random number Mi(t) of other individuals over (t, t + 1]. The variables Mi(t) are mutu-
ally independent and independent of the state of the population. These random vari-
ables may be, for example, uniformly distributed or have specially tailored discrete
distributions to represent as accurately as possible chance meetings in human popula-
tions. The total number of individuals met by person i over (t, t + 1] is thus Ni(t) =
ni + Mi(t). An alternative way to view this is that individual i never has less than ni

contacts. We here consider time homogeneous models so that the distribution of
Mi(t) is the same for all t.

(e) If an individual becomes infective, he remains in such a state for R consecutive time points
including the initial time point of becoming infected where R is a positive integer constant.
(In general R could be a random variable, or even a random process, but this complication
is ignored throughout.) Thus, if an individual is diseased for the first time at epoch t, then
he is diseased and infectious for the epochs {t, t + 1, . . . , t + R � 1}. At epoch t + R such
an individual recovers but cannot be re-infected. (In real time, if an individual is suscep-
tible at time t � 1 and infected at time t then it is assumed that he became infected some-
where in the interval (t � 1, t]). For example, if R = 2 and individual i becomes infected at
some time, then Yi(t), t = 0,1,2, . . . is a string of zeros except for two consecutive time
points at which there are ones. We call R the recovery period, although it could equally
well be called the infectious period. We also consider the case R =1 which gives no recov-
ery and hence reduces the model to one of SI type rather than SIR.

(f) If an individual who has never been diseased up to and including time t encounters an indi-
vidual in (t, t + 1] who is diseased at time t, then independently of the results of other encoun-
ters, this encounter results in transmission of the disease with probability p 2 [0,1],
whereupon the individual is infected at epoch t + 1.
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(g) Given Y(t), the probability that a randomly chosen individual is diseased at time t is given by
f ðtÞ ¼ Y ðtÞ

n .

2.2. Description as a Markov chain

If all of the Ni(t) are independent and identically distributed, the model can be construed as an
(R + 1)-dimensional Markov chain as follows: for each t P 0 let

Yi(t) be the number of individuals who are infected at t and have been infected for exactly i time
units, i = 0,1, . . . ,R � 1;

X(t) be the number of susceptible individuals at time t; and let Z(t) be the number of individuals
who were previously infected and are recovered at t.

We assume that all of the individuals who are infected at t = 0 have just become infected so that
Y(0) = Y0(0) and Yi(0) = 0 for i = 1, . . . ,R � 1. Also, there are no recovered individuals at t = 0
so that Z(0) = 0 and Y0(0) + X(0) = n. It is feasible of course that some or all of the initially
infected could have been infected prior to t = 0. This could be the case if there are infected immi-
grants who have just entered the population, but we do not consider this possibility here.

Regardless of the initial conditions, it is clear that
VðtÞ ¼ ðX ðtÞ; Y 0ðtÞ; Y 1ðtÞ; . . . ; Y R�1ðtÞÞ; t ¼ 0; 1; 2; . . . ð1Þ

is a Markov chain. Note that the value of Z(t) is known if all of the components of V(t) are
known.

There are a number of further constraints on the components as follows:
for t = 1,2, . . .,
Y kþ1ðtÞ ¼ Y kðt � 1Þ; k ¼ 0; 1; . . . ;R� 2;

ZðtÞ ¼ Zðt � 1Þ þ Y R�1ðt � 1Þ
and the total number of infectives at t is
Y ðtÞ ¼
XR�1

k¼0

Y kðtÞ
so that (X(t),Y(t),Z(t)) gives the traditional (S, I,R) description.
In addition to the processes Yi = {Yi(t), t = 0,1,2, . . .}, i = 1,2, . . . ,n, such that Yi(t) = 1 or 0

depending on whether individual i is infectious or not, it is convenient to introduce the processes
Xi which indicate whether individual i is susceptible or not. If then Zi(t) indicates whether at epoch
t individual i has been previously infected and is recovered and incapable of infecting others, then
we must have for all i and for all t:
X iðtÞ þ Y iðtÞ þ ZiðtÞ ¼ 1; ð2Þ

where two of these variables are zero. Further we must have
X ðtÞ ¼
Xn

i¼1

X iðtÞ; Y ðtÞ ¼
Xn

i¼1

Y iðtÞ; and ZðtÞ ¼
Xn

i¼1

ZiðtÞ:
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In general, if the variables Ni(t) are not all identically distributed, in order to give a Markovian
state descriptor, we define the processes, Y i

