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Abstract

This study investigates the optimal execution strategy of market-making for market and

limit order arrival dynamics under a novel framework that includes a synchronised factor

between buy and sell order arrivals. Using statistical tests, we empirically confirm that

a synchrony propensity appears in the market, where a buy order arrival tends to follow

the sell order’s long-term mean level and vice versa. This is presumably closely related

to the drastic increase in the influence of high-frequency trading activities in markets. To

solve the high-dimensional Hamilton–Jacobi–Bellman equation, we propose a deep neural

network approximation and theoretically verify the existence of a network structure that

guarantees a sufficiently small loss function. Finally, we implement the terminal profit

and loss profile of market-making using the estimated optimal strategy and compare its

performance distribution with that of other feasible strategies. We find that our estima-

tion of the optimal market-making placement allows significantly stable and steady profit

accumulation over time through the implementation of strict inventory management.

Keywords: Optimal strategy, Order arrival models, Synchrony, High-dimensional

Hamilton–Jacobi–Bellman, Deep neural network
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1. Introduction

The emergence of innovative technologies has accelerated the paradigm shift in trading

activities in financial markets. In particular, automated trading based on ultra-low latency
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electronic systems facilitates order generation, routing, and execution, all within a fraction

of a second. It uses computerised algorithmic trading called high-frequency trading (HFT)

that has grown dramatically over the past decade and now accounts for 55% and 40% of

all trades in the US and European equity markets, respectively; it is also rapidly growing

in the Asian market for a variety of asset classes (Miller and Shorter, 2016).

In general, little is publicly known about HFT strategies. According to the concept

releases of the US Securities and Exchange Commission (SEC, 2010, 2014), these strategies

can be categorised into two groups by risk appetite: passive and aggressive. Passive strate-

gies include market-making and arbitrage trading, which rarely depend on the direction

of price movements. Market-making trades mainly provide liquidity to the marketplace,

exploiting both bid and ask orders to generate a profit from the bid/ask spread. Arbitrage

trading is generally pursued to generate a profit from the price disparities among related

securities such as exchange-traded funds and baskets of underlying stocks. Meanwhile,

aggressive strategies involve momentum ignition and order anticipation strategies, which

use the price direction along with either a long or a short position. A momentum igni-

tion strategy aims to trigger sharp price movements – either up or down – by initiating a

series of orders. An order anticipation strategy seeks to identify large institutional orders

and then trade ahead of those orders in anticipation that they will move market prices.

Although these strategies are not new, the advanced technology now available may enable

traders to better identify profit opportunities and execute their strategies more effectively

than in the past.

These HFT strategies can lead financial markets to become more synchronised and

substantially increase correlations in the price structure because HFT is more likely to

occur by tracking price movement patterns than changes in market fundamentals. In

addition, orders tend to be submitted as a pair of long and short sides (i.e. round-trip

trades) and they are also executed subsequently and repeatedly on one side – either buy or

sell. Gerig (2015) proposes a single-period model of synchrony in financial markets caused

by HFT by drawing similarities with the behaviour of animal groups such as schooling fish

and herding birds. Given the current market circumstances, it is worthwhile to discuss

how a model can capture the highly dependent structure of order flow arrivals attributed

to HFT activities. In addition, for market-makers that may be designated by a firm or

pursue a market-making HFT strategy, the optimal placement of the bid/ask spread is a

crucial issue.

Despite the market structure changing towards a hyper-correlation regime, most stud-

ies modelling high-frequency dynamics still employ exciting factor-based Hawkes models.

However, synchronisation in order flow arrivals might not be temporary. In other words,

it can disappear if no subsequent orders are placed, owing to the continued likelihood of
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orders being synchronised because of HFT activities. In this context, we propose a model

for market order arrivals and limit order book dynamics based on the Hawkes process with

the addition of a novel variable, referred to as a synchronising factor. This factor makes

contemporaneous interactions between buy and sell orders feasible and also enables the

interacting effect to remain permanent in the long-term mean of order flows. We then con-

sider a decision-making problem for a market-maker when the synchronised market and

limit orders enter a trading book. We finally derive the market-maker’s optimal trading

strategy by maximising his or her profit and liquidating the inventory over a finite period.

Our order arrival model is based on Hawkes processes (Hawkes, 1971; Hawkes and

Oakes, 1974) that have been employed as a tool for modelling price movements in high-

frequency dynamics because of their great flexibility and versatility. As a pioneering work,

Bowsher (2007) introduces a bivariate Hawkes process to model the joint dynamics of

trades and mid-price changes on New York Stock Exchange (NYSE) stocks. Large (2007)

formulises the resiliency of limit order books based on a 10-variate Hawkes process by

testing stocks on the London Stock Exchange. In addition, many studies have employed

Hawkes processes in high-frequency finance (Bacry et al., 2012; Da Fonseca and Zaatour,

2014; Aı̈t-Sahalia et al., 2015; Lee and Seo, 2017). The key feature of Hawkes-based models

is the inclusion of exciting factors in their intensity processes. This means that a counting

process is more likely to increase when the counting event arrives because its intensity can

instantly jump depending on the movement of the original process. Such a design enables

us to capture the clustering phenomenon of arrivals in the counting process by using a

feedback kernel of its intensity that communicates with the counting arrivals.

