Publications
Refereed Publications
-
1. Nason, G.P. (1992) Entropy in multivariate analysis: projection pursuit. Anal. Proc., 29, 430–435.
[PDF]
[DOI]
-
2. Nason, G.P. and Sibson, R. (1992) Measuring multimodality. Stat. Comput., 2, 153–160.
[DOI]
-
3. Nason, G.P. and Silverman, B.W. (1994) The discrete wavelet transform in S. J. Comput. Graph. Stat., 3, 163–191.
[PDF]
[JSTOR-DOI]
[DOI]
-
4. Nason, G.P. (1995) Three-dimensional projection pursuit.
J. R. Stat. Soc. C, 44,
411–430.
[PDF]
[JSTOR-DOI]
[DOI]
-
5. Nason, G.P. (1996) Wavelet shrinkage using cross-validation.
J. R. Stat. Soc. B., 58, 463–479.
[PDF]
[JSTOR]
[DOI]
-
6. Hall, P. and Nason, G.P. (1997) On choosing a non-integer resolution level when using wavelet methods. Stat. Prob. Lett.,
34, 5–11.
[PDF]
[PDF Figure 1]
[DOI]
-
7. Burn, J.F., Wilson, A.M. and Nason, G.P. (1997) Impact during equine locomotion. Equine Vet. J. supplement, 23, 9–12.
[PDF]
-
8. von Sachs, R., Nason, G.P. and Kroisandt, G. (1999)
Spectral representation and estimation for locally-stationary wavelet processes. In Spline Functions and the Theory of Wavelets,
CRM Proceedings and Lecture Notes, (S. Dubuc and G. Deslauriers, ed),
18, 381–397. Providence, RI: American Mathematical
Society.
[DOI]
-
9. Nason, G.P. and von Sachs, R. (1999) Wavelets in time series analysis. Philos. T. R. Soc. A, 357,
2511–2526.
[PDF]
[JSTOR]
[DOI]
-
10. Antoniadis, A, Grégoire, G. and Nason, G.P. (1999)
Density and hazard rate estimation for right censored data using
wavelet methods. J. R. Stat. Soc. B,
61, 63–84.
[PDF]
[JSTOR]
[DOI]
-
11. Morgan, R. and Nason, G.P. (1999) Wavelet shrinkage of itch response data. Revue de Statistique Appliquée, 47, 81–98.
[PDF]
[JOURNAL]
-
12. Nason, G.P., von Sachs, R. and Kroisandt, G. (2000) Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum.
J. R. Stat. Soc. B, 62, 271–292.
[PDF]
[JSTOR]
[DOI]
-
13. Hunt, K. and Nason, G.P. (2001) Wind speed modelling and short-term prediction using wavelets. Wind Engineering, 25, 55–61.
[PDF]
[JSTOR]
[DOI]
-
14. Herrick, D.R.M., Nason, G.P. and Silverman, B.W. (2001) Some new methods for wavelet density estimation. Sankhyā, Series A, 63, 394–411
[PDF]
[JSTOR]
-
15. Nason, G.P., Sapatinas, T. and Sawczenko, A. (2001) Wavelet packet modelling of infant sleep state using heart rate data. Sankhyā, Series B, 63, 199–217
[PDF]
[JSTOR]
-
16. Ascione, R., GPN, Al-Ruzzeh, S., Ko, C., Ciulli, F. and Angelini, G.D. (2001) Coronary revascularization with or without cardiopulmonary bypass in patients with preoperative nondialysis-dependent renal insufficiency.
Ann. Thor. Surg.,
72, 2020–2025.
[DOI]
-
17. Nason, G.P. (2001) Robust projection indices.
J. R. Stat. Soc. B, 63, 551–567.
[PDF]
[JSTOR]
[DOI]
-
18. Barber, S., Nason, G.P. and Silverman, B.W. (2002) Posterior probability intervals for wavelet thresholding. J. R. Stat. Soc. B,
64, 189–206.
[PDF]
[JSTOR]
[DOI]
-
19. Nason, G.P. (2002) Choice of wavelet smoothness, primary resolution and threshold in wavelet shrinkage. Stat. Comput., 12,
219–227.
[PDF]
[DOI]
-
20. Nason, G.P. and Sapatinas, T. (2002) Wavelet packet transfer function modelling of nonstationary time series. Stat. Comput.,
12, 45–56.
