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Abstract

The aim of this paper is to study the fast computation of the lower and upper bounds
on the value function for utility maximization under the Heston stochastic volatility model
with general utility functions. It is well known there is a closed form solution to the HJB
equation for power utility due to its homothetic property. It is not possible to get closed form
solution for general utilities and there is little literature on the numerical scheme to solve
the HJB equation for the Heston model. In this paper we propose an efficient dual control
Monte-Carlo method for computing tight lower and upper bounds of the value function. We
identify a particular form of the dual control which leads to the closed form upper bound
for a class of utility functions, including power, non-HARA and Yaari utilities. Finally, we
perform some numerical tests to see the efficiency, accuracy, and robustness of the method.
The numerical results support strongly our proposed scheme.
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1 Introduction

Dynamic portfolio optimization is one of the most studied research areas in mathematical finance.
Stochastic control and convex duality are two standard methods to solve utility maximization
problems. For a complete market such as the Black-Scholes model, the problem has already
been solved. With the convex duality method, one may first solve a static convex optimization
problem for the optimal terminal wealth and then derive the optimal control (trading strategy)
to replicate it with the martingale representation theorem. With the stochastic control method,
one may first solve the dynamic programming equation (a nonlinear partial differential equation
(PDE), called the Hamilton-Jacobi-Bellman (HJB) equation) for the optimal value function,
and then find the optimal control, see many excellent books for expositions, e.g., Karatzas and
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Shreve (1998), Pham (2009). For an incomplete market model, one cannot use the standard
convex duality method to solve the problem as not all risks can be hedged, a key requirement for
finding a replicating strategy of the optimal terminal wealth with the martingale representation
theorem.

One well-known incomplete market model is the Heston stochastic volatility model which
was first introduced by Heston (1993) for a European options pricing problem. The Heston
model is also called the mean reversion square root model which is used to describe dynamically
the variance of the underlying stock and ensures the variance process (a stochastic process)
is nonnegative and moves towards a long term average variance level at certain speed. The
Heston model is widely used in financial industry due to its ability to characterize the market
volatility phenomenon of traded assets, such as smiles and skews, and its analytic tractability
for European options pricing. The option value (price) satisfies a linear PDE with two state
variables (asset price and variance) and a closed form solution (in terms of the Fourier transform
of the price variable) can be found, see Gatheral (2006) for details.

Utility maximization with the Heston stochastic volatility model is much more difficult to
solve, compared with European options pricing with the Heston model or utility maximization
with the Black-Scholes model. One may still use the standard stochastic control method to
derive the HJB equation for the value function. However, the resulting PDE is fully nonlinear
with two state variables (wealth and variance) and is highly difficult to solve.

For a power (or exponential) utility and the Heston stochastic volatility model, one may apply
the separation principle to decompose the solution to the HJB equation and get a simplified
nonlinear PDE with one state variable (variance). Thanks to the affine structure of the Heston
model, Zariphopoulou (2001) uncovers a clever transformation that simplifies the nonlinear PDE
further into an equivalent linear PDE and derives a closed-form solution, see also Kraft (2005).
Kallsen and Muhle-Karbe (2010) extend the Heston model to general univariate affine stochastic
volatility models and Richter (2014) to multivariate case, both are solved with the probabilistic
method. The model framework with the PDE approach is extended further by Noh and Kim
(2011) to stochastic volatility and stochastic interest rate on an infinite time horizon, Zeng and
Taksar (2013) to general stochastic volatility with the Heston and 3/2 models as special cases,
Zhang and Ge (2016) to optimal asset allocation and consumption models, and Boguslavskaya
and Muravey (2016) to general factor models. All aforementioned papers discuss only power
(or exponential) utilities and have used the separation principle to reduce the dimensionality of
state variables by one.

The success of finding a closed-form solution for utility maximization with the Heston model
(or general affine stochastic processes) crucially depends on the underlying utility being a power
utility if the wealth process is exponential (or exponential utility if the wealth process is additive).
Such combination of utility and wealth process would keep the utility of the terminal wealth
still in the exponential form of a linear combination of underlying stochastic processes, which
in turn helps one decouple wealth and variance variables in the optimal value function and find
a solution with the help of the special affine structure of the Heston model, whether using the
HJB equation or the quadratic backward stochastic differential equation (SDE). For general
utilities, all benefits associated with the power utility in expressing the utility of the terminal
wealth in exponential form disappear and, consequently, there are no results for the existence of
a classical solution to the HJB equation, let alone a closed form solution. One may contemplate
the difficult problem of solving the HJB equation for the Heston model with some numerical
methods, such as the finite difference method (see e.g., Forsyth and Labahn (2008)), however,
due to high nonlinearity of the HJB equation with two state variables and unspecified boundary
conditions when variance variable is at zero or infinite, there is no known numerical method
in the literature to solve the HJB equation for the Heston model, to the best knowledge of
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the authors. In fact, Zariphopoulou (2009) points out that one of open problems in utility
maximization with stochastic volatility models is to develop effective numerical schemes for the
value function and the optimal feedback policies for general utility functions.

The aim of this paper is to develop an effective Monte-Carlo method to find tight lower and
upper bounds of the value function and bypass the almost-impossible task of finding the exact
solution of the HJB equation for the Heston model for general utility functions. The intuition
and ideas are described as follows.

It is known that the dual control method can help to solve convex control problems. For
the Black-Scholes market with closed convex cone trading constraints and general continuous
increasing concave utility functions, Bian and Zheng (2015) (see also Bian et al. (2011)) first
find a solution to the dual HJB equation and then use it to construct a classical solution to the
HJB equation and verify it is indeed the optimal value function. The approach works due to
the Black-Scholes market being a complete market model and the dual HJB equation being a
linear PDE. It does not work for an incomplete market model such as the Heston model. The
main reason is that the stochastic volatility is not a traded asset (unless an additional volatility
related security is introduced) and the dual HJB equation is an equally difficult nonlinear PDE
with two state variables. It is virtually impossible to find an exact solution to the dual HJB
equation for general utilities except for power utility. Despite this limitation, the dual control
method still provides highly useful information for the optimal value function. This is because
the dual objective function with any fixed dual control supplies a natural upper bound for the
primal value function due to the weak duality relation and a feasible control for the primal
problem may be constructed using the information of the upper bound and the strong duality
relation to give a good lower bound for the primal value function. There is no need to show the
existence of an optimal control to the dual problem nor to find the exact dual value function. If
one can make the gap between the lower and upper bounds small, then one has found a good
approximation to the primal value function, which would be impossible without using the dual
control method. This idea has been applied successfully to find the approximate optimal value
function for regime switching asset price models with general utility functions, see Ma et al.
(2017).

In this paper we adopt a similar line of attack to utility maximization with the Heston
stochastic volatility model. We, however, cannot apply any results of Ma et al. (2017) in this
paper as model formulations are different, which results in completely different dual control
problems and lower and upper bounds. We derive the dual control problem and recover the
optimal solution for power utility in Zariphopoulou (2001) and Kraft (2005) using the dual
control approach. For general utilities, we propose a Monte-Carlo method to compute the lower
and upper bounds for the primal value function. We identify a class of dual controls that are
linear functions of the square root of the variance process, for which the upper bounds can be
computed efficiently with the closed form formula or the fast Fourier-cosine method thanks to the
affine structure of the Heston model. Numerical tests for power, non-HARA and Yaari utilities
show that these bounds are tight, which provides a good approximation to the primal value
function. To the best of our knowledge, this is the first time an effective dual control Monte-
Carlo method is proposed to find the tight lower and upper bounds for the value function with
the Heston stochastic volatility model and general utility functions. The significance of our dual
control Monte-Carlo method for utility maximization with the Heston model is that it provides
a simple and reliable way of estimating the lower and upper bounds of the value function and
finding the approximate optimal feedback control when the gap is tight. All these would be
impossible if one wants to solve the original problem directly with the HJB equation.

The rest of the paper is arranged as follows. In Section 2 we discuss the dual control method,
prove the strong duality theorem, and recover the same closed-form solution for power utility as
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that in Kraft (2005) with the dual approach. In Section 3 we present the dual control Monte-
Carlo method for computing tight lower and upper bounds of the value function. In Section 4 we
derive the closed-form upper bound for a specific form of the dual control and a class of utility
functions, including power, non-HARA and Yaari utilities. In Section 5 we perform numerical
tests to see the efficiency, accuracy, and robustness of the method, including an example with
regime-switching Heston model. Section 6 concludes. Appendix A gives the closed form solution
to the Riccati equation associated with the Heston model and Appendix B explains the COS
method in computing the upper bound for Yaari utility.

