M3S4/M4S4: Applied probability: 2007-8
 Problems 1: Introduction

1. If X is a continuous random variable which can take only positive values, prove that

$$
\mathrm{E}(X)=\int_{0}^{\infty}[1-F(x)] \mathrm{d} x
$$

2. Let $T_{i}, i=1, \ldots, n$ be independent exponentially distributed random variables with parameters λ_{i}. Find the distribution of $T=\min \left(T_{i}\right)$.
3. What is the distribution of T_{k}, the number of trials after the $(k-1)$ th success up to and including the k th success in a series of Bernoulli trials?
4. In a simple birth process with individual birth rate β, which begins with one individual, what is the mean of the distribution of T_{n}, the time between the $(n-1)$ th and nth birth?
5. Suppose we have a simple birth process, with parameter β. Using the deterministic approximation, derive a differential equation for $x(t)$, the size of the population at time t, and solve this equation given that $x(0)=1$.
6. A student is learning to juggle. The probability of dropping a ball in the interval $[t, t+\delta t]$ is

$$
\frac{5}{1+10 t} \delta t+o(\delta t)
$$

Use the deterministic approach to estimate the expected number of drops over
(a) the first hour of practice,
(b) the 5th hour of practice.
7. In a particular religious group the surname is passed on through the male offspring only. The number of sons a man has is a random variable, taking values $0,1,2, \ldots$ and each man reproduces independently of each other. However, at each generation, new male members join the group and, on average, b new members adopt each existing surname.
(a) For the deterministic model, in which it is assumed that each man produces s sons, write down a difference equation connecting the number possessing a given surname at the nth generation with the number possessing that surname at the previous generation.
(b) Solve this equation if $x_{0}=1$.