[PDF]
[DOI]
-
21. Barber, S. and Nason, G.P. (2004) Real nonparametric regression using complex wavelets. J. R. Stat. Soc. B, 66,
927–939.
[PDF]
[JSTOR]
[DOI]
-
22. Fryzlewicz, P. and Nason, G.P. (2004) A Haar-Fisz algorithm for Poisson Intensity Estimation. J. Comput. Graph. Stat., 13,
621–638.
[PDF]
[JSTOR]
[DOI]
-
23. Diraison, F., Xavier, G.D., Motakis, E., GPN, Rutter, G.A. and Leclerc, I. (2004) Impact of over-expression of carbohydrate response-element binding protein (ChREBP) on pancreatic beta-cell gene expression profile and insulin secretion. Diabetologia, 47, 439 (Supplement 1).
[UBris]
-
24. Diraison, F., Motakis, E., Parton, L.E. GPN, Leclerc, I. and Rutter, G.A. (2004) Impact of adenoviral transduction with SREBP1c or AMPK on pancreatic islet gene expression profile – Analysis with oligonucleotide microarrays.
Diabetes, 53, S84–S91, (Supplement 3)
[DOI]
-
25. Nason, G.P. (2005) pinktoe: semi-automatic traversal of trees.
J. Stat. Softw., 14(1), 1–11.
[DOI]
-
26. Cardinali, A. and Nason, G.P. (2005) A statistical multiscale approach to image segmentation and fusion. Proceedings of the Seventh International Conference on Information Fusion, 475–482. IEEE
[PDF]
[DOI]
-
27. Eckley, I.A. and Nason, G.P. (2005) Efficient computation of the discrete autocorrelation wavelet inner product matrix.
Stat. Comput., 15, 83–92.
[PDF]
[DOI]
-
28. Motakis, E.S., Nason, G.P., Fryzlewicz, P. and Rutter, G.A. (2006)
Variance stabilization and normalization for one-color microarray
data using a data-driven multiscale approach.
Bioinformatics, 22, 2547–2553.
[PDF]
[DOI]
-
29. Nason, G.P. (2006) Stationary and non-stationary time series. Chapter 11 of Statistics in Volcanology, (Mader, H. and Coles, S.C., eds), Geological Society of London
[DOI]
-
30. Fryzlewicz, P. and Nason, G.P. (2006)
Haar-Fisz estimation of evolutionary wavelet spectra.
J. R. Stat. Soc. B, 68, 611–634.
[PDF]
[JSTOR]
[DOI]
-
31. Nason, G.P. (2006) On the sum of t and Gaussian random variables.
Stat. Prob. Lett., 76, 1280–1286.
[PDF]
[DOI]
-
32. Nunes, M., Knight, M. and Nason, G.P. (2006) Adaptive lifting for nonparametric regression. Stat. Comput., 16, 143–159.
[PDF]
[DOI]
-
33. Knight, M. and Nason, G.P. (2006) Improving Prediction of Hydrophobic Segments along a Transmembrane Protein Sequence using Adaptive Multiscale Lifting. SIAM Journal on Multiscale Modeling and Simulation,
5, 115–129.
[PDF]
[DOI]
-
34. Triantafyllopoulos, K. and Nason, G.P. (2007) A Bayesian analysis of moving average processes with time-dependent parameters.
Comput. Stat. Data An., 52, 1025–1046.
[DOI]
-
35. Fryzlewicz, P., Delouille, V. and Nason, G.P. (2007) GOES-8 X-ray sensor variance stabilization using the multiscale data-driven Haar-Fisz transform.
J. R. Stat. Soc. C, 56, 99–116
[PDF]
[JSTOR]
[DOI]
-
36. Bailey, D. and Nason, G.P. (2008) Cohesion of Major Political Parties.
Brit. Polit., 3, 390–417
[DOI]
-
37. Fryzlewicz, P., Nason, G.P. and von Sachs, R. (2008) A wavelet-Fisz approach to spectrum estimation. J. Time Ser. Anal., 29,
868–880.
[PDF]. Longer Technical Report 08:05 version containing full proofs and extras: [PDF]
[DOI]
-
38. Nason, G.P. and Bailey, D. (2008) Estimating the intensity of conflict in Iraq. J. R. Stat. Soc. A, 171, 899–91.
[JSTOR]
[DOI]
-
39. Mahadevan, N., Nason, G.P. and Munro, A. (2008) Multi-dimensional network function estimation. 2008 IEEE International Conference on Communications,
19–23 May 2008. Beijing, 468–472.
