M3S4/M4S4 Revision Notes

1 Poisson Process

Recall the Bernoulli process: sequence of independent Bernoulli trials, same p. Poisson Process: continuous time analogue.

AXIOMS:

I $\mathrm{P}($ exactly 1 event in a time interval of length $\delta t)=\lambda \delta t+o(\delta t)$
II P (two or more events in a time interval of length $\delta t)=o(\delta t)$

III Occurrence of events after time t is independent of events before time t number of events by time $t=X(t) \sim \operatorname{Poisson}(\lambda t)$.
Distribution of time, T, between $(k-1)$ th and k th $\Rightarrow \mathrm{P}(T \leq t)=1-e^{-\lambda t}$
$\Rightarrow T \sim$ Exponential (λ).
Stationary: distribution of number of events in $(u, u+t]$ is same as distribution in $(0, t]$ for all $t, u>0$.

Non-homogeneous Poisson: $\lambda=\lambda(t)$,

$$
\Rightarrow \text { Number of events in }(0, t]=X(t) \sim \operatorname{Poisson}\left(\int_{0}^{t} \lambda(t) d t\right)
$$

Compound Poisson: Each Poisson event associated with Y "occurrences", Y a random variable.

$$
\mathrm{E}(X)=E_{Y}[E(X \mid Y)]
$$

Doubly Stochastic: $\lambda(t)$ is a random variable.
Deterministic model: number of events in interval of length $t+\delta t$ is approximated by expected value - formulate differential equation for $D(t)$ - number of events in $(0, t]$ in deterministic approximation

2 Branching Processes

Organise by generations: Discrete time.
If P (no offspring $) \neq 0$ there is a probability that the process will die out.
Let $X=$ number of offspring of an individual

$$
p(x)=\mathrm{P}(X=x)=\text { "offspring prob. function" }
$$

Galton-Watson process:

(i) p same for all individuals
(ii) individuals reproduce independently

Define:

$$
\begin{aligned}
& \left.Z_{n}=\text { number of individuals at time } n \quad \text { (start with } Z_{0}=1\right) \\
& T_{n}=\text { total number born up to and including generation } n
\end{aligned}
$$

Probability generating functions:

The p.g.f. is

$$
\begin{aligned}
& \Pi_{X}(s)=\mathrm{E}\left(s^{X}\right)=\sum_{x=0}^{\infty} p(x) s^{x} \\
& \text { Note: } \Pi(0)=p(0) \\
& \Pi(1)=\sum p(x)=1
\end{aligned}
$$

$$
E(X)=\mu=\Pi^{\prime}(1) ; \quad \operatorname{var}(X)=\sigma^{2}=\Pi^{\prime \prime}(1)+\mu-\mu^{2}
$$

Sums of a random number of rvs

$$
Z=X_{1}+X_{2}+\ldots+X_{N}
$$

i.e. Z is the sum of N independent discrete rvs $X_{1}, X_{2}, \ldots, X_{N}$. If X_{i} has range $\{0,1,2, \ldots\}$ and $\operatorname{pgf} \Pi_{X}(s), N$ is a rv with range $\{0,1,2, \ldots\}$ and $\operatorname{pgf} \Pi_{N}(s)$ then

$$
\Pi_{Z}(s)=\Pi_{N}\left[\Pi_{X}(s)\right]
$$

and Z has a compound distribution.