2 The Heston model and the dual control method

Assume that (Ω,F ,Ft, P ) is a given probability space with filtration Ft generated by standard
Brownian motions W s and W v with correlation coefficient ρ and completed with all P -null sets.
The market is composed of two traded assets, one savings account B with riskless interest rate
r and one risky asset S satisfying the following SDE (see Heston (1993)):

dSt = St[(r +Avt)dt+
√
vtdW

s
t ],

where A is a positive constant representing the market price of risk, v is an asset variance process
satisfying a mean-reverting square-root process:

dvt = κ(θ − vt)dt+ ξ
√
vtdW

v
t ,

θ is the long-run average volatility, κ the rate that vt reverts to θ, ξ the variance of
√
vt, and all

parameters are positive constants.
Let X be the wealth process. At time t ∈ [0, T ] the investor allocates a proportion πt of

wealth Xt in risky asset S and the remaining wealth in savings account B. Then the wealth
process X satisfies the SDE:

dXt = Xt[(r + πtAvt)dt+ πt
√
vtdW

s
t ], X0 = x0, (2.1)

where x0 is the initial wealth and π is a progressively measurable control process.
The utility maximization problem is defined by

sup
π
E[U(XT )] subject to (2.1), (2.2)

where U is a utility function that is continuous, increasing and concave (but not necessarily
strictly increasing and strictly concave) on [0,∞), and U(0) = 0. To solve (2.2) with the
stochastic control method, we define the value function

W(t, x, v) := sup
π
Et,x,v[U(XT )], (2.3)

where Et,x,v is the conditional expectation operator given Xt = x, vt = v. Since U is concave, the
value function W(t, x, v) is concave in x for fixed t and v. The dynamic programming principle
states that for h > 0, sufficiently small, the value function W satisfies the following dynamic
programming equation:

W(t, x, v) = sup
π
Et,x,v[W(t+ h,Xt+h, vt+h)],
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where π is a feasible control process defined on [t, t+h]. Furthermore, ifW is in C1,2,2 satisfying
some growth conditions, then W satisfies the following HJB equation:

∂W
∂t

+sup
π

{
(rx+ πxAv)Wx + κ(θ − v)Wv +

1

2
π2x2vWxx +

1

2
ξ2vWvv + ρπxξvWxv

}
= 0 (2.4)

with the terminal condition W(T, x, v) = U(x), where Wx is the partial derivative of W with
respect to x and evaluated at (t, x, v), the other derivatives are similarly defined. The maximum
in (2.4) is achieved at

π = − AWx

xWxx
− ξρWxv

xWxx
. (2.5)

Inserting (2.5) into (2.4) gives a nonlinear PDE

∂W
∂t

+ rxWx + κ(θ − v)Wv +
1

2
ξ2vWvv −

1

2Wxx
[A
√
vWx + ξρ

√
vWxv]

2 = 0. (2.6)

The HJB equation (2.6) is crucially important in characterizing the value function W. Further-
more, if there exists a C1,2,2 solution W̄ to the HJB equation (2.6), then the verification theorem
(see Pham (2009)), under some mild integrability conditions, states that W̄ coincides with the
value function W and π in (2.5) is the optimal feedback control. Since the HJB equation (2.6)
is a nonlinear PDE with two state variables, it is in general difficult to prove the existence of a
C1,2,2 solution. Without assuming the differentiability of the value function W, one may show
thatW is a viscosity solution of (2.6) but may not be able to find the optimal control. However,
for a power utility U(x) = xp/p, 0 < p < 1, the solution to (2.6) can be decomposed as

W(t, x, v) = U(x)f(t, v)

for some function f which satisfies

∂f

∂t
+ prf + κ(θ − v)fv +

1

2
ξ2vfvv −

pv

2(p− 1)f
[Af + ξρfv]

2 = 0 (2.7)

with the terminal condition f(T, v) = 1. The optimal control is given by

π = − A

(p− 1)
− ξρfv

(p− 1)f
.

The equation (2.7) is simpler than the equation (2.6) but is still a nonlinear PDE. Thanks to
the affine structure of the Heston model, the solution f of the equation (2.7) has an analytical
form as

f(t, v) = exp(C(t) +D(t)v),

where C and D are solutions to some Riccati-type ordinary differential equations (ODEs) with
terminal conditions C(T ) = 0 and D(T ) = 0 and can be easily solved, and the optimal control
is given by π = (A+ ξρD(t))/(1− p), see Kraft (2005) for details.

The success of simplifying the HJB equation (2.6) to a solvable nonlinear PDE (2.7) crucially
depends on the assumption that the utility function is a power utility. For general utility
functions (e.g., non-HARA and Yaari utilities), it is virtually impossible one can postulate the
form of the solution to the HJB equation (2.6) and then find the closed-form solution.

The dual function of U is defined by

Ũ(y) = sup
x≥0

[U(x)− xy], (2.8)
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for y ≥ 0. The function Ũ(y) is a continuous, decreasing and convex function on [0,∞) and
satisfies Ũ(∞) = 0. The dual process has the following form:

dYt = Yt[αtdt+ βtdW
s
t + γtdW

v
t ], Y0 = y,

where α, β, γ are some stochastic processes and y is a positive number. α, β, γ, y are to be
determined such that XY is a super-martingale for any control process π, which, together with
the definition of the dual function Ũ in (2.8), leads to

sup
π
E[U(XT )] ≤ inf

y
( inf
α,β,γ

E[Ũ(YT )] + xy), (2.9)

and we have a weak duality relation. To make XY a super-martingale, we can use Itô’s formula
to get

αt ≤ −r, βt = −A
√
vt − ργt.

Furthermore, since Ũ is a decreasing convex function, we must have αt = −r. Therefore, the
dual process is given by

dYt = Yt[−rdt− (ργt +A
√
vt)dW

s
t + γtdW

v
t ], Y0 = y, (2.10)

where γ is a dual control process and y is also a dual control variable. The solution to (2.10) at
time T , with initial condition Yt = y, can be written as

YT = y exp(Mt,T ),

where

Mt,T = −
∫ T

t

(
r +

1

2
(1− ρ2)γ2

u +
1

2
A2vu

)
du−

∫ T

t
(ργu +A

√
vu)dW s

u +

∫ T

t
γudW

v
u .

Define the dual value function as

W̃(t, y, v) := inf
γ
Et,y,v[Ũ(YT )].

Since U is concave and U(0) = 0, the dual function Ũ is convex and nonnegative, which implies

that the dual value function W̃ is well-defined and W̃(t, y, v) is convex in y for fixed t and v.

Similar to the derivations of the HJB equation (2.4), assuming that W̃ is in C1,2,2, then W̃
satisfies the following dual HJB equation

∂W̃
∂t

+ inf
γ

{
− ryW̃y + κ(θ − v)W̃v +

1

2
y2[A2v + γ2(1− ρ2)]W̃yy

+ y[γξ
√
v(1− ρ2)−Avξρ]W̃yv +

1

2
ξ2vW̃vv

}
= 0 (2.11)

with the terminal condition W̃(T, y, v) = Ũ(y). The minimum in (2.11) is achieved at

γ = −ξ
√
vW̃yv

yW̃yy

. (2.12)

Inserting (2.12) into (2.11) gives

∂W̃
∂t
−ryW̃y+κ(θ−v)W̃v+

1

2
W̃yyy

2A2v−
ξ2vW̃2

yv

2W̃yy

(1−ρ2)−AvξρyW̃yv+
1

2
W̃vvξ

2v = 0. (2.13)
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A similar discussion to that after the HJB equation (2.6) applies here, that is, if there exists a
C1,2,2 solution to the dual HJB equation (2.13) then that solution is the dual value function,

otherwise, one may show that W̃ is a viscosity solution to (2.13). From the discussions above
and the inequality (2.9), we have the following dynamic version of the weak duality relation:

W(t, x, v) ≤ inf
y>0

[W̃(t, y, v) + xy]. (2.14)

The next theorem states that there is a strong duality relation between the classical solutions
of the primal HJB equation (2.6) and the dual HJB equation (2.13), which implies that if one
can solve the dual problem, then one can use the dual optimal solution to construct the primal
optimal solution without having to solve the primal HJB equation directly.

Theorem 2.1. Assume that there exists a C1,2,2 solution W̃ to the dual HJB equation
(2.13) and W̃(t, y, v) is strictly convex in y for fixed t and v and satisfies W̃y(t, 0, v) = −∞ and

W̃y(t,∞, v) = 0. Then the primal value function is given by

W(t, x, v) = W̃(t, y∗, v) + xy∗,

where y∗ = y(t, x, v) is the solution to the equation

W̃y(t, y, v) + x = 0.