0; Y i
1; . . . ; Y i

R�1 such that Y i
kðtÞ ¼ 1; k ¼

0; 1; . . . ;R� 1, if individual i was first infected at time t � k and is zero otherwise. Hence
Y iðtÞ ¼
XR�1

k¼0

Y i
kðtÞ:
Then we can use
XðtÞ ¼ ½X iðtÞ; Y i
0ðtÞ; . . . ; Y i

R�1ðtÞ; i ¼ 1; . . . ; n�

as a Markovian state descriptor and the model takes the form of a Markov chain with state space
contained in {0,1}(R+1)n. Because of its simplicity, this Markov chain will be the one used in our
simulations, even when the Ni(t) are independent and identically distributed.

2.3. Transition probabilities

From the above assumptions, the one-step transition probabilities for the Markov chain X may
be written down. However, for an approach through simulation, in which we update the states of
individuals at each time step, it is not necessary to catalogue the whole gamut of one-step transi-
tion probabilities as many, being deterministic transitions, are taken care of automatically in the
simulation program.

At any given general time, t, say, assuming R P 3, individual i may be in any of R + 2 mutually
exclusive states so that, one of the variables X iðtÞ; Y i

0ðtÞ; . . . ; Y i
R�1ðtÞ and Zi(t) is unity whilst the

others are zero. If any of the R + 1 variables Y i
0ðtÞ; . . . ; Y i

R�1ðtÞ; ZiðtÞ is unity, then the values of
all R + 2 variables X iðt þ 1Þ; Y i

0ðt þ 1Þ; . . . ; Y i
R�1ðt þ 1Þ and Zi(t + 1) are determined with proba-

bility one. Thus for example, Zi(t) = 1) Zi(t + 1) = 1 and X iðt þ 1Þ ¼ Y i
0ðt þ 1Þ ¼ � � � ¼

Y i
R�1ðt þ 1Þ ¼ 0; similarly, Y i

0ðtÞ ¼ 1) Y i
1ðt þ 1Þ ¼ 1 and X iðt þ 1Þ ¼ Y i

0ðt þ 1Þ ¼ Y i
2ðt þ 1Þ ¼

� � � ¼ Y i
R�1ðt þ 1Þ ¼ Ziðt þ 1Þ ¼ 0.

The only individual transition probability (that is not either zero or one) required to simulate
the evolution of the process of disease spread is the probability that an individual i susceptible at t
becomes infected for the first time at t + 1. This probability depends only on the total number
Y(t) = y of diseased individuals together with the number Ni(t) of individuals met and the prob-
ability p of transmission per contact. Now, assuming n is much greater than Ni(t), so that the bino-
mial approximation may be used, the probability of meeting exactly j infectives is,
P i
jðy;N iðtÞ; nÞ �

N iðtÞ
j

� �
y

n� 1

� �j
1� y

n� 1

� �NiðtÞ�j
ð3Þ
and the probability pj of becoming infected if j infectives are met is
pj ¼ 1� ð1� pÞj:
Then,
PðY i
0ðt þ 1Þ ¼ 1jN iðtÞ;X iðtÞ ¼ 1; Y ðtÞ ¼ y; . . .Þ ¼

XNiðtÞ

j¼1

pjP
i
jðy;N iðtÞ; nÞ; ð4Þ
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which simplifies (using (3) as an equality) to
Fig. 1
figure
P ðY i
0ðt þ 1Þ ¼ 1jN iðtÞ;X iðtÞ ¼ 1; Y ðtÞ ¼ y; . . .Þ ¼ 1� 1� py

n� 1

� �NiðtÞ
ð5Þ
(cf. Eq. (2) of [22]). This also follows because if individual i is susceptible at t, then in Ni(t) inde-
pendent Bernoulli trials, with a probability of infection on each of py

n�1
, the probability that the

individual does not become infected is ð1� py
n�1
ÞNiðtÞ. Note that this model contains a simplification

(which is commonly used), namely, the meeting relationship is not symmetric because if the group
randomly chosen to meet individual i contains individual j, the group chosen to meet individual j
need not contain individual i.