For nth generation, we have

$$
Z_{n}=X_{1}+X_{2} \ldots+X_{Z_{n-1}}
$$

where X_{i} is the number born to the i th member of generation $n-1$. so,

$$
\Pi_{n}(s)=\Pi_{n-1}[\Pi(s)]
$$

where $\Pi_{n}(s)$ is the pgf of Z_{n} and $\Pi(s)$ is the offspring pgf.
Given $\mathrm{E}(X)=\mu$ and $\operatorname{var}(X)=\sigma^{2}$, use pgfs to derive:

$$
\begin{aligned}
\mathrm{E}\left(Z_{n}\right) & =\mu_{n}=\mu^{n} \\
\operatorname{var}\left(Z_{n}\right) & =\sigma_{n}^{2}= \begin{cases}\mu^{n-1} \sigma^{2} \frac{1-\mu^{n}}{1-\mu} & \mu \neq 1 \\
n \sigma^{2} & \mu=1\end{cases}
\end{aligned}
$$

Probability of ultimate extinction, θ^{*}
Must have $\mathrm{P}(X=0)=p(0) \neq 0$.

1. $\mu \leq 1 \Rightarrow \theta^{*}=1 \Rightarrow$ ultimate extinction certain.
2. $\mu>1 \Rightarrow \theta^{*}<1 \Rightarrow$ ultimate extinction not certain

$$
\theta^{*}=\text { smallest positive solution of } \theta=\Pi(\theta)
$$

Hint: remember $\theta=1$ is always a solution.

3 Random Walks

Consider a particle at some position on a line, moving with the following transition probabilities:

- with prob p it moves 1 unit to the right.
- with prob q it moves 1 unit to the left.
- with prob r it stays where it is

Position at time n is given by,

$$
X_{n}=Z_{1}+\ldots+Z_{n} \quad Z_{n}=\left\{\begin{array}{r}
+1 \\
-1 \\
0
\end{array}\right.
$$

random walks satisfy the Markov property.
i.e. the distribution of X_{n} is determined by the value of X_{n-1}

Looked at reflecting and absorbing barriers.

Gambler's ruin

Two players A and B.
A starts with $£ j, B$ with $£(a-j)$.
Play a series of indep. games until one or other is ruined.
$Z_{i}=$ amount A wins in i th game $= \pm 1$.

$$
\mathrm{P}\left(Z_{i}=1\right)=p \quad \mathrm{P}\left(Z_{i}=-1\right)=1-p=q
$$

Stop if $X_{n-1}=0(A$ ruined $)$ or $X_{n-1}=a:(A$ wins and B ruined $)$.

Unrestricted RW with $p+q=1$

- recurrence (persistence) i.e. return to origin certain
- transience i.e. pos prob of never returning

Position after n steps

- use binomial link to find exact distribution
- CLT for large n
- find mean/variance then $X_{n} \sim N\left(\mathrm{E}\left(X_{n}\right), \operatorname{var}\left(X_{n}\right)\right)$ approx.

Return Probabilities

$$
\begin{gathered}
f_{n}=\mathrm{P}(\text { FIRST return at } n) \\
u_{n}=\mathrm{P}(\text { some return at } n) \\
F(s)=\sum_{0}^{\infty} f_{n} s^{n} \quad U(s)=\sum_{0}^{\infty} u_{n} s^{n} \quad U(s)=1+F(s) U(s)
\end{gathered}
$$

RW recurrent iff $\sum u_{n}=\infty, \sum f_{n}=1$.

Probability of ultimate ruin

Define: $R_{j}=$ event A loses if he starts with $£ j, W=$ event A wins first game. TRICK: condition on first game

$$
\mathrm{P}\left(R_{j}\right)=\mathrm{P}\left(R_{j} \mid W\right) \mathrm{P}(W)+\mathrm{P}\left(R_{j} \mid \bar{W}\right) \mathrm{P}(\bar{W})
$$

form recurrence relation (difference equation) and solve to calculate $q_{j}=\mathrm{P}\left(R_{j}\right)$, use same trick to calculate expected duration of game.