Furthermore, W ∈ C1,2,2 is the solution to the HJB equation (2.6) with the boundary condition
W(T, x, v) = U(x) and the optimal feedback control is given by

π(t, x, v) =
A

x
y∗W̃yy(t, y

∗, v)− ξρ

x
W̃yv(t, y

∗, v). (2.15)

Proof. Define

Ŵ(t, x, v) = inf
y>0

[
W̃(t, y, v) + xy

]
. (2.16)

Since W̃ ∈ C1,2,2 and is strictly convex in y and W̃y(t, 0, v) = −∞ and W̃y(t,∞, v) = 0, we have

Ŵ(t, x, v) = W̃(t, y∗, v) + xy∗,

where y∗ = y(t, x, v) satisfies W̃y(t, y, v) +x = 0. Using the Implicit Function Theorem, we have

y ∈ C1,2,2 and therefore Ŵ ∈ C1,2,2. Simple calculus shows that

∂Ŵ
∂t

=
∂W̃
∂t

, Ŵx = y∗, Ŵv = W̃v,

and

Ŵxx = − 1

W̃yy

, Ŵxv = −W̃yv

W̃yy

, Ŵvv = −(W̃yv)
2

W̃yy

+ W̃vv.

Substituting these relations into (2.13) gives that Ŵ satisfies the HJB equation (2.6). Moreover

it follows from the conjugate equation (2.16) and W̃ (T, y, v) = Ũ(y) that Ŵ(T, x, v) = U(x).

The verification theorem then gives W(t, x, v) = Ŵ(t, x, v). The optimal feedback control is
derived from (2.5) and the dual relations of the derivatives.
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Remark 2.2. Theorem 2.1 shows that there is no duality gap if there exists a C1,2,2 solution
W̃ to the dual HJB equation (2.13) and the dual control γ takes the form (2.12). This is

interesting in theory and is useful if one knows W̃. In general, it is highly unlikely one can find
W̃ as it requires to solve an equally difficult nonlinear PDE (2.13). At first sight this seems
to indicate that the usefulness of the dual formulation is limited. A closer look would convince
us that the dual formulation is very useful in helping solve the primal problem. Since the dual
problem is a minimization problem, for any fixed dual control γ, one automatically gets an upper
bound for the primal value function using the weak duality relation (2.14). Furthermore, if one

can choose a dual control γ which gives a good approximation to W̃, then one may use (2.15) to
construct a feasible control for the primal problem and get a good lower bound for the primal value
function. All these would be impossible without using the dual formulation. This is essentially
the idea we use to design a Monte-Carlo method for computing tight lower and upper bounds of
the primal value function in the next section. Since we are only interested in finding the bounds
of the primal value function, there is no need to show the existence of an optimal control to the
dual problem nor to find the exact dual value function. If the gap between the lower and upper
bounds is sufficiently tight, we have found a good approximate value, which would be practically
adequate for many portfolio optimization problems.

Remark 2.3. There are two expressions for optimal control π. One is in the original space
(2.5), the other in the dual space (2.15). They are equivalent by the derivative relations between

Ŵ and W̃ in the proof of Theorem 2.1. We normally approximate the dual space optimal control
π with the Monte-Carlo method, but if π has an explicit expression in the original or dual space,
we choose (2.5) or (2.15) respectively to save the computational time.

Remark 2.4. Zeng and Taksar (2013) investigate a general stochastic volatility model of
the following form

dSt = St [µ(zt, t)dt+ g(zt, t)dW
s
t ] , (2.17)

dvt = κ(θ − vt)dt+ ξ
√
vtdW

v
t ,

where
µ(z, t) = r +A

√
vg(z, t), v = G(z)

and G is a strictly monotone C2 function and θ, κ, ξ, A are positive constants. If g(z, t) =
√
z

and G(z) = z, one recovers the Heston model; if g(z, t) =
√
z and G(z) = z−1, one recovers

the 3/2 model. Zeng and Taksar (2013) derive the explicit solutions to the utility maximization
under the model (2.17) for power and exponential utilities and prove a verification theorem. The
weak duality relation in (2.14) and the strong duality relation in Theorem 2.1 can be extended
to the above general stochastic volatility model and other one factor models without necessarily
displaying the affine property, provided the underlying asset price process S follows a geometric
Brownian motion type process. The lower and upper bound approach described in Remark 2.2
can be applied.

For power utility U(x) = xp/p, we can indeed solve the dual problem and find a closed-
form solution to (2.13) and therefore solve the primal problem with the dual method. This is
explained in the next result.

Corollary 2.5. For power utility U(x) = (1/p)xp, 0 < p < 1, the primal value function is
given by

W(t, x, v) =
xp

p
exp

[
(1− p)(C(t) +D(t)v)

]
, (2.18)
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where C(t) and D(t) satisfy the following systems of equations:

C ′(t) = −κθD(t)− rp

1− p
, C(T ) = 0,

and

D′(t) =
1

2
D2(t)ξ2[p(1− ρ2)− 1] +D(t)(κ−Aξρ p

1− p
)− p

2(1− p)2
A2, D(T ) = 0.

The optimal control at time t is given by

πt =
A

1− p
+
ξρD(t)

1− p
.

Proof. The dual function of U is given by Ũ(y) = −(1/q)yq, where q = p/(p − 1). We may set

W̃(t, y, v) = Ũ(y)f̃(t, v) and substitute it into the equation (2.13) to get a simplified equation
for f̃ :

∂f̃

∂t
−rqf̃+κ(θ−v)f̃v+

1

2
q(q−1)f̃A2v− q

2(q − 1)
ξ2v

f̃2
v

f̃
(1−ρ2)− qAvξρf̃v+

1

2
f̃vvξ

2v = 0 (2.19)

with the terminal condition f̃(T, v) = 1. We can solve equation (2.19) by setting f̃(t, v) =
exp(C(t) +D(t)v) and substituting f̃ into (2.19) to get two ODEs for C and D in the statement
of Corollary 2.5. We can easily find C(t) once D(t) is known and solve the Riccati equation to

get a closed-form solution D(t), see Appendix A. Next we solve the equation W̃y + x = 0 to get

y∗ = [x exp(−C(t)−D(t)v)]p−1 .

Using Theorem 2.1, we obtain the primal value function by the relation

W(t, x, v) = W̃ (t, y∗, v) + xy∗,

which gives (2.18). The control π is thus obtained from formula (2.5).

Corollary 2.5 shows that the dual control method of Theorem 2.1 gives the closed-form
formula for the primal value function with the power utility. After communicating the notations,
we see that formula (2.18) is the same as that in Proposition 5.2 of Kraft (2005).

3 Monte-Carlo lower and upper bounds

For general utility functions, it seems impossible we can solve the primal problem by using
Theorem 2.1, see the discussions after Theorem 2.1. From the weak duality relation (2.14) we
have

W(t, x, v) ≤ inf
y>0

[inf
γ
Et,y,v[Ũ(YT )] + xy] ≤ inf

y>0
[Et,y,v[Ũ(YT )] + xy]. (3.1)

for all dual controls γ. For every fixed γ, define

Z(t, y, v) = Et,y,v[Ũ(YT )]. (3.2)

Since the dual function Ũ is nonnegative, Ũ(YT ) is a nonnegative random variable, Z(t, y, v) is
well-defined, but may take the value +∞. In that case, the upper bound in (3.1) does not give us
any information. We may simply discard γ and choose another one as we are only interested in
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an upper bound with finite value. Then Z is an upper bound and can be easily computed with
simulation. Note that Z(t, y, v) depends on the choice of dual control γ. Denote the conjugate
function of Z(t, y, v) for fixed t and v by

W(t, x, v) = inf
y>0

[Z(t, y, v) + xy]. (3.3)

The following theorem presents the tight lower and upper bounds on the primal value function.

Theorem 3.1. Let S be a set of admissible dual controls and W(t, x, v) be given by (3.3).
Then the optimal value function W(t, x, v) defined in (2.3) satisfies

W(t, x, v) ≤ inf
γ∈S
W(t, x, v). (3.4)

Furthermore, assume that Z(t, y, v) given by (3.2) is twice continuously differentiable and strictly
convex for y > 0 with fixed t and v, y∗ = y(t, x, v; γ) is the solution to the equation

Zy(t, y, v) + x = 0, (3.5)

the feedback control π̄(t, x, v), defined by

π̄(t, x, v) := A
y∗

x
Zyy(t, y∗, v)− ξρ

x
Zyv(t, y∗, v), (3.6)

is admissible, and X̄ is the unique strong solution to SDE (2.1) with the feedback control πt =
π̄(t, X̄t, vt) for t ∈ [0, T ]. Define

W(t, x, v) := Et,x,v[U(X̄T )]. (3.7)

Then the optimal value function W(t, x, v) satisfies

W(t, x, v) ≥ sup
γ∈S
W(t, x, v). (3.8)

Proof. It is obvious from (3.1) and the definitions of W(t, x, v) and W(t, x, v).

Remark 3.2. It is clear from Theorem 3.1 that it is straightforward to find the upper bound
W(t, x, v) as one only needs to compute the value Z(t, y, v) and to solve a scalar convex min-
imization problem. It is much more involved to find the lower bound W(t, x, v). One has to
assume some conditions on Z, which is unavoidable if one wants to construct a “good” feedback
control π̄(t, x, v) in (3.6) for the lower bound using the information of the upper bound from
the dual problem, see Remark 3.4 for an example of computing Z(t, y, v) and π̄(t, x, v) beyond
the power utility. The requirement of existence of a unique strong solution X̄ to SDE (2.1) is
a standard one in stochastic control theory, especially for the verification theorem, see Pham
(2009). On the other hand, one can easily find a lower bound without using Z(t, y, v) at all by
choosing any feasible control π for the primal problem and Et,x,v[U(XT )] is a lower bound for
the primal value function. The shortcoming of this approach is that the derived lower bound may
be distant from the true value function W(t, x, v) and does not provide much useful information.

