VOLUME 81, NUMBER 8 PHYSICAL REVIEW LETTERS 24 AGUST 1998

Nonequilibrium Roughening Transition in a Simple Model
of Fungal Growth in 1 + 1 Dimensions
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We introduce a simple model of yeastlike growth of fungi colonies, which exhibits a continuous
roughening transition far from equilibrium from a smooth € 0) to a rough phaseo = 1/2) in
1 + 1 dimensions. At the transition some scaling exponents are calculated by mapping the problem
onto a directed percolation process. The model reproduces the roughening transition observed in some
experiments of fungal growth. [S0031-9007(98)06963-4]

PACS numbers: 87.10.+e, 05.40.+j, 61.43.—j, 68.35.Rh

Much effort has been devoted to the search for the basiexamples are few [16—18]. More generally, phase transi-
principles governing the pattern formation in living organ-tions in nonequilibriuml + 1 dimensional systems have
isms. Among all the phenomena of formation and develusually been observed in systems with absorbing states.
opment of complex structures involving living organisms, Thus, it is of great interest to find models far from equilib-
the growth of bacteria and fungi colonies has attracted aum which do not possess absorbing states but still display
considerable amount of work in recent years [1-12]. a phase transition.

Besides the formation of patterns, which is associated In this Letter we introduce a new class of models di-
with the existence of some unstable modes, spatiotempeoectly inspired by yeastlike fungal growth ih + 1 di-
ral scale invariance is also commonly observed dependingensions. The model has no absorbing states and exhibits
on the environmental conditions [7—10]. In the particu-a nonequilibrium roughening transition between a flat and
lar case of fungi colonies, the morphology may be wella rough phase. Some scaling properties of the model at the
classified in hyphal and yeastlike growth [13]. The formertransition can be related to directed percolation. We find
corresponds to multicellular growth and fractal filamentoughat, in the rough phase, the model belongs to the Edwards-
patterns form due to the existence of highly cooperative bewilkinson [19] universality class.
havior of the individual cells. However, yeastlike growth Model—The model is defined on B+ 1 dimensional
occurs in solidified media and in this case the colony idattice in which every site can have two different states:
a very compact object. The front of the colony usuallyoccupiedor vacant Growth of the colony occurs because
becomes rough (i.e., the interface width diverges with thef the division of individual cells, so only nearest neighbors
linear size of the system) and its dynamics is completelyf occupied sites can potentially become occupied. The
characterized by the critical exponents, which describe thbasic idea now is that cell division is less likely in young
scaling properties of the interface fluctuations [14]. cells, so the probability for a vacant sitef being occupied

In recent experiments [12] with the yedgichia mem- in the next time step has to increase withtibial ageA; (r)
branaefacien®n solidified agarose film, several morpho- of the occupied nearest neighboring sites of that vacant site
logical transitions il + 1 dimensions have beenreported. i. At every time step growth probability
In these experiments different front morphologies were ob- .
tained depending on the concentration of polluting metabo- Pi(t) = F(0n:Ai(1)) (1)
lites. Also transitions from rough to flat interfaces wereis assigned to all vacant sites that are nearest neighbors
observed [15], although never studied systematically. Irof occupied sites (note that; = 0 at the remaining va-
the case oBacillus subtilis,the existence of completely cant sites). F(x) is any monotonous increasing function
smooth and Eden-like morphologies (among others) dethat satisfiesF(0) = 0 and F(») = 1. For definiteness,
pends on the agar hardness and nutrients concentratiam our simulations we simply usefl(x) = tanhx). 6 is
[11]. Our attention in this Letter is focused on thigsigh-  an external parameter which controls the growth rate. The
eningtransition. variation in the aging times among the individual cells in

In 1 + 1 dimensions a surface under equilibrium con-the colony is modeled by the parametgr. This ran-
ditions is rough at any finite temperature, because thermalom variable is quenched, uncorrelated, and uniformly
fluctuations always make the flat surface entropically undistributed in[1 — A,1 + A]. The simulations are per-
favorable. Only in higher dimensions can equilibriumformed on a triangular lattice with open boundary con-
interfaces undergo a phase transition from a rough to ditions, parallelly updating all the sites according to the
smooth interface at some critical temperature. The situgrowth probability (1). The model produces a very com-
ation in nonequilibrium is much richer because detailedoact bulk and irrelevant overhangs at the scale of the lattice
balance is not required and growth processes may exhibitgpacing may appear on the growth front depending on the
roughening transition even ih+ 1 dimensions, although tunning parametef.
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From the point of view of the biological process, this 1.1
model has to be considered as a simplified version of a osT ‘ —
more realistic description. The experiments mentioned 0.9 ' _‘z‘
above [12] have shown that yeastlike growth of fungi o

