M3S4/M4S4: Applied probability: 2007-8
 Solutions 2: Point Processes

1. (a) T_{i} is the sum of three independent Poisson variables, each with rate λ. Hence the distribution of T_{i} is $\operatorname{Gamma}(3, \lambda)$.
(b) $W_{n}=T_{1}+\ldots+T_{n} \sim \operatorname{Gamma}(3 n, \lambda)$.
2. The distribution between any two consecutive events is exponential with rate λ. Thus the distribution between the i th and j th is the sum of $(j-i)$ exponential variates with rate λ. This is $\operatorname{Gamma}(j-i, \lambda)$.
3. Sum of n independent χ_{1}^{2} variables is χ_{n}^{2}, so the answer is χ_{2}^{2}. But $\chi_{2}^{2}=\operatorname{Exponential}(1 / 2)$ (the exponential distribution with parameter $1 / 2$, so that the process is a Poisson process.
4. (a) and (e)
5. (a) The number, X , of customers arriving in 30 seconds has a Poisson distribution with parameter $10 \times 0.5=5$. So $\mathrm{P}(X>5)=1-\mathrm{P}(X \leq 5)=0.3840$.
(b) Each type of customer arrives according to a Poisson process, independently of the other two types. Thus

$$
\begin{aligned}
\mathrm{P}\left(X_{A}=6 \mid \mu=6\right) \mathrm{P}\left(X_{B}=3 \mid \mu=3\right) \mathrm{P}\left(X_{C}=1 \mid \mu=1\right) & =0.1606 \times 0.2240 \times 0.3679 \\
& =0.0132
\end{aligned}
$$

(c) As 20 events are known to have occurred, time is irrelevant. The number X_{C} of type C customers is distributed as $\operatorname{Binomial}(20,0.1)$ so that

$$
\mathrm{P}\left(X_{C}=1\right)=\binom{20}{1}(0.1)(0.9)^{19}=0.270
$$

(d) The probability that any customer requires a type A transaction is 0.6. Hence the probability that the first three customers are type A is $(0.6)^{3}=0.216$.
(e) Suppose that the required time is t. The probability that at least one type A customer has arrived by time t is $\left(1-e^{-6 t}\right)$ and for type B it is $\left(1-e^{-3 t}\right)$. Since the two Poisson processes are independent, we must find t such that

$$
\left(1-e^{-6 t}\right)\left(1-e^{-3 t}\right)=0.9 .
$$

Solving this numerically gives $t=0.794$ minutes.
6. (a)

$$
\mu(t)=\int_{0}^{t} \lambda(u) d u=\int_{0}^{t} 10(1+2 u) d u=10\left(t+t^{2}\right)
$$

Five minutes is $1 / 12$ hours, so that the number of customers arriving between 10.00 and 10.05 is a Poisson process with rate $\mu(1 / 12)=0.9028$. It follows that the probability that two customers have arrived by 10.05 is

$$
\mu(1 / 12)^{2} \exp (-\mu(1 / 12)) / 2=0.1698
$$

(b) Converting to the units we need, we want to know the probability that 6 customers arrive in the interval $[0.75,1.00]$. This will have a Poisson distribution with parameter $\mu(0.75,1)=\mu(1)-\mu(0.75)=6.875$. From which it follows that the probability that 6 customers will arrive is

$$
\exp (-6.875)(6.875)^{6} / 6!=0.1515
$$

(c) The number of customers arriving between these times will have a Poisson distribution with parameter $\mu(1,2)=\mu(2)-\mu(1)=40$. The probability that more than 50 arrive can be obtained by summing the relevant probabilities from a table of the Poisson(40) distribution, or by using a calculator.
(d) The cdf to the time of the first arrival is $F(t)=1-\exp \left(-10\left(t+t^{2}\right)\right)$. The median of this is given by the value of t for which $1-\exp \left(-10\left(t+t^{2}\right)\right)=0.5$, yielding 0.065 , so that the median time of arrival of the first customer is about 3.9 minutes after 10 .
(e) The cdf of the time to the first arrival after 11 is $F(t)=1-\exp (-\mu(1, t))$, with $\mu(1, t)=10\left(t+t^{2}\right)-20$. Putting $F(t)=0.95$ leads to $t=1.097$, so that there is a probability of 0.95 that at least one customer will have arrived after 11.00 and before 11.06 .
7. Let $S(t)$ be the number of events which have occurred by time t. Then,