Remark 3.3. Clearly, if S ⊂ S̃, then

W(t, x, v) ≤ inf
γ∈S̃
W(t, x, v) ≤ inf

γ∈S
W(t, x, v) (3.9)
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Using S̃ instead of S gives a tighter upper bound but is more time-consuming in computation.
The same applies to the lower bound. For numerical tests in Section 5, we choose the set S to
contain the following dual controls: γt = c(t), c(t)

√
vt, c(t)vt, where c is a piecewise constant

function

c(t) =

n∑
j=1

cj1(tj−1,tj ](t), (3.10)

with 0 = t0 < t1 < . . . < tn−1 < tn = T for n ≥ 1 and cj, j = 1, . . . , n being arbitrary constants.

Remark 3.4. If the dual function Ũ has the form Ũ(y) =
∑K

i=1 Ũi(y), where Ũi(y) =
−(1/qi)y

qi for qi < 0 and i = 1, . . . ,K, then

Z(t, y, v) =

K∑
i=1

Ũi(y)Fi(t, v),

where Fi(t, v) = Et,v[exp(qiMt,T )]. The upper bound is given by

W(t, x, v) = Z(t, y∗, v) + xy∗

and y∗ is the unique solution to equation (3.5), that is, −
∑K

i=1 y
qi−1Fi(t, v) + x = 0. The

feedback control for the lower bound is given by (3.6):

xπ̄(t, x, v) =
K∑
i=1

(y∗)qi−1

(
A(1− qi)Fi(t, v) + ξρ

∂

∂v
Fi(t, v)

)
.

For fixed dual control γt, 0 ≤ t ≤ T , we can use the Monte-Carlo method to compute Fi(t, v) and
approximate ∂

∂vFi(t, v) with the finite difference (Fi(t, v + h)− Fi(t, v − h))/(2h) for sufficiently
small h > 0. If K = 1, we have a closed-form solution y∗. If K > 1, we can use the Newton-
Raphson method to find y∗.

Remark 3.5. If the dual function Ũ is Lipschitz continuous, then we may use the pathwise
differentiation method to compute Zy(t, y, v), that is,

Zy(t, y, v) = Et,y,v[Ũ
′(y exp(Mt,T )) exp(Mt,T )].

For example, the dual function of Yaari utility (see (4.6)) is given by Ũ(y) = L(1 − y)+, we
have Ũ ′(y) = −L1{y<1}, where 1S is an indicator which equals 1 if S happens and 0 otherwise.
We can then approximate Zyy(t, y, v) and Zyv(t, y, v) with finite differences (Zy(t, y + h, v) −
Zy(t, y−h, v))/(2h) and (Zy(t, y, v+h)−Zy(t, y, v−h))/(2h), respectively, for sufficiently small
h > 0.

The Monte-Carlo methods can be used to find the tight lower and upper bounds, analogous to
the algorithm developed by Ma et al. (2017). To implement the method, we need to discretize the
variance process v, the dual process Y and the wealth process X. We discretize these processes
by the full-truncation Euler method (see Lord et al. (2010)):

vt+∆t = vt + κ(θ − v+
t )∆t+ ξ

√
v+
t

√
∆tZ1

Yt+∆t = Yt − rYt∆t− (ργt +A

√
v+
t )Yt
√

∆tZ2 + Ytγt
√

∆tZ1

X̄t+∆t = X̄t + rX̄t∆t+ π̄tX̄t

√
v+
t

(
A

√
v+
t ∆t+

√
∆tZ2

)
,
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where Z1 and Z2 are two standard normal variables with correlation ρ and v+
t = max(0, vt).

For wealth process X̄ driven by π̄, it is possible that an investor may lose all his wealth
during the investment period. Thus if X̄t ≤ 0 for some t < T , we stop generating paths and set
X̄T = 0.

Remark 3.6. There is a well-known Feller condition 2κθ ≥ ξ2 for the Heston model, which
ensures that vt is strictly positive (see Feller (1951)). When it is violated, 0 becomes attainable
for vt process with some strongly reflecting properties (see Andersen and Piterbarg (2011)), which
may cause problems for numerical simulation and applications. For example, in the stock and
foreign exchange market, the calibration of the Heston model often yields high variance parameter
ξ which violates the Feller condition (see Duffie et al. (2000)) and may cause numerical errors
in getting negative vt. Among many numerical algorithms for the Heston model, it is known that
the full-truncation Euler method can handle the violation case with strong L1 convergence and
outperforms (in terms of bias and root-mean-squared error) the other algorithms in the literature
(see Lord et al. (2010)). In this paper, we use the full-truncation Euler method and do not rely
on the Feller condition for simulation and analysis, which makes the algorithm more flexible for
practical uses.

Next we describe the Monte-Carlo methods for computing the tight lower and upper bounds
at time 0. The tight lower and upper bounds at other time t can be computed similarly. Assume
X0 = x, v0 = v and the dual utility function Ũ in (2.8) are known. The dual control γt = c(t)
or c(t)

√
vt or c(t)vt, where c is a piecewise constant function given by (3.10). Denote by S the

set of vectors C := (c1, . . . , cn) which form the coefficients of the function c.

Monte-Carlo method for computing tight lower and upper bounds:

Step 1: Fix a vector C ∈ S and a form of dual control γt.

Step 2: Generate M sample paths of Brownian motion W s and W v, discretize SDE (2.10),
compute YT with Y0 = y and the average derivative:

∂Z(0, y, v)

∂y
≈ 1

y

1

M

M∑
`=1

YT Ũ
′(YT ).

Step 3: Use the bisection method to solve equation (3.5) and obtain the solution y ≈ y∗.

Step 4: Compute the upper bound

W(0, x, v) ≈ Z(0, y∗, v) + xy∗.

Step 5: Find the feedback control process π̄ in (3.6) and generate the wealth process X̄ in
(2.1).

Step 6: Compute the lower bound

W(t, x, v) ≈ 1

M

M∑
`=1

U(X̄T ).

Step 7: Repeat Steps 1 to 6 with different C ∈ S to derive the tight lower bound
supC∈SW(0, x, v) and the tight upper bound infC∈SW(0, x, v).
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Remark 3.7. It is much more expensive to compute the tight lower bound due to the re-
quirement that one has to solve equation (3.5) and obtains the control process π̄ at each time
period while generating sample paths of the wealth process X̄ , not just at t = 0 as in the
computation of the tight upper bound. One technique to speed up is to use a four-dimensional
matrix π̄it×jx×kv×lC to pre-save the values of π̄ on a lattice, and then apply linear interpolation
to approximate the exact values we need while generating sample paths of X̄.

4 Closed-form upper bounds

For general dual controls γt, 0 ≤ t ≤ T , we have to use the Monte-Carlo method to compute
the upper bound Z(t, y, v) in (3.2). However, for a class of special dual controls and utility
functions, we can find the upper bound in closed-form. Since Y satisfies a linear SDE (2.10) and
Ũ is a decreasing and convex function, Z(t, y, v) is a decreasing and convex function for y > 0
with fixed t and v. Moreover, the Feynman-Kac theorem implies that Z satisfies the following
linear PDE:

Zt−ryZy+κ(θ−v)Zv+
1

2
Zyyy2[A2v+γ2(1−ρ2)]+Zyvy[γξ

√
v(1−ρ2)−Avξρ]+

1

2
Zvvξ2v = 0 (4.1)

with terminal condition Z(T, y, v) = Ũ(y), provided that Z(t, y, v) is the unique C1,2,2 solution to
(4.1) satisfying some growth conditions. The choice γt = c(t)

√
vt, where c is a piecewise constant

function, is particularly interesting as we can get the closed-form solution to the equation (4.1)
if Ũ is a linear combination of power functions. Specifically, if

γt = c(t)
√
vt,

where c is a piecewise constant function defined by (3.10), and

Ũ(y) =

K∑
i=1

Ũi(y), (4.2)

where Ũi(y) = −(1/qi)y
qi with qi < 0 for i = 1, . . . ,K. The solution to (4.1) is given by

Z(t, y, v) =
K∑
i=1

Ũi(y) exp(Ci(t) +Di(t)v), (4.3)

where Ci and Di satisfy the following ODEs:

C ′i(t) = −κθDi(t) + rqi, Ci(T ) = 0

and
D′i(t) = aiD

2
i (t) + bi(t)Di(t) + ηi(t), Di(T ) = 0

with coefficients given by ai = −(1/2)ξ2, bi(t) = κ − qiξ(c(t)(1 − ρ2) − Aρ), and ηi(t) =
−(1/2)qi(qi − 1)(A2 + c2(t)(1 − ρ2)). Furthermore, since c(t) is a piecewise constant function,
Di is given by