In the proposed Hawkes intensity process, the exciting and synchronising components

appear to play similar roles, which leads to a strong correlation over time. Nevertheless,

from the perspective of the mechanism causing the abnormal impacts, synchronisation is

different from excitation. Exciting events are activated by certain external stimulations

such as a status change in the original and other relevant processes, and hence they ac-

celerate the arrivals of subsequent orders instantaneously. By contrast, the synchronising

factor enhances the likelihood of integrating two processes irrespective of exogenous events.

In other words, for the exciting factor, intensity processes are assumed to be independent

unless the underlying process changes because order arrivals lead to a temporary increase

in intensity. On the contrary, the synchronising factor forces one process to lead the other,

and vice versa, implying that the two processes tend to be associated endogenously in the

long-term beyond market fundamentals.

This study makes three primary contributions. First, we examine an evidence of the

existence of the synchronising factor using market order data. For the six representative

stocks in the pool of US large caps (IBM, Chevron, Apple, Amazon, JP Morgan, and
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Microsoft), we find a remarkable increase in the synchronising tendency between market

buy and sell order arrivals in 2018 compared with in 2008. The increase over the past

decade differs across stocks, with the highest change observed for the JP Morgan stock.

This finding implies that the frequencies of market buy and sell orders in a unit time tend

to interact more dynamically with each other than they used to do in the past.

Second, we adopt the deep neural network (DNN) technique to solve the optimisation

problem derived as a high-dimensional partial differential equation (PDE) with the dis-

continuity terms driven by the exciting factors and discretely varying inventory amount

in a market-maker’s trading. This is generally known to be difficult to solve analytically.

To solve the PDE numerically, we propose the DNN-based approximation inspired by the

deep Galerkin method (Sirignano and Spiliopoulos, 2018), a mesh-free simulation suitable

for applying to high-dimensional PDE problems. We verify that the existence of a DNN

structure that guarantees that the loss function – defined using the boundary and terminal

conditions of a given PDE – is sufficiently small in a compact domain. The DNN algo-

rithm enables us to construct an approximate solution with a low numerical error, which

is trained to satisfy the fact that the loss function is minimised for the generated random

samples over the PDE domain.

Third, we conduct a variety of computational simulations to derive implications from

the perspective of wealth management in high-frequency market-making by assuming mod-

els with and without the synchrony effect as well as those with different stability levels. In

terms of synchrony, we compare the profit performance of posting optimal strategies with

presence of the synchronising factor under scenarios in which the order dynamics are fully

synchronised. The results show that the strategy considering the synchronising effect pro-

duces more gains and less risks than the one that partly considers or does not. In terms of

stability, the more unstable the high-frequency market, the more likely market-makers are

to obtain higher expected returns. These findings are meaningful to market practitioners

given the increase in instability in the high-frequency market for some particular stocks in

the past ten years.

The remainder of this paper is organised as follows. Section 2 reviews the relevant

literature. Section 3 develops the model of market and limit order dynamics, including the

synchronising factor, and builds an optimal execution problem for market-makers with the

derivation of the associated PDE. Section 4 presents empirical evidence of the existence of

synchrony in the proposed model. Section 5 discusses the DNN to estimate the PDE and

its convergence, and Section 6 presents the simulation results under the DNN estimation

to see the difference in a market-maker’s wealth using the optimal strategies when facing

various market situations. Finally, Section 7 concludes. The technical proofs are presented

in Appendix A. Additional simulations are displayed in Appendix B and Appendix C.
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2. Literature Review

This study is related to prior research that applies DNNs to solve PDEs and optimi-

sation problems for market-makers under highly correlated price dynamics. This section

reviews the literature on the application of machine learning to finance, optimal placement

strategies for market-making, and models of market price structure with hyper dependency.

The application of machine learning to quantitative finance fields has rapidly expanded

in recent years. Studies have examined the problems of pricing and hedging derivatives

(Hutchinson et al., 1994; Gramacy and Ludkovski, 2015; De Spiegeleer et al., 2018), pre-

dicting financial markets (Sirignano, 2019; Dixon et al., 2019), and managing credit risk

(Baesens et al., 2003; Fitzpatrick and Mues, 2016; Loterman et al., 2012; Khandani et al.,

2010). Among the variety of machine learning approaches, DNNs employ a multilayer

structure in the neural network framework to learn more about complex nonlinear re-

lationships. In particular, DNNs are suitable for modelling high-dimensional nonlinear

problems, which allow the estimation of arbitrarily continuous functions on compact sets

(Hornik et al., 1989; Hornik, 1991). For example, DNNs are used as a numerical scheme for

high-dimensional PDEs to overcome the curse of the dimensionality problem. They also

enable the consideration of stochastic optimal control and exotic option pricing beyond the

Black-Scholes setting, which can be transformed to a problem of solving nonlinear PDEs.

