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Nonequilibrium Roughening Transition in a Simple Model
of Fungal Growth in 1 1 1 Dimensions
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(Received 13 March 1998)

We introduce a simple model of yeastlike growth of fungi colonies, which exhibits a continuo
roughening transition far from equilibrium from a smooth (a ­ 0) to a rough phase (a ­ 1y2) in
1 1 1 dimensions. At the transition some scaling exponents are calculated by mapping the prob
onto a directed percolation process. The model reproduces the roughening transition observed in
experiments of fungal growth. [S0031-9007(98)06963-4]

PACS numbers: 87.10.+e, 05.40.+ j, 61.43.– j, 68.35.Rh
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Much effort has been devoted to the search for the ba
principles governing the pattern formation in living organ
isms. Among all the phenomena of formation and deve
opment of complex structures involving living organisms
the growth of bacteria and fungi colonies has attracted
considerable amount of work in recent years [1–12].

Besides the formation of patterns, which is associat
with the existence of some unstable modes, spatiotem
ral scale invariance is also commonly observed depend
on the environmental conditions [7–10]. In the particu
lar case of fungi colonies, the morphology may be we
classified in hyphal and yeastlike growth [13]. The forme
corresponds to multicellular growth and fractal filamentou
patterns form due to the existence of highly cooperative b
havior of the individual cells. However, yeastlike growt
occurs in solidified media and in this case the colony
a very compact object. The front of the colony usual
becomes rough (i.e., the interface width diverges with t
linear size of the system) and its dynamics is complete
characterized by the critical exponents, which describe
scaling properties of the interface fluctuations [14].

In recent experiments [12] with the yeastPichia mem-
branaefacienson solidified agarose film, several morpho
logical transitions in1 1 1 dimensions have been reported
In these experiments different front morphologies were o
tained depending on the concentration of polluting metab
lites. Also transitions from rough to flat interfaces wer
observed [15], although never studied systematically.
the case ofBacillus subtilis,the existence of completely
smooth and Eden-like morphologies (among others) d
pends on the agar hardness and nutrients concentra
[11]. Our attention in this Letter is focused on thisrough-
eningtransition.

In 1 1 1 dimensions a surface under equilibrium con
ditions is rough at any finite temperature, because therm
fluctuations always make the flat surface entropically u
favorable. Only in higher dimensions can equilibrium
interfaces undergo a phase transition from a rough to
smooth interface at some critical temperature. The si
ation in nonequilibrium is much richer because detaile
balance is not required and growth processes may exhib
roughening transition even in1 1 1 dimensions, although
0031-9007y98y81(8)y1734(4)$15.00
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examples are few [16–18]. More generally, phase tran
tions in nonequilibrium1 1 1 dimensional systems have
usually been observed in systems with absorbing sta
Thus, it is of great interest to find models far from equilib
rium which do not possess absorbing states but still disp
a phase transition.

In this Letter we introduce a new class of models d
rectly inspired by yeastlike fungal growth in1 1 1 di-
mensions. The model has no absorbing states and exh
a nonequilibrium roughening transition between a flat a
a rough phase. Some scaling properties of the model at
transition can be related to directed percolation. We fi
that, in the rough phase, the model belongs to the Edwar
Wilkinson [19] universality class.

Model.—The model is defined on a1 1 1 dimensional
lattice in which every site can have two different state
occupiedor vacant. Growth of the colony occurs becaus
of the division of individual cells, so only nearest neighbo
of occupied sites can potentially become occupied. T
basic idea now is that cell division is less likely in youn
cells, so the probability for a vacant sitei of being occupied
in the next time step has to increase with thetotal ageAistd
of the occupied nearest neighboring sites of that vacant s
i. At every time step agrowth probability

Pistd ­ FsssuhiAistdddd (1)

is assigned to all vacant sites that are nearest neighb
of occupied sites (note thatAi ­ 0 at the remaining va-
cant sites). Fsxd is any monotonous increasing function
that satisfiesFs0d ­ 0 and Fs`d ­ 1. For definiteness,
in our simulations we simply usedFsxd ­ tanhsxd. u is
an external parameter which controls the growth rate. T
variation in the aging times among the individual cells i
the colony is modeled by the parameterhi. This ran-
dom variable is quenched, uncorrelated, and uniform
distributed inf1 2 D, 1 1 Dg. The simulations are per-
formed on a triangular lattice with open boundary con
ditions, parallelly updating all the sites according to th
growth probability (1). The model produces a very com
pact bulk and irrelevant overhangs at the scale of the latt
spacing may appear on the growth front depending on
tunning parameteru.
© 1998 The American Physical Society
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From the point of view of the biological process, thi
model has to be considered as a simplified version o
more realistic description. The experiments mention
above [12] have shown that yeastlike growth of fun
strongly depends on the concentration of nutrients and
hibitors in the medium. In a more complicated mod
[20] the effect of inhibitors can be studied by includ
ing a diffusive field of inhibitorscistd which is coupled
with the growth probability at every site. The probabi
ity for a vacant sitei becoming occupied is then given b
Pistd ­ FhuhiAistd expf2cistdyc0gj, wherec0 is a thresh-
old concentration above which the effect of inhibitor
begins to be relevant. The model we are presenting h
corresponds to the limitc0 ! `.