[DOI]
-
40. Nunes, M. and Nason, G.P. (2009) A multiscale variance stabilization for binomial sequence proportion estimation. Stat. Sinica,
19, 1491–1510.
[PDF]
[JSTOR]
[JOURNAL]
-
41. Jansen, M., Nason, G.P. and Silverman, B.W. (2009) Multiscale methods for data on graphs and irregular multidimensional situations.
J. R. Stat. Soc. B, 71, 97–126.
See Research Report
08:07 for the tech report version of this paper.
[JSTOR]
[DOI]
-
42. Knight, M. and Nason, G.P. (2009) A `nondecimated' lifting transform.
Stat. Comput., 19, 1–16.
[PDF]
[DOI]
-
43. Triantafyllopoulos, K. and Nason, G.P. (2009) A note on state-space representations of locally stationary wavelet time series.
Stat. Prob. Lett., 79, 50–54.
[DOI]
[arXiv]
-
44. Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series Econometrics, 2,
Issue 2, Article 1.
[PDF]
[DOI]
-
45. Eckley, I.A., Nason, G.P. and Treloar, R.L. (2010) Locally stationary wavelet fields with application to the modelling and analysis of image texture.
J. R. Stat. Soc. C, 59, 595–616.
[PDF]
[JSTOR]
[DOI]
-
46. Eckley, I.A. and Nason, G.P. (2011) LS2W: Implementing the Locally Stationary 2-D Wavelet Process Approach in R.
J. Stat. Softw., 43(3), 1–23.
[DOI]
-
47. Knight, M., Nunes, M. and Nason, G.P. (2012) Spectral estimation for locally stationary time series with missing observations.
Stat. Comput., 22, 877–895.
[PDF]
[DOI]
-
48. Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series.
J. R. Stat. Soc. B, 75,
879–904.
[PDF] (Note: there is a typo on page 15 in the definition of the P4 model. The constant 4 in the definition of S_1 should be 64.) Erratum: A small correction to Theorem 1 on page 19 has been made. Better tests of stationarity can be found below in publication 56.
[JSTOR]
[DOI]
[Supplementary]
-
49. Cardinali, A. and Nason, G.P. (2013) Costationarity of Locally Stationary Time Series Using costat.
J. Stat. Softw., 55(1), 1-22.
[DOI]
-
50. Nason, G.P. (2014) Multiscale Variance Stabilization via Maximum Likelihood. Biometrika, 101, 499–504.
Tech. Report Version: [PDF]
[JSTOR]
[DOI]
-
51. Eckley, I.A. and Nason, G.P. (2014) Spectral correction for locally stationary Shannon wavelet processes.
Electron. J. Stat., 8, 184–200.
[EUCLID]
-
52. Remenyi, N., Nicolis, O., Nason, G.P. and Vidakovic, B. (2014) Image Denoising with 2-D Scale-Mixing Complex Wavelet Transforms.
IEEE T. Image Process., 23,
5165–5174.
[PDF]
[DOI]
-
-
53. Nason, G.P. and Savchev, D. (2014) White noise testing using wavelets. STAT, 3, 351–362.
[DOI]
-
54. Crossman, D.J., Young, A.A., Ruygrok, P.N., Nason, G.P., Baddeley, D., Soeller, C. and Cannell, M.B. (2015) T-tubule disease: Relationship between t-tubule organisation and regional contractile performance in human dilated cardiomyopathy. J. Mol. Cell. Cardiol., 84, 170–178.
[DOI]
-
55. Nason, G.P. and Stevens, K. (2015) Bayesian wavelet shrinkage of the Haar-Fisz transformed wavelet periodogram. PLOS ONE,
[DOI]
[arXiv]
-
56. Knight, M., Nason, G.P. and Nunes, M. (2016) A wavelet approach to long-memory estimation.
Stat. Comput., 27, 1453–1471.
[DOI]
-
57. Das, S. and Nason, G.P. (2016) Measuring the degree of nonstationarity of a time series. STAT, 5, 295–305.
[DOI]
-
58. Michis, A.A. and Nason, G.P. (2017) Case Study: Shipping trend estimation and prediction via multiscale variance stabilisation.