Di(t) =
n∑
j=1

Dij(t)1(tj−1,tj ](t),

where Dij , j = 1, . . . , n, are computed recursively as follows: for j = n,

D′in(t) = aiD
2
in(t) + bi(tn)Din(t) + ηi(tn), t ∈ [tn−1, tn]
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with terminal condition Din(tn) = 0 and, for j = n− 1, . . . , 1,

D′ij(t) = aiD
2
ij(t) + bi(tj)Dij(t) + ηi(tj), t ∈ [tj−1, tj ]

with terminal condition Dij(tj) = Di,j+1(tj). The closed-form solutions to Cij(t) and Dij(t) are
given by (A.3) and (A.2), respectively, in Appendix A. Comparing Z in Remark 3.4 and (4.3),
we see that

Fi(t, v) = exp(Ci(t) +Di(t)v)

and the upper bound W and the feedback control π̄ are given by

W(t, x, v) =

K∑
i=1

Ũi(y
∗)Fi(t, v) + xy∗ (4.4)

and

xπ̄(t) =
K∑
i=1

[A(1− qi) + ξρDi(t)](y
∗)qi−1Fi(t, v), (4.5)

where y∗ = y(t, x, v) is the unique solution to the equation
∑K

i=1 y
qi−1Fi(t, v) = x.

Since PDE (4.1) has a closed-form solution, this makes the computation of the upper bound
very fast. Even if the dual utility is not in the form of (4.2), but has some simple structure such
as call/put option payoff function, one can still compute the upper bound efficiently by using
the fast Fourier transform method. We next discuss several examples to illustrate these points.

Example 4.1. (power utility). For U(x) = xp/p, its dual function is given by Ũ(y) =
−(1/q)yq, where q = p/(p − 1). Let γt = c

√
vt. This is a special case of (4.2) with K = 1 and

q1 = q. The dual value function Z, defined by (3.2), is given by (4.3). For power utility, the
upper bound W and the feedback control π̄ can be written out explicitly as

W(t, x, v) = U(x) exp((1− p)(C(t) +D(t)v)) and π̄(t) = (1− q)[A+ ξρD(t)],

where C(t) and D(t) are given by (A.3) and (A.2), respectively, with t = 0, t̄ = T and f1 = f2 =
0. Note that π̄ is a deterministic function of time t. We can then use the Monte-Carlo method
to generate sample paths of the wealth process to compute the lower bound, see Remark 3.4.
However, for power utility, there is a fast approximation method to compute the lower bound as
shown next. By the Feynman-Kac theorem, the lower bound W , defined by (3.7), satisfies the
following PDE:

∂W
∂t

+ (r +Aπ̄(t)v)xWx + κ(θ − v)Wv +
1

2
π̄(t)2x2vWxx + ξπ̄(t)xvρWxv +

1

2
ξ2vWvv = 0

with the terminal condition W(T, x, v) = (1/p)xp. Thanks to the power utility, the solution of
the above equation is given by

W(t, x, v) =
xp

p
exp

[
C̄(t) + D̄(t)v

]
,

where C̄(t) and D̄(t) satisfy the following ODEs

C̄ ′(t) = −κθD̄(t)− rp, C̄(T ) = 0

and

D̄′(t) = −1

2
ξ2D̄2(t)− (ξπ̄(t)ρp− κ)D̄(t)−Apπ̄(t)− 1

2
π̄(t)2p(p− 1), D̄(T ) = 0.
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Even though D̄ satisfies a Riccati equation, there is no closed form solution for D̄ as π̄ is a con-
tinuous function, not a constant. We can nevertheless approximate π̄ with a piecewise constant
function and then get a closed-form approximate solution to D̄ with a recursive method. Specif-
ically, we may divide interval [0, T ] by grid points 0 = t̃0 < t̃1 < . . . t̃m = T and approximate π̄
by a piecewise constant function

π̃(t) =
m∑
k=1

π̄(t̃k)1(tk−1,tk](t).

π̃ can be made arbitrarily close to π̄. If we replace π̄ by π̃ in the Riccati equation for D̄, the
solution to the resulting equation can be written as

D̃(t) =
m∑
k=1

D̃k(t)1(tk−1,tk](t),

where D̃k, k = m, . . . , 1, satisfy some Riccati equations with constant coefficients on intervals
(t̃k−1, t̃k] and can be computed recursively in a closed form with terminal conditions D̃k(t̃k) =
D̃k+1(t̃k), see Appendix A for details. The function D̃ is a good approximation of D̄.

Example 4.2. (non-HARA utility). Assume that

U(x) =
1

3
H(x)−3 +H(x)−1 + xH(x),

for x > 0, where

H(x) =

(
2

−1 +
√

1 + 4x

)1/2

.

It can be easily checked that U is continuously differentiable, strictly increasing and strictly
concave, satisfying U(0) = 0, U(∞) = ∞, U ′(0) = ∞ and U ′(∞) = 0, see Bian and Zheng
(2015) for details. The dual function of U is given by

Ũ(y) =
1

3
y−3 + y−1.

Let γt = c
√
vt. This is a special case of (4.2) with K = 2 and q1 = −3, q2 = −1. The dual value

function Z is given by (4.3), the upper bound W by (4.4) and the feedback control π̄ by (4.5),
in the case here, y∗ can be computed explicitly as

y∗ =

(
F2(t, v) +

√
F2(t, v)2 + 4xF1(t, v)

2x

) 1
2

,

where Ci(t) and Di(t) are given by (A.3) and (A.2), respectively, with t = 0, t̄ = T and
f1 = f2 = 0, see Appendix A.

Note that, unlike the case for power utility, there is no closed form formula for the lower
bound W . One has to use the Monte-Carlo method to generate sample paths of the wealth process
in order to find its value. We can nevertheless find a reasonable lower bound at more expensive
computational cost.

Example 4.3. (Yaari utility). Assume that

U(x) = x ∧ L, (4.6)
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where L is a positive constant. U is a continuous, increasing and concave function, but not
differentiable at x = L and not strictly concave. Also note that U ′(0) = 1, so Inada’s condition
is not satisfied. This utility is called Yaari utility and is used in behavioural finance. The dual
function is given by

Ũ(y) = L(1− y)+.

For the dual process (2.10) with γt = c
√
vt, where c > 0 is an arbitrarily fixed constant, we

evaluate the dual value function

Z(t, y, v) = Et,y,v[Ũ(YT )] = Et,y,v[L(1− YT )+].

This is a European put option pricing problem with the Heston model, see Remark 4.4.
Let ZT = lnYT and z = ln y. Then

Z(t, y, v) = Z̃(t, z, v) = Et,z,v[L(1− eZT )+], (4.7)

with terminal condition Z̃(T, z, v) = L(1 − ez)+. Although the conditional probability density
function of ZT is unknown, its conditional characteristic function (namely, the Fourier transform
of the density function) can be derived. Therefore, analogous to the well-known Heston method in
Heston (1993), function Z in (4.7) can be written as an integral formula which can be evaluated
by efficient numerical integration (Fourier-cosine expansion, called COS method), see Fang and
Oosterlee (2008) for details. For the convenience of the reader, we explain the main ideas of the
COS method in Appendix B.

We now give some details. Define the conditional characteristic function of ZT by

φ(t, z, v;ω) = Et,z,v
[
eiωZT

]
.

By the Feynman-Kac theorem, φ satisfies the following PDE

∂φ

∂t
−
{
r +

1

2
v[A2 + c2(1− ρ2)]

}
φz + κ(θ − v)φv +

1

2
v[A2 + c2(1− ρ2)]φzz

+ vξ[c(1− ρ2)−Aρ]φzv +
1

2
ξ2vφvv = 0. (4.8)

Assume that φ takes the following form

φ(t, z, v;ω) = exp(C(t;ω) +D(t;ω)v + iωz). (4.9)

with C(T ;ω) = 0 and D(T ;ω) = 0. Inserting (4.9) into (4.8) gives that C and D satisfy the
Riccati equations in Appendix A with coefficients d1 = −κθ, d2 = riω and

a = −1

2
ξ2, b = −{ξ[c(1− ρ2)−Aρ]iω − κ}, η =

1

2
[A2 + c2(1− ρ2)](ω2 + iω).

The closed form solutions C and D are given by (A.3) and (A.2), respectively, with t = 0, t̄ = T ,
f1 = 0, f2 = 0. Define ϕ(t, v;ω) = e−iωzφ(t, z, v;ω). This is the conditional characteristic
function of ZT − Zt = lnYT − lnYt.

