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What is criticality

Typical scale

Lack of characteristic scale
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And when does it occur
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  The correlation function
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The critical behaviour is identified from the functional form

of the correlation function

Where the correlation length         diverges as the critical temperature is

approached
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  Temporal behaviour
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As critical behaviour is approach:

The power spectrum
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Hence                 is very interesting1
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  Scale free behaviour out of equilibrium

Spatial fractals

• Clouds

• Mountains

• Cauliflower

•
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  Temporal O. Moriya et al, Phys. Rev. Lett. 80, 2833 (1998)

• Quasars

• Ocean current

• Pressure variation in speech

•
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   An explanation needed!

If fractals and 1/f spectra are so common there must

surely be one universal mechanism behind
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   The sandpile model by BTW

• Add sand grain by grain

• If local slope             then relaxc
zz >

Induce avalanches

of different sizes.

Self organisation:

Non tuning beside slow

driving

Sub-critical: slope growing Super-critical: slope decreasing
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 Properties of the sandpile model

Power law

distribution of

avalanches

From BTW’s PRL
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 But not so fractal

Spatial extent of

avalanches

And the power spectrum turned out to be          , except when driven

at edge only.
2

1
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  But other models does exhibit fractals and f
1

Density fluctuations in a Lattice Gas Model

                                                      HJJ, Phys. Rev. Lett. 64, 3103 (1990)

Repulsive particles on a lattice.

•  Deterministic motion.



14

Monitor number of particles in a sub-section:

N(t) = # particles in blue

box

Power spectrum of N(t)
Instantaneous dissipation
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  Many more models:

• Earth quake model                  (Olami-Feder-Christensen)

• Forest fires or epidemics         (Drossel-Schwabl)

•

All exhibit scale invariance in the form of power

laws for the distributions of events or avalanches.

Well, at least to some degree
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  Broken scaling

The ideal situation

Log(s)

Log[P(s)]

ssP )(

Increasing system size

Log(s)

Increasing system size

)](log[ sPs
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  The real situation

The Drossel-Schwabl forest fire model

From G. Prussner & HJJ,  Phys. Rev. E. 65, 056707 (2002).

See also Grassberger.
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  Scaling in the BTW sandpile model

Only avalanches reaching the system edge. Still cut-

off does not collapse. (slope = -7/9)

From B. Drossel, Phys. Rev. E, 61, R2168 (2000)
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  Experimental evidence:

Plourde et al. PRL 71, 2749 (1993)

Superconductors

Field et al. PRL 74, 1206 (1995)

Droplet formation
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K. Christensen et al. Physics, Imperial

http://www.cmth.ph.ic.ac.uk/~kimchris

Rice pile

Earthquakes

Rain
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Biological evolution

Gould, Eldredge

     Punctuated equilibrium intermittent dynamics

 and Raup:

     Extinctions power law distributed

 

Something like:

Tangled Nature model of evolution

    see http://www.ma.ic.ac.uk/~hjjens
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   So what is essential?

Back to Bak, Tang and Wiesenfeld

• Slow driving

• Threshold              local rigidity

System keeps getting stuck in

one of many meta-stable states
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  Formalisms
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Eq. of motion for the BTW model:

Let         denote the height of site no.  r
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  Or in equation form:
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Need to regularise the -function.

Consider e.g.

)(lim)( xfx =

Where f(x) is some nice function with
0)(lim

1)(lim

=

=

xf

xf

x

x

Then expand =
n
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Include more and more non-linearities and study – using

Renormalisation Group – how the correlator

),(),( tEtE r0 behaves.

Albert Diaz-Guilera

Europhys. Lett. 26, 177 (1994)
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   Result of analysis

 That the model may be critical.

                                                      (at least as judged from continuum equation)

 That criticality in the non-conservative case is only possible if

     uniformly driven.

                                                    (Consistent with the numerics of the OFC model)

 But procedure is non-rigorous, not clear if results can be

   trusted, and very heavy.

 Nor can one calculate the exponent of the avalanche

    distribution
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 Another approach

Absorbing state phase transitions

                                          (See e.g. R. Dickman, Physica A 306, 90-97 (2002))

Consider two fields:

              the density of active sites

              the “particle” density

Elimination of         leads to the following eq.

a
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  Langevin eq. with memory term
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Where the growth rate r(x) is given by the initial condition

and the noise is correlated according to

)'()'()','(),( tttt = xxxx

Related to Directed Percolation.

Nevertheless, difficult to handle.

Renormalisation group not yet applied with

success.
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 Relation to branching processes

Uncorrelated process

Distribution of tree sizes )(
)(

exp)(
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The branching ratio
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Characteristic size
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The effect of correlations?
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 Exact results

D. Dhar’s -matrix formalism for Abelian sandpiles

                   see e.g. Dhar, Phys. Rev. Lett 64, 1613, (1990)

Consider a system consisting of N sites 1,2,3,…, N.

Dynamics:

     (1) Addition rule.

     (2) Toppling rule.

1+
ii

zz a

Njzzzz ijjjici ,...,2,1for    => a



31

The -matrix:

.   0     (c)

;       0     (b)

;       0     (a)
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=

Overcritical sites decrease height

Neighbour sites receive height

Particles are not created during

relaxation

NN
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Set of stable configurations

  Definitions

{ }izzzCS
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Operators on S

SSa
i
:

Take configuration C.

Add one particle to site i according to rule (1) and

relax according to rule (2).

Result = Ca
i
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Set of recurrent configurations
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 The avalanche exponent

Attempts have been made using the -matrix

formalism.

But no exact result obtained so far.
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  Summary and conclusion

What does it mean?What does it mean?

      Marginal stability and response of all sizesMarginal stability and response of all sizes

And is it important?And is it important?

      Yes, but exactly how, we donYes, but exactly how, we don’’t know yet.t know yet.
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