J. Appl. Stat., 44, 2672–2684.
[DOI]
-
59. Cardinali, A. and Nason, G.P. (2017) Locally stationary wavelet packet processes: basis selection and model fitting.
J. Time Ser. Anal., 38, 151–174.
[DOI]
-
60. Nason, G.P., Powell, B., Elliott, D. and Smith, P.A. (2017) Should we sample a time series more frequently? Decision support via multirate spectrum estimation (with discussion).
J. R. Stat. Soc. A, 180, 353–407.
[JSTOR]
[DOI]
[Supplementary]
-
61. Powell, B., Nason, G.P., Angelini, G.D., Lightman, S.L. and Gibbison, B. (2017)
Optimal Sampling Frequency of Serum Cortisol Concentrations After Cardiac Surgery.
Crit. Care Med., 45(10), e1103–e1104.
[DOI]
-
62. Cardinali, A. and Nason, G.P. (2018) Practical Powerful Wavelet Packet Tests for Second-order Stationarity.
Appl. Comput. Harmon. A., 44,
558–583.
[PDF]
[DOI]
-
63. Powell, B., Nason, G.P., Elliott, D., Mayhew, M., Davies, J. and Winton, J. (2018) Tracking and modelling prices using web-scraped price microdata: toward automated daily CPI forecasting.
J. R. Stat. Soc. A, 181,
737–756.
[JSTOR]
[DOI]
-
64. Eckley, I.A. and Nason, G.P. (2018) A test for the absence of aliasing or local white noise in locally stationary wavelet series.
Biometrika, 105, 833–848.
[JSTOR]
[DOI]
-
65. Nason, G.P. (2018) Statistical Flaws in the Teaching Excellence and Student Outcomes Framework in UK higher education.
J. R. Stat. Soc. A, 181, 923–925.
[JSTOR]
[DOI]
-
66. Knight, M., Leeming, K., Nason, G.P. and Nunes, M. (2020) Generalised Network Autoregressive Processes and the GNAR package.
J. Stat. Softw., 96(5), 1–36
[DOI]
[arXiv]
[Earlier arXiv version]
-
67. Chen, F. and Nason, G.P. (2020) A new method for computing the projection median, its influence curve and techniques for the production of projected quantile plots. PLOS ONE.
[DOI]
-
68. Killick, R., Knight, M.I., Nason, G.P. and Eckley, I.A. (2020) The local partial autocorrelation function and some applications.
Electron. J. Stat., 14, 3268–3314.
[DOI]
[Fuller arXiv]
-
69. Nason, G.P. (2020) COVID-19 cycles and rapidly evaluating lockdown strategies using spectral analysis.
Sci. Rep-UK, 10, 22134.
[DOI]
[arXiv]
-
70. Mishra,S., Mindermann,S., Sharma, M., Whittaker, C., Mellan, T.A., Wilton, T., Klapsa, D., Mate, R., Fritzsche, M., Zambon, M., Ahuja, J., Howes, A., Miscouridou, X., Nason, G.P., Ratmann, O., Semenova, E., Leech, G., Sandkuhler, J., Rogers-Smith, M., Vollmer, M., Unwin J.T., The COVID-19 Genomics UK (COG-UK) Consortium, Gal, Y., Chand, M., Gandy, A., MArtin, J., Volz, E., Ferguson, N.M., Bhatt, S., Brauner, J.M. and Flaxman, S. (2021) Changing composition of SARS-CoV-2 lineages and rise of Delta variant in England.
EClinicalMedcine (A Lancet Journal), 39 101064.
[DOI]
-
71. Nason, G.P. and Wei, J. (2021) Quantifying the economic response to COVID-19 mitigations and death rates via forecasting Purchasing Managers' Indices using Generalised Network Autoregressive models with exogenous variables
(with discussion).
J. R. Stat. Soc. A, 185, 1778–1792.
[DOI]
[Report 45, Imperial COVID-19 Response version]
[arXiv]
[YouTube]
-
72. Palasciano, H. and Nason, G.P. (2023) A Test for the Absence of Aliasing or White Noise in Two-Dimensional Locally Stationary Wavelet Processes.
Stat. Comput., 33, 108.
[DOI]
-
73. Killick, R., Knight, M.I., Nason, G.P., Nunes, M. and Eckley, I.A. (2024)
Automatic
locally stationary time series forecasting with application to predicting UK gross value added time series.
J. R. Stat. Soc. C, 74, 18–33.
[DOI]
[arXiv]
-
74. Palasciano, H., Knight, M. and Nason, G.P. (2025)
Continuous Time Locally Stationary Wavelet Processes.