Following Fang and Oosterlee (2008), we can easily find that the upper bound is given by

W(t, x, v) = Z(t, y∗, v) + xy∗, (4.10)

where

Z(t, y∗, v) := Z̃(t, z∗, v) ≈
N−1∑′

k=0

Re

{
ϕ

(
t, v;

kπ

ζ2 − ζ1

)
e
ikπ

z∗−ζ1
ζ2−ζ1

}
Z̃k, (4.11)

and Z̃k, y∗ and other constants are given in Appendix B. The feedback control for computing
the lower bound is given by (3.6).
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Remark 4.4. For utility maximization with discretionary stopping (see e.g., Karatzas and
Wang (2000)), the corresponding dual problem is a finite-maturity American put option pricing
problem with the Heston model, which is much more complex and is not investigated in this
paper.

5 Numerical tests

In the following numerical examples we use the dual-control Monte-Carlo method to solve the
optimal control problem (2.3) with power, non-HARA and Yaari utilities. We compute the upper
bounds using the closed form formulas for power and non-HARA utilities and the Fourier-cosine
method for Yaari utility when γ = c

√
v and everything else (the lower bounds for all γ and the

upper bounds for γ = c and γ = cv) using the Monte-Carlo method with path number 100,000
and time steps 100 for discretizing SDEs with the Euler method, see Remarks 3.4 and 3.5.

5.1 Power utility

Example 5.1. This example is aimed to apply the lower and upper bound method to the
power utility when vt following mean-reversion square-root process. The following parameters

r = 0.05, ρ = −0.5, κ = 10, θ = 0.05, ξ = 0.5, A = 0.5, x0 = 1, v0 = 0.5, T = 1, (5.1)

are taken from Zhang and Ge (2016). The comparisons are implemented for the cases of sampling
control c for 1, 5, 80 times uniformly distributed in [−0.5, 0.5] for both the lower and upper bounds.
The benchmark value is the primal value explicitly given by Kraft (2005). The parameter p in
utility function equals 1/2, and other parameters follow values in (5.1). The numerical results
are listed in Table 1 in which the shorthand notations used are diff = UB−LB and rel-diff (%) =
(UB− LB)/LB× 100. The same notations are used for all subsequent numerical tests.

Table 1: Lower bound (LB) and upper bound (UB) for power utility (Example 5.1). The
benchmark from Example 5.1 equals 2.074842. diff = UB − LB and rel-diff (%) = (UB −
LB)/LB× 100

γt = c
Num c LB UB diff rel-diff (%) LB time (secs) UB time (secs)

1 2.074824 2.074894 7.01e−5 3.38e−3 2.62e+4 2.90e+0
5 2.074824 2.074894 7.01e−5 3.38e−3 2.63e+4 1.46e+1
80 2.074824 2.074893 6.92e−5 3.34e−3 2.76e+4 2.24e+2

γt = c
√
vt

Num c LB UB diff rel-diff (%) LB time (secs) UB time (secs)

1 2.074823 2.074845 2.12e−5 1.02e−3 4.65e+0 9.87e−4
5 2.074823 2.074845 2.12e−5 1.02e−3 2.33e+1 3.30e−3
80 2.074823 2.074842 1.88e−5 9.06e−4 3.91e+2 8.18e−3

γt = cvt
Num c LB UB diff rel-diff (%) LB time (secs) UB time (secs)

1 2.074824 2.074894 7.01e−5 3.38e−3 2.64e+4 2.83e+0
5 2.074824 2.074894 6.97e−5 3.36e−3 2.65e+4 1.38e+1
80 2.074824 2.074893 6.88e−5 3.31e−3 2.79e+4 2.15e+2
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Example 5.2. From Example 5.1, we see γt = c
√
vt outperforms other choices of γt. In this

example we further test the robustness of the dual control Monte-Carlo methods for γt = c
√
vt.

The comparisons are implemented for the cases of sampling control c for 1, 5, 80 times uniformly
distributed in [−0.5, 0.5] both for the lower and upper bounds. In Table 2, we give the mean and
standard deviation of the absolute and relative difference between the lower and upper bounds,
which are respectively denoted by mean diff, std diff, mean rel-diff (%), and std rel-diff (%),
for the power utility with randomly sampled parameters-sets: 10 samples of r from the uniform
distribution on interval [0.01, 0.08], ρ on [−1, 1], κ on [1, 10], θ on [0.01, 1], ξ on [0.1, 1], A on
[0.1, 1.5], x0 = 1, v0 = 0.5, and T = 1. The gap between the tight lower and upper bounds is
narrow and can be improved by adjusting the dual control variable c. This shows the accuracy
and reliability of the algorithm. The numerical results are listed in Table 2.

Table 2: Mean and std of the absolute and relative difference between the lower and upper
bounds for power utility (Example 5.2) with many randomly sampled parameters-sets.

Num c mean diff std diff mean rel-diff (%) std rel-diff (%) mean time (secs)
1 2.2695e−3 2.7658e−3 9.8159e−2 1.1543e−1 4.29e+1
5 2.2660e−3 2.7632e−3 9.8010e−2 1.1532e−1 2.16e+2
80 1.8253e−3 1.9986e−3 7.9391e−2 8.4384e−2 3.48e+3

5.2 Non-HARA utility

Example 5.3. This example is aimed to check the correctness of the lower and upper bounds
when process vt always constant through the time, in which case there is explicit solution to the
primal value function. Let v0 = θ, ξ = 0, and the other parameters be the same as (5.1). Denote
W̄1 = exp[(3r + 6A2θ)(T − t)] and W̄2 = exp[(r +A2θ)(T − t)]. Then the primal value function
has the following explicit form (see Bian and Zheng (2015)):

W(t, x) =
2

3

(
W̄2

y∗
+ 2xy∗

)
,

with

y∗ =

√
1

2x

(
W̄2 +

√
W̄ 2

2 + 4xW̄1

)
.

The lower and upper bounds are computed by the Monte-Carlo method with path number 100, 000
and time steps 100. The numerical results are listed in Table 3, in which the numerics show
that the benchmark is between the lower and upper bound, and the difference between these is
proportional to 10−4 and relative difference 10−5. Therefore, the lower and upper bound methods
are reliable and accurate.

Table 3: Lower bound (LB) and upper bound (UB) for Example 5.3 (non-HARA utility).

Benchmark LB UB diff rel-diff (%)

2.307810 2.307691 2.307843 1.52e−4 6.60e−3

Example 5.4. This example is aimed to apply the lower and upper bound methods to the
non-HARA utility when vt following mean-reversion square-root process. The comparisons are
implemented for the cases of sampling control c for 20 times uniformly distributed in [−0.5, 0.5]
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Table 4: Lower bound (LB) and upper bound (UB) for non-HARA utility (Example 5.4).

γ LB UB diff rel-diff(%) LB time (secs) UB time (secs)

c 2.327407 2.327834 4.27e−4 1.83e−2 2.43e+4 5.37e+1
c
√
vt 2.327573 2.327858 2.84e−4 1.22e−2 1.36e+2 4.35e−3

cvt 2.327411 2.327833 4.21e−4 1.81e−2 2.41e+4 5.58e+1

both for the lower and upper bounds. The other parameters values are the same as in (5.1). The
numerical results in Table 4 show that the choice γ = c

√
vt outperforms the others.

Using the optimal control c∗ = 0.491037386 for computing the tight lower bound for γt = c
√
vt

in Table 4, we draw the 3D figures for the feasible control strategy π̄ and the distribution of the
terminal wealth (see Figure 1). The left figure shows the percentage invested in the stock reaches
lowest when variance process is large at initial time and reaches highest when variance process is
low near the terminal time, which coincides the behavior of risk-aversion investor. The middle
figure shows the percentage invested in the stock increases as the wealth increases, which coincides
with the relative risk aversion coefficient’s property of non-HARA utility (see Bian and Zheng
(2015)). The right figure shows the distribution of the terminal wealth which is positively skewed.
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Figure 1: 3D and 2D figures for non-HARA utility (Example 5.4) under the dual control γt =
c∗
√
vt with c∗ = 0.491037386. The left and middle figures are the corresponding control strategies

π̄(t, x, v) with initial wealth x0 = 1 and initial variance v0 = 0.5, respectively, and the right figure
is the distribution of the terminal wealth.

Example 5.5. In this example, we further examine the robustness of the lower and upper
bound methods with γt = c

√
vt. The comparisons are implemented for the cases of sampling

control c for 1, 5, 20 times, uniformly distributed in [−0.5, 0.5], for both the lower and upper
bounds. In Table 5, we give the mean and standard deviations of the absolute and relative
differences between the lower and upper bounds, denoted respectively by mean diff, std diff, mean
rel-diff (%), and std rel-diff (%), for non-HARA utility with randomly sampled parameters-sets:
10 samples of r from the uniform distribution on interval [0.01, 0.08], ρ on [−1, 1], κ on [1, 10], θ
on [0.01, 1], ξ on [0.1, 1], A on [0.1, 1.5], x0 = 1, v0 = 0.5, and T = 1. The difference between the
tight lower and upper bounds is small and can be improved by adjusting the dual control variable
c. This shows the accuracy and reliability of the algorithm.