$$
\begin{aligned}
\operatorname{var}(S(t)) & =\mathrm{E}\left(S^{2}(t)\right)-\mathrm{E}^{2}(S(t)) \\
\mathrm{E}\left(S^{2}(t)\right) & =\sum_{x} \mathrm{P}(X(t)=x) \sum_{x} s^{2} \mathrm{P}(S(t)=s \mid X(t)=x) \\
& =\sum_{x} \mathrm{P}(X(t)=x) \mathrm{E}\left(S(t)^{2} \mid X(t)=x\right)
\end{aligned}
$$

Now

$$
\mathrm{E}\left(S^{2}(t) \mid X(t)=x\right)=\mathrm{E}\left[\left(Y_{1}+\ldots+Y_{x}\right)^{2}\right]=\mathrm{E}\left[T_{1}+T_{2}\right]
$$

where $T_{1}=\sum_{i} Y_{i}^{2}$ and $T_{2}=\sum_{i, j, i \neq j} Y_{i} Y_{j}$.
Now $\mathrm{E}\left(Y_{i}^{2}\right)=\sigma^{2}+\mu^{2}$, and by the independence of Y_{i} and $Y_{j}, \mathrm{E}\left(Y_{i} Y_{j}\right)=\mu^{2}$, and there is a total of $x(x-1)$ such pairs.

Hence,

$$
\left.\mathrm{E}\left(S^{2}(t)\right) \mid X(t)=x\right)=x\left(\sigma^{2}+\mu^{2}\right)+x(x-1) \mu^{2}=x \sigma^{2}+x^{2} \mu^{2} .
$$

Thus,

$$
\mathrm{E}\left(S^{2}(t)\right)=\sum_{x} \mathrm{P}(X(t)=x)\left(x \sigma^{2}+x^{2} \mu^{2}\right)=\sigma^{2} \mathrm{E}(X(t))+\mu^{2} \mathrm{E}\left(X^{2}(t)\right) .
$$

Since $X(t)$ is Poisson, we know from coursework that $\mathrm{E}(X(t))=\lambda t$ and that $\mathrm{E}\left(X^{2}(t)\right)=$ $\lambda t+\lambda^{2} t^{2}$, so that

$$
\begin{aligned}
\mathrm{E}\left(S^{2}(t)\right) & =\sigma^{2} \lambda t+\mu^{2}\left(\lambda t+\lambda^{2} t^{2}\right) \\
\operatorname{var}(S(t)) & =\mathrm{E}\left(S^{2}(t)\right)-\mathrm{E}^{2}(S(t)) \\
& =\sigma^{2} \lambda t+\mu^{2}\left(\lambda t+\lambda^{2} t^{2}\right)-(\mu \lambda t)^{2} \\
& =\lambda t\left(\sigma^{2}+\mu^{2}\right)
\end{aligned}
$$

8. For a non-homogeneous Poisson process $X(t) \sim \operatorname{Poisson}(\mu(t))$ with $\mu(t)=\int_{0}^{t} \lambda(t) d t$. Thus, since both the mean time function and the mean variance function are equal to $\mu(t)$, the index of dispersion is 1 .
9. $\mathrm{Mean}=\mu \lambda t=4 p \lambda t$.

Variance $=\lambda t\left(\sigma^{2}+\mu^{2}\right)=\lambda t\left(4 p(1-p)+16 p^{2}\right)$
10. Mean $=\mu \lambda t=\frac{1}{p} \lambda t$
(Check following result)
Variance $=\lambda t\left(\sigma^{2}+\mu^{2}\right)=\lambda t\left(\frac{1-p}{p^{2}}+\frac{1}{p^{2}}\right)=\lambda t\left(\frac{2-p}{p^{2}}\right)$
11. (a) When $Y \sim G_{0}(p)$ we have $\mu=p / q$ and $\sigma^{2}=p / q^{2}$. Hence the index of dispersion is given by $I(t)=\mu+\sigma^{2} / \mu=(p+1) / q$.
(b) When $Y \sim \operatorname{Poisson}(\mu)$ we have $\mu=\sigma^{2}$, so that $I(t)=1+\mu$.