2.4. Variability of size and duration: simulations

To report results for large ranges of all the parameters in the model would take up much space
so the presentation is curtailed by this constraint. In particular, throughout this paper, we report
results only for the case in which the Ni(t) are independent and identically distributed. In Section
3, we will consider the simple case of no recovery (R =1) and in Section 4 we give mean statistics
only for finite recovery times. In Figs. 1 and 2 we illustrate the stochastic nature of the epidemic,
where we have Ni(t) = N, N being a fixed constant. For these simulation results we have chosen
the following parameter values. The population size is n = 200, the probability of transmission of
the disease on contact of a susceptible with an infected is p = 0.1, the number of contacts per per-
son per time step (day) is N = 4, the fraction of the population initially infected is 0.01 so that
Y(0) = 2 and the recovery period is R = 2 days.
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Fig. 1 shows the empirical (simulated) distribution (histogram) of the total number of infected
individuals at the end of the epidemic. The number of trials for the upper histogram is 500,
whereas for the lower histogram it is 5000. We report empirical statistics for the latter case.
The maximum number of cases was 64 and the minimum number was 2 (for the latter, there were
no new infections beyond the initially infected individuals). The mean number of total cases was
8.39, the standard deviation was 8.44 and the most frequent occurrence was that of no new cases
(size 2). The most notable feature is that the same parameter set can lead to either zero or very few
new cases or to a large outbreak in which nearly one third of the population becomes infected.
This important effect could of course not be discerned with a deterministic model.

Fig. 2 shows the corresponding sets of results (500 and 5000 trials) for the duration of the epi-
demic, defined as the time required to reach an epoch in which there are no current infectives. The
empirical statistics, based on 5000 trials, are as follows. The minimum duration was 2 days (recov-
ery of the initially infected and no new cases) and the maximum duration was 33 days with a mean
of 6.52 days and a standard deviation of 4.64 days. The most likely occurrence was a duration of 2
days (no new cases). The variability in the duration is as striking as for the size of the epidemic,
especially considering that there is no variability in the number of daily contacts.

In the results shown in Figs. 1 and 2 we have employed samples of 500 and of 5000. The larger
sample size is included in order to give a better indication of the underlying distributions, which
could be obtained within a theoretical framework. If we consider the process {(X(t),Y0(t),
Y1(t)), t = 0,1,2, . . .} with initial value (n � 1,1,0) and state space fðx; y0; y1Þ 2 Z3

þ : xþ
y0 þ y1 6 ng, then the duration is the time T to absorption of the process on the x-axis, with
Y0(T) = Y1(T) = 0, and the total number infected is n � X(T). Although an analytical approach
via Markov chain theory is potentially feasible to find the distributions of T and X(T), the formulas
are so unwieldy that we restrict our attention to estimation by simulation.
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2.5. The probability of infections beyond those initially infected

Given that there are y0 initially infected and a recovery period of length R, from the previous
expressions we can readily determine an expression for the probability Q0 that the disease does not
spread to any new individuals other than those initially infected. This must be, in the case of fixed
numbers Ni(t) = ni of contacts for the ith susceptible,
Q0 ¼
Yn�y0

i¼1

1� py0

n� 1

� �ni

" #R

: ð6Þ
For the parameter values y0 = 2, R = 2, p = 0.1, n = 200 as in Figs. 1 and 2, and all ni = 4 this
gives Q0 = 0.203 which compares favorably with the fraction of trials, namely 20.02% in the data
of Figs. 1 and 2 (5000 trials) in which there were no new cases or the duration was 2 days. (Note
that the bin widths in Figs. 1 and 2 are not unity.) As a further illustration, we have plotted in
Fig. 3, as a function of number of contacts and the length of the recovery period, the probability
(computed from (6)) of having any new cases (that is 1 � Q0) at fixed values of p = 0.05, Y(0) = 1
and n = 200.
3. The model without recovery (R = ‘)

A simplifying assumption is that infectious individuals remain infectious throughout the course
of the epidemic. Such a situation can arise when a disease causing agent has a long life as with
tuberculosis in deer [15] or with HIV in humans [23], especially with life-prolonging drug thera-
pies. Without recovery the number of infectives at time t is a classical discrete time, discrete state
space Markov chain, for which the one-step transition probabilities can be written down explic-
itly. We assume that at time t there are Y(t) = y infectious individuals which, as there are no
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recovered individuals, implies that there are n � y susceptibles. There are two cases we wish to
consider: (i) the number of individuals met is random; and (ii) the number of individuals met is
constant, with no random component.