5.3 Yaari utility

Example 5.6. This example is aimed to check the lower and upper bound methods when
process vt always constant through the time. Let v0 = θ, ξ = 0, and the other parameters be the
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Table 5: Mean and std of the absolute and relative difference between the lower and upper
bounds for non-HARA utility (Example 5.5) with many randomly sampled parameters-sets.

Num c mean diff std diff mean rel-diff (%) std rel-diff (%) mean time (secs)
1 1.1434e−2 1.7040e−2 4.2995e−1 6.3311e−1 1.33e+2
5 9.3788e−3 1.2686e−2 3.5362e−1 4.6995e−1 6.64e+2
20 8.5262e−3 1.2124e−2 3.1998e−1 4.4861e−1 2.66e+3

same as (5.1). Then the analytical solution to the primal value is given by

W(t, x) =

{
LΦ{Φ−1[ xLe

r(T−t)] +A
√
θ(T − t)}, 0 ≤ x < Le−r(T−t),

L, x ≥ Le−r(T−t).

The upper bound is computed by the Monte-Carlo methods with path number 10, 000 and time
steps 100, and the lower bound with path number 100, 000 and time steps 100. The threshold L
is taken as L = 2. The numerical results are listed in Table 6, which confirm that the lower and
upper bound methods are reliable and accurate.

Table 6: Lower bound (LB) and upper bound (UB) for Yaari utility (Example 5.6).

Benchmark LB UB diff rel-diff (%)

1.139790 1.136091 1.139889 3.80e−3 3.34e−1

Example 5.7. This example is aimed to apply the lower and upper bound methods to the
Yaari utility when vt following mean-reversion square-root process. The comparisons are im-
plemented for sampling control c for 20 times uniformly distributed in [−0.5, 0.5] both for the
lower and upper bounds. The values of other parameters are the same as Example 5.6. For the
Fourier-cosine methods, we set the truncation number as N = 64. The numerical results are
listed in Table 7. It is shown that the choice γt = c

√
vt outperforms the others.

Table 7: Lower bound (LB) and upper bound (UB) for Yaari utility (Example 5.7).

γ LB UB diff rel-diff (%) LB time (secs) UB time (secs)

c 1.113889 1.174928 6.10e−2 5.48e+0 1.08e+4 6.08e+0
c
√
vt 1.172057 1.173366 1.31e−3 1.12e−1 2.37e+3 2.48e−1

cvt 1.137594 1.174928 3.73e−2 3.28e+0 1.09e+4 5.69e+0

Using the optimal control c∗ = 0.2615142622 for computing the tight lower bound with γt =
c
√
vt in Table 7, we draw the 3D figures for the corresponding control strategies π̄(t, x, v) and

the distribution of the terminal wealth (see Figure 2). The left and middle figures show that as
time t tends to maturity T and variance v or wealth x tends to 0, the percentage invested in
the stock tends to infinite, which is consistent with the behavior of a Yaari utility investor who
invests heavily by borrowing near the end of an investment period in the hope of reaching the
ultimate target. The right figure displays the terminal wealth distribution which is a Bernoulli-
like distribution (total loss or total win), similar to those in the GBM and regime-switching cases
(see Ma et al. (2017)).

Example 5.8. In this example, we further test the robustness of the lower and upper bound
methods for γt = c

√
vt. The comparisons are implemented for the cases of sampling control
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Figure 2: 3D and 2D figures for Yaari utility (Example 5.7) under the dual control γt = c∗
√
vt

with c∗ = 0.2615142622. The left and middle figures are the corresponding control strategies
π̄(t, x, v) with initial wealth x0 = 1 and initial variance v0 = 0.5, respectively. The right figure
is the distribution of the terminal wealth.

c for 1, 5, 20 times uniformly distributed in [−0.5, 0.5] both for the lower and upper bounds. In
Table 8, we list the mean and standard deviations of the absolute and relative differences between
the lower and upper bounds with randomly sampled parameters-sets: 10 samples of r from the
uniform distribution on interval [0.01, 0.08], ρ on [−1, 1], κ on [1, 10], θ on [0.01, 1], ξ on [0.1, 1],
A on [0.1, 1.5], x0 = 1, v0 = 0.5, and T = 1. The difference between the tight lower and upper
bounds is small and can be improved by adjusting the dual control variable c. This shows the
accuracy and reliability of the algorithm.

Table 8: Mean and std of the absolute and relative difference between the lower and upper
bounds for Yaari utility (Example 5.8) with many randomly sampled parameters-sets.

Num c mean diff std diff mean rel-diff (%) std rel-diff (%) mean time
1 6.9575e−3 5.0882e−3 5.2082e−1 3.4214e−1 1.22e+3
5 6.3116e−3 4.7772e−3 4.7119e−1 3.2324e−1 1.73e+3
20 5.8369e−3 4.5691e−3 4.3418e−1 3.1094e−1 3.65e+3

5.4 Regime-switching model

In this example, we aim to test the robustness of the lower and upper bound methods for the
regime-switching Heston model. The coefficients of the dynamics are driven by a continuous
time finite state observable Markov chain process (MCP) α which is independent of Brownian
motions W s,W v and has the following semi-martingale representation:

αt = α0 +

∫ t

0
Qtrαvdv + Mt, 0 ≤ t ≤ T, (5.2)

where αt is a unit vector in the set {e1, e2, . . . , ed} with ei ∈ Rd being a column vector with
1 in the ith position and 0 elsewhere, α0 is the initial Markov chain state, Q = (qij)d×d is the

generator of MCP α with qij ≥ 0 for i 6= j and
∑d

j=1 qij = 0 for each i ∈ D := {1, . . . , d}, and
M is a purely discontinuous square-integrable martingale with initial value zero, see Elliott et
al. (1994).

The dynamics of the bond and the stock price processes B and S are given by the following
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regime-switching Heston model for t ∈ [0, T ],

dBt = rtBtdt,

dSt = St[(rt +Atvt)dt+
√
vtdW

s
t ],

dvt = κt(θt − vt)dt+ ξt
√
vtdW

v
t ,

where rt = rαt, At = Aαt, κt = καt, θt = θαt, ξt = ξαt, dW
s
t dW

v
t = ρtdt = ραtdt.

r = (r1, . . . , rd) is a vector of risk-free interest rates with ri > 0 being the rate in regime i. The
market price of risk A, the mean reverting rate κ, the long-run average volatility θ, the variance
ξ, the correlation ρ are defined similarly.

Let X be the wealth process. At time t ∈ [0, T ] the investor allocates a proportion πt of
wealth X in risky asset S and the remaining wealth in savings account B. Then the wealth
process X satisfies the SDE:

dXt = Xt[(rt + πtAtvt)dt+ πt
√
vtdW

s
t ], X0 = x0, (5.3)

where π is a progressively measurable control process.
The regime-switching GBM case for utility maximization has been studied in Ma et al.

(2017). In the following, we will extend the dual control method to the regime-switching Heston
model. Suppose that a dual process has the following form

dYt = Yt[−rtdt− (ρtγt +At
√
vt)dW

s
t + γtdW

v
t + C1dMt], Y0 = y, (5.4)

where γ is a dual control process and C1 a constant row vector in Rd with components in
(−0.5, 0.5). We take dual controls γt in the form of C2αt, C2αt

√
vt, and C2αtvt, where C2 is a

constant row vector in Rd. Using Itô’s formula, we can check that XY is a supermartingale for
any control process π, which leads to the following weak duality relation

sup
π
E[U(XT )] ≤ inf

y

(
inf

C1,C2

E[Ũ(YT )] + x0y
)
, (5.5)

We can now use the algorithm developed in Ma et al. (2017) to generate MCP α and complete
the numerical simulation by the dual control Monte-Carlo method discussed in Section 3.

Consider a 2-state Markov chain process with a generating matrix

Q =

(
−a a
b −b

)
, (5.6)

where a, b are positive constants. To show the robustness of the algorithm, we have chosen 5
samples of a, b from the uniform distribution on interval [0.1, 2.0], which means the transition
of one state to another can be slow (average once every 10 years) or fast (average twice a
year) or anything in between. The states can be “growth economy” (state 1) and “recession
economy” (state 2). For other parameters, we sample r1, r2 from the uniform distribution on
interval [0.01, 0.08], ρ1, ρ2 on [−1, 1], κ1, κ2 on [1, 10], θ1, θ2 on [0.01, 1], ξ1, ξ2 on [0.1, 1], A1, A2

on [0.1, 1.5], x0 = 1, v0 = 0.5, and T = 1. The lower and upper bounds are both computed
by the Monte-Carlo methods with path number 10, 000 and time steps 50. The control vector
(C1,C2) are sampled in [−0.4, 0.4]4 for 10,000 times for computing the upper bound and 20
times for the lower bound. Table 9 shows that the differences between the lower and upper
bounds are very small and the suggested dual control Monte-Carlo method is robust and stable.