Continuous roughening transition.—Despite its sim-
plicity the model has a nontrivial behavior. For sma
values of the parameteru, the fungus front generated by
the model becomes rough and its dynamics is charac
ized as usual by two kinetic roughening exponents [1
In contrast, for large values ofu, the interface becomes
flat even when started from a nonsmooth initial conditio
This phase transition occurs for any value of the disord
intensity D. We found that these two phases are sep
rated by a critical threshold which depends on the deg
of disorder and is atuc ­ 0.183 6 0.003 for the case of
no disorderD ­ 0. In the following we restrict ourselves
to the homogeneous caseD ­ 0 although similar results
are found for any0 # D , 1.

Let us first study the rough phase,u ø uc, in some
detail. Denoting byhsx, td the front height at timet and
substrate positionx, the interface width in a system o
size L, WsL, td ­ kfhsx, td 2 hstdg2l1y2 (where overbar
and k· · ·l denote spatial average and over realization
respectively), measures the magnitude of the interfa
fluctuations. The width is expected to satisfy the dynam
scaling ansatz [14,21]:

WsL, td ,
Ω

tb if t ø Lz ,
La if t ¿ Lz ,

(2)

wherea is the roughness exponent andz ­ ayb.
We have performed simulations in systems of diffe

ent sizes to determine the universality class of the mo
in the rough phase. Figure 1 shows that sufficiently f
from the transition (u ­ 0.01) the scaling behavior of the
interface is given by Eq. (2). The kinetic roughening e
ponentsa ­ 0.46 6 0.05 andb ­ 0.24 6 0.02 indicate
that the model belongs to the Edwards-Wilkinson unive
sality class [19].

Approaching the roughening transition from the roug
phase a new diverging lengthj , e2n, wheree ­ uc 2

u, appears and enters the scaling of the width. Simulatio
close to the transition (e ! 01) were performed in systems
of different sizes. In Fig. 2 results forWsL, td vs time
corresponding toL ­ 900 and average over 50 realization
are plotted. We found that there exist two differen
regimes separated by a crossover timetc , e2g , which
diverges ase ! 01. Figure 2 shows that, near and belo
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FIG. 1. Interface width of the front vs time in the rough phas
(u ­ 0.01) for different system sizesL ­ 16, 25, 32, 50, 64,
75, and 100. The slope of the dotted line corresponds
the time exponentb ­ 0.24 6 0.02. In the inset the values
of the width at saturation are plotted vs system size. Th
dotted line fits the data and gives the roughness expone
a ­ 0.46 6 0.05.

the transition,WsL, td scales ase2kF for timest ø tc ø
Lz and WsL, td , tbekR for tc ø t ø Lz . kF (kR)
stands for the scaling exponent in the flat (rough) regim
of the surface width as the transition is approached. F
timest ¿ Lz the interface gets to saturation as in (2).

The scaling behavior in the intermediate time regim
before saturation suggests the following scaling ansatz f
timest ø Lz :

WsL, t, ed ­ e2kF gstytcd , (3)

where the scaling function isgsud , const if u ø 1 and
gsud , ub for u ¿ 1. The scaling relation

kR 1 kF ­ bg (4)
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FIG. 2. Time behavior of the width in the rough phase nea
the transition. Curves correspond to different distances to th
critical point, form e ­ 0.083 (top) to e ­ 0.003 (bottom).
Data are collapsed in the inset following Eq. (3) forg ­ 1.73
andkF ­ 0.02, where the dotted line has slope0.25.
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between critical exponents must also be fulfilled. The ins
in Fig. 2 shows the data collapse for the exponentsg ­
1.73 6 0.03 andkF ­ 0.02 is consistent with Eq. (3) over
a range of more than four decades. Because of the v
small value ofkF a logarithmic dependenceW , log10sed
cannot be ruled out. Using the scaling relation (4) we fin
kR . 0.41, which is to be compared with the measure
valuekR . 0.42 6 0.01.

As seen in some other1 1 1 dimensional growth mod-
els exhibiting a roughening transition [17,18], some sc
ing properties are related to directed percolation (DP) [2
Our model turns out to be a model with a maximal velo
ity. Small values ofu produce small growth rates and th
front propagates with a finite velocity. If the parameteru

is increased, the probability for a site of growing (i.e., b
coming occupied) is also raised as follows from Eq. (1
A given site reaches the maximal velocity when its prob
bility of growing at the next time step is one and then n
further increase of the propagation velocity at that site c
occur [23]. The transition from rough to flat surface is
DP transition. The flat phase corresponds to the active
phase, whereas the rough phase corresponds to the no
tive DP phase. The sites at the highest levelh ­ ymaxt are
active sites of a DP process. Below the transition (rou
phase) there are no sites growing at maximal velocity a
the surface mean velocity is less thanymax. Above the
transition (flat phase), on the contrary, there is a fin
density of sites advancing atymax. At u ­ uc the sites
which grow with maximum velocity constitute a percola
tion cluster directed along the growth direction, as depict
in Fig. 3.