3.1. The number of meetings for each individual is random

We remind the reader that we are assuming that the Ni(t) are independent and identically dis-
tributed. With Y(t) = y infectives, given the value of Ni(t), the probability that the ith susceptible,
i = 1,2, . . . ,n � y, meets exactly j infectives is given by (3) and the probability that this individual
is newly infected by t + 1 is given by (5). Thus, the probability of no new infectives at t + 1 is
PðY ðt þ 1Þ ¼ yjNiðtÞ; i ¼ 1; . . . ; n� y; Y ðtÞ ¼ yÞ ¼
Yn�y

i¼1

1� py
n� 1

� �NiðtÞ
ð7Þ
and the probability of one new infective is
PðY ðt þ 1Þ ¼ y þ 1jN iðtÞ; i ¼ 1; . . . ; n� y; Y ðtÞ ¼ yÞ

¼
Xn�y

i¼1

1� 1� py
n� 1

� �NiðtÞ
� � Yn�y

j¼1;j6¼i

1� py
n� 1

� �NjðtÞ
: ð8Þ
Expressions can be written down for the chances of larger increments in the number of infectives,
Y ðt þ 1Þ � Y ðtÞ ¼ ~y; ~y ¼ 2; 3; . . . but they are unwieldy – see below for a more manageable case.

3.2. The number of meetings per individual is constant

If all susceptibles meet the same constant (non-random) number of individuals N per epoch
then each susceptible has the same chance to become infected. This is equivalent to a Reed-Frost
model, modified so that the number of individuals met by an infective is not the group of all sus-
ceptibles but a subset of them [23].

Using (5) with Ni(t) = N, we find that the probability that any individual who is susceptible at t
is infected at t + 1, when the number of infectives at time t is y, is
~p ¼ 1� 1� py
n� 1

� �N
:

Thus, the distribution of the increment in the number of infectives must be� �� �

P ðY ðt þ 1Þ ¼ y þ yjY ðtÞ ¼ yÞ ¼

n� y

y
1� 1� py

n� 1

n oN y

1� py
n� 1

� �Nðn�y�yÞ
; ð9Þ
where y ¼ 0; 1; 2; . . .. Then the increment in the number of infectives has a mean given by
E½Y ðt þ 1Þ � Y ðtÞjY ðtÞ ¼ y� ¼ ðn� yÞ 1� 1� py
n� 1

n oN
� �

ð10Þ
and its variance is
Var½Y ðt þ 1Þ � Y ðtÞjY ðtÞ ¼ y� ¼ ðn� yÞ 1� 1� pyn oN
� �

1� pyn oN
: ð11Þ
n� 1 n� 1
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3.2.1. A diffusion approximation
The computations (10) and (11) for the mean and variance of the one-step increments of Y sug-

gest that for a large population size n and small transmission probability p such that nNp is of
moderate size, one might approximate a suitably rescaled version of Y by a diffusion process.
More precisely, if we speed up time and rescale the state to define
Ŷ nðtÞ ¼ Y ð½nt�Þ
n

for all t P 0;
where [Æ] denotes the greatest integer part, then Ŷ nðtÞ is the fraction of the population that has been
infected by the time [nt] in the original time scale of Y. From (10) and (11), for large n and small p
such that h = nNp is of moderate size, using the approximation 1 � (1 � x)N � Nx for small x, we
see that with Dt ¼ 1

n and t ¼ 0; 1
n ;

