M3S4/M4S4: Applied probability: 2007-8
 Solutions 4: Random Walks

1. We need to handle cases $p=q$ and $p \neq q$ separately. Let $q_{A, j}$ and $q_{B, a-j}$ be the probability of A and B losing all their money when they start with $£ j$ and $£(a-j)$ respectively.
To show that the match must eventually end, we must show $q_{A, j}+q_{B, a-j}=1$.
case 1: If the roots are distinct $(p \neq q)$

$$
q_{A, j}=\frac{(q / p)^{j}-(q / p)^{a}}{1-(q / p)^{a}}
$$

So, by interchanging p and q and j and $a-j$, we can evaluate the probability that B will lose all his money:

$$
\begin{aligned}
& q_{B, a-j}=\frac{(p / q)^{a-j}-(p / q)^{a}}{1-(p / q)^{a}} \\
& q_{A, j}+q_{B, a-j}=\frac{\left((q / p)^{j}-(q / p)^{a}\right)\left(1-(p / q)^{a}\right)+\left((p / q)^{a-j}-(p / q)^{a}\right)\left(1-(q / p)^{a}\right)}{\left(1-(q / p)^{a}\right)\left(1-(p / q)^{a}\right)} \\
& =\frac{(q / p)^{j}-(q / p)^{a}-(q / p)^{j-a}+(q / p)^{a-a}+(q / p)^{j-a}-(q / p)^{-a}-(q / p)^{j-a+a}+(q / p)^{a-a}}{1-(q / p)^{a}-(q / p)^{-a}+(q / p)^{a-a}} \\
& =\frac{2-(q / p)^{a}-(q / p)^{-a}}{2-(q / p)^{a}-(q / p)^{-a}}=1 .
\end{aligned}
$$

as required.
case 2: If the roots are equal $(p=q)$

$$
q_{A, j}+q_{B, a-j}=1-\frac{j}{a}+1-\frac{a-j}{a}=1 .
$$

as required.
2. From lectures:

$$
D_{j}=j(a-j)
$$

Setting $j=500, a=1000$ gives

$$
D_{500}=500(1000-500)=250000 \text { games }
$$

3. (a)

$$
\begin{aligned}
& \mathrm{E}\left(X_{n}\right)=25(0.8-0.2)=15, \quad \operatorname{var}\left(X_{n}\right)=4 \times 25 \times 0.8 \times 0.2=16 \\
& \mathrm{P}\left(X_{25}<-10\right) \approx \mathrm{P}\left(Z<\frac{-9.5-15}{4}\right)=\Phi(-6.125)=0 \\
& \mathrm{P}\left(X_{25}>10\right) \approx \mathrm{P}\left(Z>\frac{9.5-15}{4}\right)=1-\Phi(1.38)=1-0.9162=0.0838
\end{aligned}
$$

(b)

$$
\begin{aligned}
0.95 & =\mathrm{P}(-1.96<Z<1.96) \\
& =\mathrm{P}\left(n(p-q)-1.96 \sqrt{4 n p q}<X_{n}<n(p-q)+1.96 \sqrt{4 n p q}\right)
\end{aligned}
$$

So a suitable range is given by

$$
100 \times(0.8-0.2) \pm 1.96 \times \sqrt{4 \times 100 \times 0.8 \times 0.2}=(44.32,75.68)
$$

4. (a)

$$
\mathrm{E}\left(Z_{i}\right)=2 p-(1-p)=3 p-1, \quad \operatorname{var}\left(Z_{i}\right)=E\left(Z_{i}^{2}\right)-E^{2}\left(Z_{i}\right)=4 p+(1-p)-(3 p-1)^{2}=9 p(1-p)
$$

(b)

$$
\mathrm{E}\left(X_{n}\right)=n(3 p-1), \quad \operatorname{var}\left(X_{n}\right)=9 n p(1-p)
$$

(c)
$\mathrm{P}\left(X_{n}=k\right)= \begin{cases}\binom{n}{(n+k) / 3} p^{(n+k) / 3} q^{(2 n-k) / 3} & n, k \text { s.t. } n+k \text { is a multiple of } 3,-n \leq k \leq 2 n \\ 0 & \text { otherwise }\end{cases}$
(d) (i) $\mathrm{E}\left(X_{20}\right)=20(3 \times(1 / 3)-1)=0$.
(ii) $\operatorname{var}\left(X_{20}\right)=9 \times 20(1 / 3)(2 / 3)=40$.
(iii) $\mathrm{P}\left(X_{20}=0\right)=0$.
(iv) $\mathrm{P}\left(X_{20}=1\right)=\binom{20}{7}(1 / 3)^{7}(2 / 3)^{13}=0.182$.
(v)

$$
\mathrm{E}\left(X_{180}\right)=180(3 / 6-1)=-90, \quad \operatorname{var}\left(X_{180}\right)=9 \times 180 \times(1-(1 / 6))=225 .
$$

$$
\begin{aligned}
\mathrm{P}\left(-70<X_{180}<70\right) & \approx \mathrm{P}\left(\frac{-69.5-\mathrm{E}\left(X_{180}\right)}{\sqrt{\operatorname{var}\left(X_{180}\right)}}<Z<\frac{69.5-\mathrm{E}\left(X_{180}\right)}{\sqrt{\operatorname{var}\left(X_{180}\right)}}\right) \\
& =\mathrm{P}(-10.64<Z<-1.37) \approx \Phi(-1.37)=1-0.9147=0.0853 .
\end{aligned}
$$

5. We have

$$
F(s)=1-\left(1-4 p q s^{2}\right)^{\frac{1}{2}}
$$

The term in $s^{2 m}$ is (from problem class)

$$
f_{2 m} s^{2 m}=\frac{1}{2 m-1}\binom{2 m}{m} p^{m} q^{m} s^{2 m}
$$

Hence, with $p=q=1 / 2$,

$$
f_{2 m}=\frac{1}{2 m-1}\binom{2 m}{m}\left(\frac{1}{2}\right)^{2 m}
$$

giving
(a) $f_{4}=0.125$.
(b) $f_{10}=0.027$.