The mapping to DP allows the derivation of sever
scaling exponents. The correlation lengthj is identified
with the correlation length of the DP clustersj', which
is transversal to the growth direction of the interface, a
n ­ n' ø 1.10 in 1 1 1 dimensions. This implies that
the crossover timetc , jz0

in Eq. (3) is given bytc , enk
FIG. 3. Clusters of sites growing at maximal velocity. Every pixel represents the positionsx, hd of a site which moved atymax
and configurations at intervals of five time steps are shown. The system size isL ­ 500 and time advances upwards.
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using the fact thatz0 ­ nkyn' for DP. Our estimation of
the crossover time exponentg ­ 1.73 6 0.03 (see Fig. 2)
is in excellent agreement with the DP exponentnk ø 1.73.

Order parameters.—We now define a convenient orde
parameter for the rough phase (u , uc) asV ­ ymax 2 y

with y ­ ≠t h̄std the mean front velocity. The variableV
measures the fraction of the surface points propagating
velocity lower than the maximal one.V is different from
zero only in the rough phase and its scaling behavior c
also be related to properties of the associated DP proc
In the rough phaseV is given by the inverse of the typica
time that the DP correlations survivet , jk, which is the
only characteristic time scale. So,V , 1yt , enk close
to the transition. In our simulations we measuredV ,
e1.74660.018, as shown in Fig. 4, in excellent agreement wi
the simple DP scaling picture.

As for the flat phase (u . uc) the density of sites at
the maximal height is an appropriate order parameter [1
which corresponds to the density of active sites in D
However, more interesting here may be the use of app
priate order parameters which take into account the sy
metries of the model in order to study the possibility o
spontaneous symmetry breaking (SSB) in the flat pha
It has been shown that SSB may take place in noneq
librium situations under certain conditions even in1 1 1
dimensions [18,24].

The dynamical rules of our model are invariant und
translation of an integer number of levels in the grow
direction. The dynamics do not favor odd or even heigh
Thus it is adequate to define a magnetizationlike ord
parameter

Mstd ­
1
L

LX
i­1

s21dhsi,td, (5)

which is not conserved by the dynamics of the mod
This order parameter can be used to quantify the symm
try breaking which may take place in the flat phase [18]
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FIG. 4. Scaling of the order parameterV in the rough phase
near the transition. The line is a least-squares fit of the da
and has a slope1.746 6 0.018 in good agreement withnk.

In our simulations we found that in the rough phas
kMl ­ 0 and also kjMjl ­ 0, where k· · ·l denotes an
average over realizations. In the rough phase the interfa
explores many height levels and the contribution to th
magnetization at different sites averages out. On the co
trary in the flat phasekMl ­ 0 but kjMjl fi 0 due to the
fact that most heights are at the highest level. Howeve
SSB was not observed in our model. For every realizatio
Mstd gets to a stationary state consisting of flips betwee
1jMsj and2jMsj at almost every time step. In Ref. [18]
a growth model with sequential updates has recently be
studied in which SSB was found. In that model, SSB in th
flat phase is related to the fact that the interface eventua
becomes pinned at a certain height and the velocity
actually zero in the thermodynamic limit. Only in a finite
system will the interface have a finite velocity which
vanishes exponentially with the system size. This ensur
the breaking of the symmetry between odd and eve
heights in the thermodynamic limit. The final interface
will be pinned at an odd or even height, depending on th
initial conditions, breaking the symmetry of the dynamics
On the contrary in our model the velocityymax in the
flat phase is always finite (even in the thermodynam
limit L ! `) not allowing SSB. As occurs in the model
reported in Ref. [17] the smooth phase does not survive
our model under sequential dynamics, due to the rando
walk nature of sequential updates.

The behavior of the order parameter of the flat pha
kjMjl near the transition gives a new scaling exponenth,
which describes its decay as the transition is approach
from abovekjMjl , s2edh . Our simulations indicate that
h ø 0.50 which can be compared withh ­ 0.55 6 0.05
previously measured for a different model [18].

In conclusion, we have studied a model for funga
growth in which the likelihood of growth at a given site de
pends on the local environment. Vacant sites surround
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by older cells are more likely to become occupied than site
neighboring younger cells. The model exhibits a rough
ening transition in1 1 1 dimensions as the growth rate is
increased. We have found that the model belongs to th
Edwards-Wilkinson universality in the rough phase. At the
transition some critical exponents have been calculated
mapping the problem onto a DP process. Transition from
a completely flat to a rough interface has been observed
Samset al. in experiments [15] with colonies of the yeast
Pichia membranaefacienson agarose film and by Wakita
et al. [11] in the bacteriumBacillus subtilis.
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