Remark 5.9. In all numerical tests above, we have listed the lower and upper bounds in
terms of utilities, that is, the optimal value function is in between LB and UB. Rather than
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Table 9: The difference between the lower bound and upper bound for power utility in regime-
switching Heston model.

γt C2αt C2αt
√
vt C2αtvt

mean diff 2.3977e−3 2.2781e−3 2.2638e−3
std diff 2.3325e−3 2.2543e−3 2.2135e−3
mean rel-diff (%) 1.1307e−1 1.0743e−1 1.0678e−1
std rel-diff (%) 1.0570e−1 1.0220e−1 1.0035e−1

listing values in units of utility at maturity T , we may express the lower and upper bounds in
units of initial wealth at time 0. This is possible in the domain of the utility function U where
it is strictly increasing. Once having the utility value z at time T , we can solve the equation
U(erTx) = z, where r is the riskless interest rate, and get the initial wealth value x at time
0, either analytically if there is a closed-form formula or numerically with the Newton method.
For example, in Table 1 for power utility U(x) = (1/2)

√
x and dual control γt = c

√
vt with

T = 1 and r = 0.05, we have LB is 2.074823 and UB 2.074845, the corresponding initial
wealth values for these two bounds are xLB = 1.023736 and xUB = 1.023756, the difference
of the two is 0.000020, or 0.0020% of the wealth, which may be explained as the additional
initial wealth that would make an investor indifferent between the two bounds. Similarly, in
Table 4 for non-HARA utility and dual control γt = c

√
vt, we have LB is 2.327573 and UB

2.327858, the corresponding initial wealth values for these two bounds are xLB = 1.032793 and
xUB = 1.033012, the difference of the two is 0.000219, or 0.0212% of the wealth. In Table
7 for Yaari utility with the threshold level L = 2 and dual control γt = c

√
vt, we have LB is

1.172057 and UB 1.173366, the corresponding initial wealth values for these two bounds are
xLB = 1.114895 and xUB = 1.116140, the difference of the two is 0.001245, or 0.1117% of the
wealth. We thank the anonymous reviewer for suggesting this way of explaining the lower and
upper bounds.

6 Conclusions

In this paper we use the weak duality relation to construct the lower and upper bounds on
the primal value function for utility maximization under the Heston stochastic volatility model
with general utilities. We propose a dual control Monte-Carlo method to compute the bounds
and suggest some simple forms of the dual control γt which makes the bounds tighter and
computation easier. In particular, if γ is taken as γt = c(t)

√
vt with c being a piecewise constant

function, the closed form upper bound can be obtained for a broad class of utilities (including
power and non-HARA utilities), and the Fourier-Cosine formula can be used for the Yaari utility.
The gap between the lower and upper bounds can be reduced if the number of sampling or the
number of time pieces increases. Numerical examples show that the tight bounds can be derived
with little computational cost. The applications to the regime-switching Heston model are also
studied in the numerical examples. Based on the numerical results, it seems that using the
Monte-Carlo method with path numbers 100,000 and time steps 100 would provide tight lower
and upper bounds with absolute differences less than 0.01 in most cases.

Acknowledgments. The authors are very grateful to four anonymous reviewers whose con-
structive comments and suggestions have helped to improve the paper of the previous two
versions.
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A Closed-form solutions to Riccati equations

In the paper we need to solve a number of times the following system of equations:

C ′(t) = d1D(t) + d2, t ≤ t ≤ t̄

and
D′(t) = aD2(t) + bD(t) + η, t ≤ t ≤ t̄,

with the terminal conditions C(t̄) = f1 and D(t̄) = f2, where all coefficients are constants.
Assume b2 − 4aη > 0 and m1

m2
/∈ [e−k1(t̄−t), 1], where

k1 =
√
b2 − 4aη, m1 =

−b− k1

2a
, m2 =

−b+ k1

2a
.

The assumption b2− 4aη > 0 ensures m1 and m2 are distinct real numbers. We can first find D
by writing the equation as

1

a

(
1

D −m1
− 1

D −m2

)
dD

m1 −m2
= dt. (A.1)

Using the terminal condition and denote k2 = f2−m1

f2−m2
we obtain the solution to (A.1) as

D(t) =
m1 −m2

1− k2 exp[k1(t̄− t)]
+m2, (A.2)

which leads to a closed-form formula for D(t) on interval [t, t̄]. As for C(t), we have the following
form

C(t) = −d1(m1 −m2)

k1
ln

(
k2 − 1

k2 − exp[−k1(t̄− t)]

)
− d1m2(t̄− t)− d2(t̄− t) + f1. (A.3)

The assumption m1
m2

/∈ [e−k1(t̄−t), 1] is to exclude the case of
∫ t̄
t D(s)ds being hypersingular

integral.
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B COS method for the Heston model

Following the main idea of COS method in Fang and Oosterlee (2008), we explain how to derive
the upper bound for Yaari utility. For an option pricing problem expressed in (4.7), we rewrite
it into the following form

Z̃(t, z, v) = Et,z,v[L(1− eZT )+] =

∫
R
Z̃(T, y)g(y|z, v)dy. (B.1)

Since the density rapidly decays to zero as y → ±∞ in (B.1), we truncate the infinite integration
range without loosing significant accuracy to [ζ1, ζ2] ⊂ R, and obtain approximation Z̃(1):

Z̃(1)(t, z, v) =

∫ ζ2

ζ1

Z̃(T, y)g(y|z, v)dy.

In the second step, since g(y|z, v) is usually unknown whereas the characteristic function is, we
approximate the density function g by the first N terms of its cosine expansion in y, that is,

g(y|z, v) ≈
N−1∑′

k=0

Ak(z, v) cos

(
kπ

y − ζ1

ζ2 − ζ1

)
,

where
∑′ indicates that the first term in the summation is weighted by one-half and

Ak(z, v) :=
2

ζ2 − ζ1

∫ ζ2

ζ1

g(y|z, v) cos

(
kπ

y − ζ1

ζ2 − ζ1

)
dy.

Interchanging the summation and integration, and inserting the definition

Z̃k :=
2

ζ2 − ζ1

∫ ζ2

ζ1

Z̃(T, y) cos

(
kπ

y − ζ1

ζ2 − ζ1

)
dy =

2

ζ2 − ζ1
L[ψk(ζ1, 0)− χk(ζ1, 0)],

where

ψk(x1, x2) =

{ [
sin
(
kπ x2−ζ1ζ2−ζ1

)
− sin

(
kπ x1−ζ1ζ2−ζ1

)]
ζ2−ζ1
kπ , k 6= 0,

x2 − x1, k = 0,

χk(x1, x2) =
1

1 +
(

kπ
ζ2−ζ1

)2

[
cos
(
kπ
x2 − ζ1

ζ2 − ζ1

)
ex2 − cos

(
kπ
x1 − ζ1

ζ2 − ζ1

)
ex1

+
kπ

ζ2 − ζ1
sin
(
kπ
x2 − ζ1

ζ2 − ζ1

)
ex2 − kπ

ζ2 − ζ1
sin
(
kπ
x1 − ζ1

ζ2 − ζ1

)
ex1
]
,

we obtain approximation Z̃(2):

Z̃(2)(t, z, v) =
1

2
(ζ2 − ζ1)

N−1∑′

k=0

Ak(z, v)Z̃k.

Noting that

1

2
(ζ2 − ζ1)Ak(z, v) =

∫ ζ2

ζ1

g(y|z, v) cos

(
kπ

y − ζ1

ζ2 − ζ1

)
dy

≈
∫
R
g(y|z, v) cos

(
kπ

y − ζ1

ζ2 − ζ1

)
dy
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= Re

{
φ

(
t, z, v;

kπ

ζ2 − ζ1

)
e
−ikπ ζ1

ζ2−ζ1

}
,

we obtain

Z̃(t, z, v) ≈ Z̃(3)(t, z, v) =

N−1∑′

k=0

Re

{
φ

(
t, z, v;

kπ

ζ2 − ζ1

)
e
−ikπ ζ1

ζ2−ζ1

}
Z̃k.

Define ϕ(t, v;ω) = e−iωzφ(t, z, v;ω). We have derived (4.11). To find y∗ in (4.10) and the
feedback control π̄ in (3.6), we need to compute derivatives Zy, Zyy and Zyv, which is easy and
straightforward from the above approximate formula for Z(t, y, v). Finally, according to Fang
and Oosterlee (2008), we can choose the boundary of integral as

[ζ1, ζ2] :=
[
c1 − L1

√
|c2|, c1 + L1

√
|c2|
]
,

where

cn =
1

in
∂n ln(ϕ(t, v;ω))

∂ωn
|ω=0,

and L1 is a constant chosen large enough to guarantee ζ1 < 0 < ζ2. Cumulant c2 may become
negative for sets of Heston parameters that do not satisfy the Feller condition, i.e., 2κθ ≥ ξ2.
We therefore use the absolute value of c2.
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