Biometrika, 112, asaf015.
[DOI]
[arXiv]
-
75. Nason, G.P., Salnikov, D. and Cortina-Borja, M. (2025) New tools for network time series with an application to COVID-19 hospitalisations
(with discussion),
J. R. Stat. Soc. A, 188, (to appear)
[arXiv]
-
76. Nason, G.P. and Palasciano, H.A. (2025)
Forecasting UK Consumer Price Inflation with RaGNAR:
Random Generalised Network Autoregressive Processes.
Int. J. Forecasting, 41, (in press)
[DOI]
[arXiv]
-
77. Wei, J. and Nason, G.P. (2025)
Full Nonparametric MIDAS: A new approach for
nonparametric mixed frequency time series regression.
Electron. J. Stat., 19, 3292–3316.
[DOI]
-
78. Cao, D., Knight, M.I. and Nason, G.P. (2025)
A multiscale method for data collected from network edges via
the line graph.
Stat. Comput., 35, (to appear)
[arXiv]
[DOI(not OpenAccess)]
[OpenAccess Accepted Manuscript for Statistics and Computing]
Conference Publications
-
79. Nason, G.P. and Sibson, R. (1991) Using projection pursuit in multispectral image analysis.
Computing Science and Statistics, 23,
579–582.
[PDF]
-
80. Nason, G.P., von Sachs, R. and Kroisandt, G. (1996) Time-scale power estimation using wavelets. Proceedings of DSP ’96, 101–103.
-
81. Nason, G.P. (1998) Functional projection pursuit.
Computing Science and Statistics, 29,
330–336.
[PDF]
-
82. Nason, G.P. (1999) Wavelet shrinkage by interpolation and cross-validation. Bulletin of the ISI, Helsinki (3pp), CD-ROM distribution).
-
83. Jansen, M., Nason, G.P. and Silverman, B.W. (2001)
Scattered data smoothing by empirical Bayesian shrinkage of second generation wavelet coefficients.
In Unser, M. and Aldroubi, A. (eds)
Wavelet applications of signal and image processing IX,
Proceedings of SPIE, Vol. 4478 (87–97).
[DOI]
-
84. Nason, G.P., Salnikov, D. and Cortina Borja, M. (2025)
Modelling Clusters in Network Time Series with an Application to
Presidential Elections in the USA. Pages 115–25 in
Trejos, J., Chadjipadelis, T., Grané and Villalobos, M. (eds)
Data Science,
Classification, and Artificial Intelligence for
Modeling Decision Making. Springer: Cham, Switzerland.
[arXiv]
[DOI]
Other Chapters in Edited Books
-
85. Nason, G.P. (1995) Choice of the threshold parameter in wavelet function estimation. In Antoniadis, A. and Oppenheim, G. (eds)
Lecture Notes in Statistics, 103, 261–280.
[PDF]
[DOI]
-
86. Nason, G.P. and Silverman, B.W. (1995) The stationary wavelet transform and some statistical applications.
In Antoniadis, A. and Oppenheim, G. (eds)
Lecture Notes in Statistics, 103, 281–300.
[PDF]
[DOI]
-
87. Nason, G.P. and Silverman, B.W. (2000) Wavelets for regression and other statistical problems. In Schimek, M.G. (ed) Smoothing and regression: approaches computation and application. New York: Wiley, 159–191.
[DOI]
-
88. Nason, G.P. (2006) Stationary and non-stationary time series. Chapter 11 of Statistics in Volcanology, (Mader, H. and Coles, S.C., eds). Geological Society of London: London.
[DOI]
-
89. Nunes, M., Knight, M. and Nason, G.P. (2015) Modelling and Prediction of Time Series Arising on a Graph. Pages 183–192 of
Modelling and Stochastic Learning for Forecasting in High Dimensions, Lecture Notes in Statistics, 217 (Antoniadis, A., Poggi, J.-M. and Brossat, X. eds). Springer-Verlag: New York.
[DOI]
-
90. Eckley, I.A. and Nason, G.P. (2015) Industrial Application of Multiscale Texture Analysis. In UK Success Stories in Industrial Mathematics (Aston, P., Mulholland, T. and Tant, K., eds). pp 189–195. Springer: London.