2
n ; . . .,
E Ŷ nðt þ DtÞ � Ŷ nðtÞjŶ nðtÞ ¼ ŷ
� 	

� ð1� ŷÞNpŷ ¼ hŷð1� ŷÞDt
and
Var Ŷ nðt þ DtÞ � Ŷ nðtÞjŶ nðtÞ ¼ ŷ
� 	

� ð1� ŷÞNpŷð1� NpŷÞDt � h
n

ŷð1� ŷÞDt: ð12Þ
This suggests that one might approximate Ŷ n by a diffusion process Ŷ that lives in [0,1] and sat-
isfies the stochastic differential equation
dŶ ðtÞ ¼ hŶ ðtÞ 1� Ŷ ðtÞ

 �

dt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h
n

Ŷ ðtÞ 1� Ŷ ðtÞ

 �r

dW ðtÞ; ð13Þ
where W = {W(t), t P 0} is a standard Wiener process with W(0) = 0, E(W(t)) = 0 and
Var(W(t)) = t. (For proofs of similar approximations for continuous time Markov chains, see
[18, Chapter 11].) To Eq. (13) there corresponds a forward (and backward) Kolmogorov equation
satisfied by the transition probability density function pðŷ; tjŷ0Þ (see for example [24]):
op
ot
¼ �h

o

oŷ
ŷð1� ŷÞpð Þ þ h

2n
o2

oŷ2
ŷð1� ŷÞpð Þ: ð14Þ
In Fig. 4, statistical aspects of some simulations of the diffusion process Ŷ are compared with those
for simulations of the original process. The parameter values are n = 200, N = 4, and p = 0.05, with 2
individuals initially infected. The figure shows the (empirical) stochastic means ± one standard devi-
ation (computed from 50 trials) for the number of infectives as a function of time for both Y and Ŷ . As
noted in the caption to the figure, for ease of comparison, we have rescaled the diffusion plot so that
what is shown is a graph corresponding to values of nŶ ðt=nÞ for t = 0,1,2, . . ..

If the variability is small, so that the noise term in (13) has little effect, then it is natural to con-
jecture that the mean of Ŷ nðtÞ can be approximated by m̂ðtÞ where m̂ satisfies the logistic equation
dm̂
dt
¼ hm̂ 1� m̂ð Þ ð15Þ
with solution
m̂ðtÞ ¼ 1

1þ 1�m̂0

m̂0
expð�htÞ

; t P 0; ð16Þ
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Fig. 4. A comparison of statistics for the diffusion approximation (13) and the original discrete Markov chain model,
based on 50 trials, with a population size of n = 200, probability p = 0.05 of transmission of the disease on contact,
N = 4 contacts per individual per time period and 2 initial infectives. The stochastic means ± one standard deviation are
plotted against time. To facilitate direct comparison of the two plots, in the diffusion plot the state value of the diffusion
has been scaled up by n and the time has been rescaled by the same factor.
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where m̂0 ¼ E½Ŷ nð0Þ� ¼ 1
n E½Y ð0Þ�. This suggests that for t = 0,1,2, . . . (with attendant scaling up of

error terms),
E½Y ðtÞ� ¼ nE Ŷ n t
n

� �h i
� nm̂

t
n

� �
¼ n

1þ n�y0

y0
expð�pNtÞ ; ð17Þ
where y0 = E[Y(0)].
Fig. 5 shows a comparison of values of the above logistic approximation with values of the sto-

chastic mean computed from simulations of the discrete process Y for three values of N, the num-
ber of contacts per day. Here the parameters are n = 500, p = 0.1, the initial number infected is
one, and there are 10 trials for each parameter set for the stochastic model.

3.2.2. Time to reach a given fraction of infectives
Having seen that the logistic can give a reasonably accurate estimate of the expected number of

infected individuals as a function of time, it is interesting to ascertain roughly the dependence on
the parameters p, n and N of the time taken for the number infected to reach a given fraction of
the population. That is, we ask for the time ta such that
m̂
ta
n

� �
¼ a;
where 0 < a < 1 and where m̂ðtÞ is given by (16). Substitution leads to an explicit solution
ta ¼
1

pN
ln

n
y0
� 1

1� 1

" #
: ð18Þ
a
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Fig. 5. Logistic curves for various numbers of contacts per day and the corresponding means obtained from
simulations for the stochastic epidemic model without recovery.
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We see therefore that under the logistic approximation:

(a) For a given population size, number of contacts per day per individual and number initially
infected, the time for a fraction of the population to become infected is inversely proportion-
al to the probability of infection on contact between a susceptible and an infective.