strongly depends on the concentration of nutrients and in-__
hibitors in the medium. In a more complicated model 5
[20] the effect of inhibitors can be studied by includ- %’
ing a diffusive field of inhibitorsc;(z) which is coupled S 03}
with the growth probability at every site. The probabil- &

o
~
loglOWsa[(L)
|

ity for a vacant site becoming occupied is then given by 0.1 r

Pi(t) = F{0n1;A;(t) exd —c;(t)/co]}, wherec is a thresh-

old concentration above which the effect of inhibitors 01y

begins to be relevant. The model we are presenting here 03 , , , ,

corresponds to the limity — oo. 00 1.0 2.0 3.0 4.0 5.0
Continuous roughening transitior-Despite its sim- |0910t

plicity the model has a nontrivial behavior. For small
values of the paramete, the fun.gus front _gen_erated by 6 = 0.01) for different system sized = 16, 25, 32, 50, 64,
the model becomes rough and its dynamics is Characte%g, and 100. The slope of the dotted line corresponds to
ized as usual by two kinetic roughening exponents [14]the time exponen8 = 0.24 + 0.02. In the inset the values
In contrast, for large values df, the interface becomes of the width at saturation are plotted vs system size. The
flat even when started from a nonsmooth initial condition.dotted line fits the data and gives the roughness exponent
This phase transition occurs for any value of the disordeft = %46 = 005
intensity A. We found that these two phases are sepa- " e )
rated by a critical threshold which depends on the degrel1® transitionW(z, t)ﬁscales ag " fortimess < . <
of disorder and is af. = 0.183 + 0.003 for the case of L° and W(L,1) ~ tPe™ for 1o <1 < L% «p (kg)
no disorderA = 0. In the following we restrict ourselves Stands for the scaling exponent in the flat (rough) regime
to the homogeneous cage= 0 although similar results qf the surface wu;lth as the transition is gpproac_:hed. For
are found for any) = A < 1. timess > L the mterfacg gets to saturation as in (2).'

Let us first study the rough phasé,< 6., in some The scallng_ behavior in the |ntern_1ed|ate time regime
detail. Denoting byi(x, ) the front height at time and before saturation suggests the following scaling ansatz for

substrate positionr, the interface width in a system of UMes? << L
size L, W(L,t) = ((h(x,1) — h(t)])!/? (where overbar W(L,t,€) =€ “"g(t/t.), 3

and (- denote spatial average and over realizationSynere the scaling function ig(x) ~ const ifu < 1 and
respectively), measures the magnitude of the mterfacg(u) ~ uP for u > 1. The scaling relation
fluctuations. The width is expected to satisfy the dynamic

FIG. 1. Interface width of the front vs time in the rough phase

scaling ansatz [14,21]: kg + kp = By (4)
B if t < L7,
W(L.1) {L“ if > L%, (2) 13
wherea is the roughness exponent and= « /3. 137 05
We have performed simulations in systems of differ- 11+ 5
ent sizes to determine the universality class of the model 09 | % 02
in the rough phase. Figure 1 shows that sufficiently far < =) Wl
from the transition ¢ = 0.01) the scaling behavior ofthe = %/ g °
interface is given by Eq. (2). The kinetic roughening ex- t§ 05 | TP Sra——
ponentsa = 0.46 = 0.05 andB = 0.24 = 0.02 indicate S 3l 30 20 |01§-;10[t,g%]

that the model belongs to the Edwards-Wilkinson univer-

sality class [19]. 0.1}
Approaching the roughening transition from the rough -01 t
phase a new diverging length~ €7, wheree = 6, — 03 ‘ ‘
0, appears and enters the scaling of the width. Simulations 1.0 2.0 3.0 4.0
close to the transitione(— 0*) were performed in systems log,t

of different sizes. In Fig. 2 results foV (L, t) vs time i ) o
corresponding td = 900 and average over 50 realizations FIG. 2. Time behavior of the width in the rough phase near

. - the transition. Curves correspond to different distances to the
are plotted. We found that there exist two dlfferentCIritical point, form e = 0.083 (top) to e = 0.003 (bottom).