4 Markov Chains

$$
\mathrm{P}\left(X_{n+1}=j \mid X_{n}=i \text { and } A\right)=\mathrm{P}\left(X_{n+1}=j \mid X_{n} i\right)=p_{i j}
$$

where A is any event depending only on $\left\{X_{n-1}, X_{n-2}, \ldots, X_{0}\right\}$
TRANSITION MATRIX P with element $p_{i j}$ and $\sum_{j} p_{i j}=1 \forall i$
n-step transition $P^{(n)}$
Chapman-Kolmogorov equations:

$$
\begin{aligned}
p_{i j}^{(m+n)} & =\sum_{k} p_{i k}^{(m)} p_{k j}^{(n)} \\
\Rightarrow P^{(n)} & =P^{n}
\end{aligned}
$$

Sometimes MCs converge to an equilibrium distribution

$$
\boldsymbol{\pi}=\left(\pi_{1}, \ldots, \pi_{s}\right) ; \quad \boldsymbol{\pi}=\boldsymbol{\pi} P ; \quad \pi_{j} \geq 0 \forall j ; \quad \sum \pi_{j}=1
$$

Communicating Classes

$i \leftrightarrow j$ for all states in a class (there is a path of non-zero probability from i to j and back).
closed class - impossible to leave
one class - irreducible

Every Markov Chain with a finite state space has a unique stationary distribution unless the chain has two or more closed communicating classes.

Periodicity

The periodicity of state i is defined as

$$
\operatorname{gcd}\left\{n \geq 1: p_{i i}^{(n)}>0\right\}
$$

All states in the same c.c. are either:

- aperiodic (period 1)
- periodic with same period

MC which is:

- irreducible
- finite state space
- aperiodic

Then $p_{i j}^{(n)} \rightarrow \pi_{j}, j=1, \ldots, s$ as $n \rightarrow \infty$
where $\boldsymbol{\pi}$ is the unique stationary distribution, which is also limiting
Return probabilities and return times c.f RWs
mean first return time μ_{i} :
NULL RECURRENT: infinite mean recurrence time
POSITIVE RECURRENT: finite mean recurrence time
For a recurrent, irreducible, aperiodic MC:

$$
\lim _{n \rightarrow \infty}=\frac{1}{\mu_{i}}=\pi_{i}
$$

5 Continuous time Markov Chains

$X(t)$ is the state of the chain at time t. Transition matrix $P(t)$ with elements $p_{i j}(t)$ where

$$
p_{i j}(t)=\mathrm{P}(X(t)=j \mid X(0)=i)
$$

Define

$$
\begin{gathered}
q_{i j}=\left.\frac{d}{d t} p_{i j}(t)\right|_{t=0} \\
p_{i j}(\delta t)=\left\{\begin{array}{rr}
1+\delta t q_{i i}+o(\delta t) & i=j \\
\delta t q_{i j}+o(\delta t) & i \neq j
\end{array}\right.
\end{gathered}
$$

Description of process:
remains in state i for a period exponentially distributed with mean $-1 / q_{i i}$, and then jumps to another state. The state is $j(\neq i)$ with probability $-q_{i j} / q_{i i} \ldots$

Forward and Backward Equations

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} P(t)=P(t) Q & \Rightarrow \frac{\mathrm{~d}}{\mathrm{~d} t} p_{i j}(t)=\sum_{k} p_{i k}(t) q_{k j} \forall i, j \quad \text { (FORWARD EQNS) } \\
\frac{\mathrm{d}}{\mathrm{~d} t} P(t)=Q P(t) & \Rightarrow \frac{\mathrm{d}}{\mathrm{~d} t} p_{i j}(t)=\sum_{k} q_{i k} p_{k j}(t) \forall i, j \quad \text { (BACKWARD EQNS) }
\end{aligned}
$$

Stationary Distribution

$$
\boldsymbol{\pi}=\boldsymbol{\pi} P(t) \text { or } \boldsymbol{\pi} Q=\mathbf{0} ; \quad \sum_{j} \pi_{j}=1, \quad \pi_{j} \geq 0 \forall j
$$

For an irreducible process $\boldsymbol{\pi}$ is unique if it exists and if it does exist then the process is positive persistent.