(b) For a given population size, probability of infection on contact between a susceptible and an
infective and number initially infected, the time for a fraction of the population size to
become infected is inversely proportional to the number of contacts per day.Furthermore,
if it can be assumed that the ratio n/y0 of total population size to the number initially infected
is much larger than one, then we have approximately
ta �
1

pN
ln

n
y0

� �
� ln

1

a
� 1

� �� �
: ð19Þ
Then we also have
(c) For fixed N and p, the time taken for 50% of the population to become infected (a = 1/2) is

proportional to the logarithm of the reciprocal of the initial fraction of the population that is
infected.
4. The model with recovery (R < ‘)

For R <1 the Markov chain model described in Section 2 is rather complicated for an analyt-
ical approach and hence results for it have been obtained by simulations, some of which are now
described. We will describe results for the mean computed over several trials, based on simulation
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of the population on an individual by individual basis using a Matlab program. Results showing
the variability of the population response to the introduction of a few infected individuals have
been given in Section 2.4.

4.1. Effects of various numbers of contacts

It is interesting to first examine the effects of varying the number of contacts per individual per
day. In this section the number of contacts per day is held constant and denoted by N. Results are
shown in Figs. 6 and 7 for two values of the recovery period, namely R = 2 and R = 4. In these
figures, the mean numbers (over 25 trials) of infected individuals at time t are plotted against time
t, assumed to be measured in days. The population size was chosen as 500 and the probability of
transmission set at p = 0.1. There is initially just one diseased individual. Referring to Fig. 6, for a
recovery period of R = 2, E(Y(t)) does not grow much past the initial number and diminishes to
zero within several days for N = 1 and N = 2. For R = 4 and N = 1, the expected number of
infected individuals becomes zero after about 15 days; for R = 4 and N = 2 the duration of the
epidemic is prolonged substantially to as long as 30 days.

In Fig. 7, corresponding results for the larger contact rates N = 5 and N = 10 are shown. Here
the results are somewhat unexpected as the times taken for E(Y(t)) to vanish are longer for fewer
contacts per day N = 5 for both values of the recovery period. When N = 5 doubling the recovery
period from 2 to 4 days has a very large effect on the maximum number of expected cases, taking it
from a few to over 80. Similarly when N = 10, doubling the recovery period increases the maxi-
mum number of cases by a factor of about 4 but does not significantly change the time taken for
E(Y(t)) to vanish. For these larger values of N it is seen that the larger N leads to a larger but
shorter epidemic.
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Fig. 6. A plot showing how the time course of the SIR epidemic depends on the number of contacts per day, here N = 1
and N = 2, and the recovery period which takes values R = 2 and R = 4. The mean number infected at time t is plotted
against t.
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Figs. 8 and 9 show the effects of increasing the number of contacts per day on the mean total
number of cases and the mean total duration of the epidemic. The same values of n, p and Y(0)
were employed as for Figs. 6 and 7, and the averages are over 25 trials. Fig. 8 shows the steady
increase in total number of cases at each of the values of the recovery period. Most noticeable,
however, is the enormous difference between the sizes of the epidemic for intermediate values
of N (4, 5 and 6) as the recovery period changes from 2 to 4. For example, when there are 5
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contacts per day, the mean total number afflicted is about 5 with R = 2 but is about 120 for R = 4;
similarly, with N = 6, there is a mean total number of cases of just less than 20 with R = 2 but this
becomes nearly 160 if R = 4. Fig. 9 shows the duration of epidemics corresponding to the results
of Fig. 8. For R = 1 there is little change in the duration as the number of contacts per day
increases. When R = 2 the duration increases quite rapidly and achieves a maximum (indicated
in the figure as being at about N = 9) before declining at large values of N. When R = 4, a max-
imum is apparently achieved at about only 5 contacts per individual per day.