regimes separated by a crossover time- €7, which  pata are collapsed in the inset following Eq. (3) for= 1.73
diverges ag — 0*. Figure 2 shows that, near and below and x; = 0.02, where the dotted line has slopes.
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between critical exponents must also be fulfilled. The insetising the fact that’ = v|/», for DP. Our estimation of
in Fig. 2 shows the data collapse for the exponents  the crossover time exponept= 1.73 = 0.03 (see Fig. 2)
1.73 = 0.03 andxr = 0.02 is consistent with Eq. (3) over is in excellent agreement with the DP expongnt= 1.73.
a range of more than four decades. Because of the very Order parameters—We now define a convenient order
small value ofx a logarithmic dependend& ~ log,,(e)  parameter for the rough phase € 6.) asV = vpax — v
cannot be ruled out. Using the scaling relation (4) we findwith v = 9,4(¢) the mean front velocity. The variable
kg = 0.41, which is to be compared with the measuredmeasures the fraction of the surface points propagating at
valuekyp = 0.42 = 0.01. velocity lower than the maximal oneV is different from

As seen in some othdr + 1 dimensional growth mod- zero only in the rough phase and its scaling behavior can
els exhibiting a roughening transition [17,18], some scal-also be related to properties of the associated DP process.
ing properties are related to directed percolation (DP) [22]In the rough phas¥ is given by the inverse of the typical
Our model turns out to be a model with a maximal veloc-time that the DP correlations survive~ £, which is the
ity. Small values o produce small growth rates and the only characteristic time scale. S@,~ 1/7 ~ €” close
front propagates with a finite velocity. If the paramefler to the transition. In our simulations we measuréd-
is increased, the probability for a site of growing (i.e., be-e!746*0018 ‘a5 shown in Fig. 4, in excellent agreement with
coming occupied) is also raised as follows from Eqg. (1).the simple DP scaling picture.
A given site reaches the maximal velocity when its proba- As for the flat phased > 6.) the density of sites at
bility of growing at the next time step is one and then nothe maximal height is an appropriate order parameter [17],
further increase of the propagation velocity at that site camvhich corresponds to the density of active sites in DP.
occur [23]. The transition from rough to flat surface is aHowever, more interesting here may be the use of appro-
DP transition. The flat phase corresponds to the active DPBriate order parameters which take into account the sym-
phase, whereas the rough phase corresponds to the nonatetries of the model in order to study the possibility of
tive DP phase. The sites at the highest lévet vt are  spontaneous symmetry breaking (SSB) in the flat phase.
active sites of a DP process. Below the transition (rought has been shown that SSB may take place in nonequi-
phase) there are no sites growing at maximal velocity antibrium situations under certain conditions evenlin- 1
the surface mean velocity is less thap.x. Above the dimensions [18,24].
transition (flat phase), on the contrary, there is a finite The dynamical rules of our model are invariant under
density of sites advancing at,.x. At 8 = . the sites translation of an integer number of levels in the growth
which grow with maximum velocity constitute a percola- direction. The dynamics do not favor odd or even heights.
tion cluster directed along the growth direction, as depicted’hus it is adequate to define a magnetizationlike order

in Fig. 3. parameter
The mapping to DP allows the derivation of several 1 & hGit)
scaling exponents. The correlation lengths identified M(t) = A D (=i, 5)
i=1

with the correlation length of the DP clustefs, which

is transversal to the growth direction of the interface, andvhich is not conserved by the dynamics of the model.
v =v,; = 1.10in 1 + 1 dimensions. This implies that This order parameter can be used to quantify the symme-
the crossover time. ~ £%in Eq. (3) is given by, ~ €I try breaking which may take place in the flat phase [18].

0 =0.9960_ 0=6 0 =1.0026,

L

FIG. 3. Clusters of sites growing at maximal velocity. Every pixel represents the poéitibh of a site which moved at.x
and configurations at intervals of five time steps are shown. The system dize iS00 and time advances upwards.
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by older cells are more likely to become occupied than sites

20 neighboring younger cells. The model exhibits a rough-
ening transition inl + 1 dimensions as the growth rate is

“25 ¢ 1 increased. We have found that the model belongs to the
Edwards-Wilkinson universality in the rough phase. Atthe

.30 | | transition some critical exponents have been calculated by

mapping the problem onto a DP process. Transition from
a completely flat to a rough interface has been observed by
Samset al. in experiments [15] with colonies of the yeast
Pichia membranaefacieren agarose film and by Wakita
-40 | ] et al. [11] in the bacteriunBacillus subtilis
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FIG. 4. Scaling of the order parametgrin the rough phase
near the transition. The line is a least-squares fit of the data
and has a slopé.746 + 0.018 in good agreement withy,.
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