[DOI]
Software Packages
-
91. Motakis, E.S., Nason, G.P. and Fryzlewicz, P. (2007) DDHFm.
[CRAN]
-
92. Nason, G.P., Barber, S., Downie, T.R., Fryzlewicz, P., Kovac, A., Ogden, T and Silverman, B.W. (2009) WaveThresh 4. (Original S version 1993).
[CRAN]
-
93. Cardinali, A. and Nason, G.P. (2010) costat.
[CRAN]
-
94. Eckley, I., Nason, G.P., Taylor, S. and Nunes, M. (2011) LS2W.
[CRAN]
-
95. Nason, G.P. (2013) locits.
[CRAN]
-
96. Nason, G.P. and Savchev, D. (2015) hwwntest.
[CRAN]
-
97. Powell, B. and Nason, G.P. (2016) regspec.
[CRAN]
-
98. Nason, G.P. and Cardinali, A. (2016) BootWPTOS.
[CRAN]
-
99. Knight, M., Nunes, M. and Nason, G.P. (2016) liftLRD.
[CRAN]
-
100. Nason, G.P. and Sibson, R. (2018) PP3. Currently off CRAN
for maintenance. [Archive version]
-
101. Leeming, K., Nason, G.P., Nunes, M. and Knight, M. (2018) GNAR.
[CRAN]
-
102. Chen, F. and Nason, G.P. (2020) Yamm. Currently off CRAN
for maintenance. [Archive version]
-
103. Cardinali, A. and Nason, G.P. (2022) LSWPlib.
[CRAN]
-
104. Killick, R., Nason, G.P., Knight, M.I., Nunes, M. and
Eckley, I. (2023) lpacf.
[CRAN]
-
105. Killick, R., Nunes, M., Nason, G.P., Knight, M.I. and
Eckley, I. (2023) forecastLSW.
[CRAN]
Discussion Contributions
-
106. Lord, G.J. and Nason, G.P. (1992) Contribution to discussion to Royal Statistical Society meeting on Chaos.
J. R. Stat. Soc. B, 54, 465–466.
[DOI]
[JSTOR]
-
107. Nason, G.P. (1995) Wavelet shrinkage: asymptopia? (contribution to discussion). J. R. Stat. Soc. B, 57, 341–342.
[DOI]
[JSTOR]
-
108. Nason, G.P. (2004) Clustering objects on subsets of attributes. (contribution to discussion).
J. R. Stat. Soc. B, 66, 843–844.
[DOI]
[JSTOR]
-
109. Nason, G.P. (2016) New statistics for old? Measuring the wellbeing of the UK (contribution to discussion).
J. R. Stat. Soc. A, 180, 28–29
[DOI]
[JSTOR]
-
110. Elliott, D., Nason, G.P. and Powell, B. (2018)
Statistical challenges of adminstrative and transaction data.
(contribution to discussion)
J. R. Stat. Soc. A, 181, 584.
[DOI]
[JSTOR]
Book Reviews
-
111. Review of Davis, P.J.. and Hersh, R. (1990) Descartes' Dream.
IN The Statistician, 39, 87–88.
[DOI]
[JSTOR]
-
112. Review of Sutherland, J.W. (1991)
Towards a Strategic Management and Decision Technology.
In The Statistician, 40, 112–113
[DOI]
[JSTOR]
-
113. Review of Lunn, A.D. and McNeil, D.R. (1992)
Computer-interactive Data Analysis.
In Maths and Stats (CTI), 3, 22–23.
-
114. Review of Heyer, H. (ed.) (1993)
Probability Measures on Groups.
In The Statistician, 42, 329–330.
[DOI]
[JSTOR]
-
115. Review of Scott, D.W. (1993) Multivariate Density Estimation.
In J. Roy. Stat. Soc. A, 156,
511–512.
[DOI]
[JSTOR]
-
116. Review of Arnold, B.C., Balakrishnan, N. and Nagaraja, H.N. (1994) A First Course on Order Statistics. In
The Statistician/J. R. Stat. Soc. D, 43, 329.
[DOI]
[JSTOR]
-
117. Review of Tartar, M.E. and Lock, M.D. (1995) Model-free Curve Estimation.
In SIAM Rev., 37, 270–271.
[DOI]
[JSTOR]
-
118. Review of Krzanowski, W.J. and Marriott, F.H.C. (1996) Multivariate Analysis. In Bull. IMA, 32, 183.
-
119. Review of Billingsley, P. (1996) Probability and Measure. In
J. Appl. Stat., 23, 454.
[DOI]