The results of Fig. 8 suggest that when the number of contacts is small (less than 3 per day per
individual) there is little benefit in reducing R. A similar conclusion might be drawn when N is
large (greater than 9 per day per individual). For intermediate numbers of contacts per day, large
reductions in total number of infected individuals can be effected by reducing the duration of the
recovery (infectious) period. This has implications for both pharmacological intervention and
other treatments that accelerate recovery or for social policy in which afflicted individuals are tak-
en out of circulation when sick, possibly on a volunteer basis, thus effectively reducing R and/or
N.

4.2. Scale invariance

An important aspect of the model that we wished to consider was how the development of an
epidemic might differ qualitatively and quantitatively as the total population size varied. Although
population size may be quite small in isolated animal herds, or even isolated human settlements,
urban populations often involve much greater numbers. The simulation of such large populations
with the present model, and probably any reasonably accurate model, is very time consuming so it
is important to know whether the behavior of solutions for relatively small populations is a reli-
able indicator of that for larger ones. Fig. 10 shows results for the final fraction of the population
that is infected for populations of sizes n = 100,500 and 1000 for various initial fractions of the
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Fig. 10. Results for the stochastic SIR model showing the relative invariance of the mean final fraction infected with
regard to both the initial fraction infected and the population size. For parameter values see text.
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population infected. In obtaining these results the number of contacts made by each individual per
time unit was random, with a distribution as specified below.

The remaining parameters for these trials were recovery period R = 2 days (epochs), probability
of transmission of disease on contact between a susceptible and an infective, p = 0.1; and the
numbers of contacts per individual were all 5 + U where U is uniform on [0,1, . . . ,10]. The results
are the means for 50 trials.

Here it is seen that for different populations there are significant differences in the final fraction
infected for small initial fractions (<0.02) but only when the population is less than 500. Other-
wise, the final fraction infected is practically the same (for 500, 1000) and increases gently as
the initial fraction infected increases. Beyond an initial infected fraction of 0.02 the final fraction
infected is practically independent of population size for all values considered.

The mean duration of an epidemic is shown in Fig. 11 as a function of the initial fraction of
infected individuals for the same set of population sizes and remaining parameters as for
Fig. 10. A stronger dependence on population size is found for the duration than for the final frac-
tion infected. When the initial fractions infected are the same, as the population size increases, the
mean duration of the epidemic increases. An explanation is sought in terms of the number of effec-
tive contact operations required. Suppose the population size is n, the initial fraction infected is q1

and the final fraction infected is q2, which is assumed to be about the same for various n. The
number of new cases is thus n(q2 � q1) which is much larger for n = 1000 than for n = 100 and
of course is larger the smaller q1 is for fixed n.

4.3. Dependence on transmission probability p

In this subsection we report some results from our investigations on how certain properties of
the epidemic depend on the probability p of the development of disease in a susceptible on contact
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Fig. 11. A plot showing the dependence of the mean duration of an epidemic in the discrete stochastic SIR model on
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with an infective. In Fig. 12, plots are shown of the mean final number of cases, averaged over 50
trials, for a population of size 500 of whom 5 are initially infected. The four sets of results are for
recovery periods of R = 1, 2, 3 and 4. The number of contacts per day per individual is uniformly
distributed on the integers 5–15.

When the recovery period is R = 1 (day), (see the blue curve), so that diseased individuals only
have the capability to spread infection for a very limited time, the mean fraction of the population
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Fig. 12. A plot showing the dependence on p of the mean final size of an epidemic in a population of 500 with 5 initially
infected individuals for various recovery periods R = 1, 2, 3 and 4, which label the curves.
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who become infected is less than 50% until p reaches the high and somewhat unlikely value of
0.15, whereafter it climbs to almost 100%. When susceptibles are potentially exposed to infectives
for 3 or 4 days, the entire population is infected whenever p > 0.2 and there is over 50% penetra-
tion for p as small as 0.05.

