M3S4/M4S4: Applied probability: 2007-8 Problems 6: Continuous time Markov processes

1. Show that $\Pi_i(s, t)$ – the pgf for the population size at time t given there are i individuals at time 0, for a pure death process with rate $\nu_n = n\nu$, satisfies the partial differential equation

$$\frac{\partial}{\partial t}\Pi_i(s,t) = \nu(1-s)\frac{\partial}{\partial s}\Pi_i(s,t)$$

- 2. Write down the forward differential difference equations for
 - (a) a Poisson process $(\beta_n = \lambda, \nu_n = 0)$.
 - (b) a linear birth process $(\beta_n = \beta n, \nu_n = 0)$.
- 3. A machine can be in one of two states: working or being repaired. When it is in the 'working' state it functions for a time that is exponentially distributed, $Exponential(\lambda)$, before switching to the 'being repaired' state. When it is in the 'being repaired' state it functions for a time that is exponentially distributed, $Exponential(\nu)$, before switching to the 'working' state. Given that the machine starts in the 'working' state, what is the mean time until
 - (a) it breaks down for the first time?
 - (b) it breaks for the third time?

What is the variance of the time until

- (c) it breaks down for the first time?
- (d) it breaks down for the third time?

- 4. A colony of N(> 1) creatures inhabit a planet which has continual daylight, and the pattern of waking and sleeping follows a Markov process. The probability that a particular sleeping individual awakes during a time interval of length δt is $\beta \delta t + o(\delta t)$, and the probability that a particular awake individual falls asleep during a time interval of length δt is $\nu \delta t + o(\delta t)$. Assume that individuals behave independently of each other. We are interested in the number of individuals awake at time t.
 - (a) Find the *Q*-matrix for this process.
 - (b) What is the stationary distribution?

Consider the 2-state Markov chain (with states s:sleep and w:wake) for one individual with transition matrix

$$P(t) = \begin{array}{c} s \\ w \end{array} \begin{pmatrix} 1 - p_{sw}(t) & p_{sw}(t) \\ 1 - p_{ww}(t) & p_{ww}(t) \end{array} \end{pmatrix}$$

- (c) Write down the *Q*-matrix for this 2-state process.
- (d) Calculate $p_{ww}(t)$ and $p_{sw}(t)$ using the forward differential equations.
- (e) If X_m(t) denotes the number awake at time t given there are m(< N), what is E(X_m(t))?
 Hint: use the fact that X_m(t) ~ Binomial(m, p_{ww}(t)) + Binomial(N m, p_{sw}(t)) (easier than evaluating Π'_m(1, t) for the entire population though you might like to try!)
- 5. Consider the linear birth and death process (with $\nu_n = n\nu$ and $\beta_n = n\beta$).
 - (a) Use the backward differential equations to show

$$\frac{\partial}{\partial t}\Pi_i(s,t) = i\nu\Pi_{i-1}(s,t) - i(\nu+\beta)\Pi_i(s,t) + i\beta\Pi_{i+1}(s,t) \quad i \ge 1$$

- (b) Show that $\Pi_i(s,t) = [\Pi_1(s,t)]^i$, and use these result to:
- (c) find Π₁(s,t) for both β = ν and β ≠ ν.
 Check that this agrees with the results using the forward equations derived in lectures.