An aspect of special interest is the change in the mean final number of cases when R changes.
For example, when p = 0.1, for a recovery period of R = 2, the mean final number infected is
nearly 400. In contrast, when R = 1, the mean final number infected is less than 50, so there
are eight times as many cases, on average, when the recovery period is 2 days as for a recovery
period of 1 day. This observation is of great interest in reducing the burden of an epidemic, which
is measured not only in human suffering and inconvenience, but also economic cost. The mean
number of cases can be reduced not only by reducing the transmission probability p but also,
and quite dramatically, by reducing R. In practice this reduction in R could be effected by either
making sure that diseased individuals are prevented from circulating in the population as soon as
possible after they become infective, or possibly by the use of medication or treatment which
accelerates recovery.

In Fig. 13 we show the dependence of the mean duration on p for the same parameters as in
Fig. 12. For each of the four values of R considered, there is a maximum mean duration at a par-
ticular value of p, which is about 0.05 for R = 2, 3 and 4 and about 0.2 for R = 1. Mean duration
seems to depend significantly on p when p varies from 0 to 0.2, particularly when R = 3 and R = 4,
but not when p is greater than 0.2.

4.4. Effects of changing R

In Fig. 14 we illustrate the dependence of the mean total number of cases on the recovery period
R for four different values of the transmission probability p. The data are the same as for Figs. 12
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Fig. 13. A plot showing the dependence on the probability, p, of transmission of the disease on contact with an infected
individual, of the mean duration of an epidemic in a population size 500 with 5 initially infected individuals for recovery
periods of R = 1, 2, 3 and 4.
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and 13 but are plotted differently. When transmission is fairly likely, p P 0.2, nearly the whole
population is infected regardless of the length of the recovery period. Furthermore, when trans-
mission is very unlikely at p = 0.02 only small numbers are infected even when the recovery period
is as large as 4 days. The dependence on R is thus not severe at very small or relatively large trans-
mission probabilities. By contrast, at intermediate values of p, as R increases there is a rapid in-
crease of mean epidemic size. Hence at such values of p, reducing the infectious period can have an
extremely beneficial effect on the containment of the spread of the disease.
5. Discussion

We have formulated a simple stochastic model for the spread of disease throughout a homoge-
neous community of a fixed size. Time is discrete and individuals may meet a fixed number plus a
random number of other individuals per day. The model is Markovian and offers somewhat more
realistic characterizations of epidemics than classical discrete time models such as the Reed-Frost
model which has often been employed for analyzing agricultural epidemics.

We have been concerned with situations where there are initially a few diseased individuals. By
analytical and simulation methods we considered how the parameters of the model affected the
time course of the spread of the disease and the final outcome in terms of total cases and total
duration. Apart from the initial condition there are four variable elements: n, the total population
size; p, the probability of transmission from diseased to susceptible; R, the number of days an
individual remains infective; and the set of Ni, i = 1.2, . . . ,n, where Ni is the random number of
contacts per day made by individual i; Ni may have fixed and random components. A degree
of scale invariance was noted in the sense that the fraction of the population ultimately infected
depended on the fraction initially infected rather than the absolute size of the population. This
possibly can be interpreted by considering that each initially infected individual more or less starts
his own epidemic independently of other initially infected individuals.
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An approximate expression was easily obtained for the probability of any or zero new cases
after t = 0. We found that there was considerable variability of response as a small number of ini-
tially infected individuals have the capacity to give rise to either very small outbreaks or, for the
parameters considered, with small probability, very large outbreaks, as seen in Fig. 1. The corre-
sponding durations also exhibited great variability. For the case R =1 a formal diffusion
approximation was obtained for the number of cases as a function of time, which also leads to
a useful approximate logistic equation for the mean number of cases.

In Sections 4.1, 4.3 and 4.4, using simulation, we have examined, in the mean, the effects of
varying the contacts per day, the probability of transmission and the length of the recovery peri-
od. Most noteworthy were the maxima in the mean duration that occur as the contact rate and the
probability of transmission increase, and the drastic reductions in the size of the outbreak as the
recovery period is reduced for certain, but not all, ranges of the other parameters. These findings
may have practical applications as they shed light on some of the factors controlling the size and
duration of epidemics and hence their human and economic costs. More simulations will be re-
quired to do a thorough investigation of the factors involved. In addition, asymptotic analysis
may be useful for large n as well as a comparison of results from the present model with those
for differential equation models and the original Reed-Frost model. These aspects will be the sub-
jects of future articles.
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