To solving high-dimensional PDEs, one method employs DNNs with a network structure

similar to the long short-term memory (LSTM) which is trained to satisfy the given PDE

conditions (Sirignano and Spiliopoulos, 2018; Berg and Nystrom, 2018). Another stream is

based on the backward stochastic differential equation approach that resembles the spirit

of deep reinforcement learning with gradient acting as the policy function (E et al., 2017;

Han et al., 2018; Fujii et al., 2019).

The optimal decision of a market-maker under order dynamics has been widely studied

in the market microstructure field. Ho and Stoll (1981) discuss the optimal market-making

policy by specifying a true price for assets on the supply and demand curves of a public

market. They derive the optimal bid/ask quotes around the true price by accounting

for the inventory effect. In this spirit, Avellaneda and Stoikov (2008) propose a market-

making model in an order book by employing a diffusion process for a mid-price and a

Poisson process for executed limit orders. For the exponential utility function, this provides

an asymptotic solution for quoting spreads and reservation prices. Rosu (2009) derives

an equilibrium transaction price between market and limit orders in terms of utility by

considering the trade-off between execution prices and waiting costs at the bounded discrete

price levels. Gueant et al. (2013) study the same problem as Avellaneda and Stoikov (2008)

by adding inventory volume constraints and then approximate the optimal control with

asymptotic limits over an infinite time horizon. Cartea et al. (2014) model the dynamics of
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the arrival of market orders and resulting changes in the limit order book’s shape with self-

exciting and mutually exciting Hawkes processes. Guilbaud and Pham (2013) investigate

the optimal market-making policy when an agent uses both limit, and market orders by

employing a numerical method that estimates the optimal problem. Cartea and Jaimungal

(2013) study modelling price revision and duration for HFT activities using the hidden

Markov model with regime switching. Veraart (2010) models two types of market-making

actions in foreign exchange markets, removing, and adding liquidity with two-dimensional

Brownian motions. Guo et al. (2017) employ a correlated random walk for the best bid/ask

prices and solve the optimal placement problem with a reflection principle.

Hyper-dependence in price dynamics has been modelled in the context of cointegration

in econometrics and flocking behaviour. Cointegration occurs when two or more non-

stationary time series are driven by one or more common nonstationary time series, as

proposed in the seminal works by Granger (1981) and Engle and Granger (1987). Many fi-

nancial data series exhibit cointegration, such as, international stock markets (Cerchi and

Havenner, 1988; Duan and Pliska, 2004), foreign exchange rates (Baillie and Bollerslev,

1989; Kellard et al., 2010), futures and spot prices (Ng and Pirrong, 1994), and commod-

ity futures prices (Chiu et al., 2015; Jang et al., 2020). Similarly, flocking is referred to as a

collective motion of a large number of self-propelled entities. Reynolds (1987) proposes the

break-through algorithm that makes generating realistic computer simulations of flocking

agents feasible. Flocking behaviour is observed in many areas in physics, biology, engi-

neering, and human systems, including financial markets (e.g. Rauch et al., 1995; Huepe

and Aldana, 2008; Ha et al., 2015). In a similar manner, Gerig (2015) employs the term

‘synchrony’ in financial markets, which implies that market prices are monitored by several

traders who quickly disseminate information to each other, thus possibly resulting in price

comovement. Such a phenomenon resembles animal group behaviours, wherein individuals

communicate with each other to share information by contemporaneously scanning the

environment using many eyes.

3. Market Models and Optimisation Problems

In Section 3.1, we describe in detail the model of arrivals for buy and sell orders that

interact with each other in market and limit orders. We then pose an optimal execution

problem for a market-maker who seeks to maximize his/her wealth from his/her round-trip

trades until the end of the day by penalising inventories. We derive the Hamilton–Jacobi–

Bellman (HJB) equation in Section 3.2.
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3.1. Model setup

We first define a filtered probability space (Ω,F , {Ft}t≥0,P) satisfying the usual con-

ditions. It is assumed that all the stochastic processes introduced in this paper are defined

on (Ω,F , {Ft}t≥0,P). Let St be the mid-price of the asset at time t with the dynamics

dSt = σStdWt,

where σ is a positive constant and W is a standard Brownian motion.

Consider a market-maker who continuously posts a limit buy order and sell order of

the asset with depth δ−t , δ
+
t ≥ 0, respectively. In other words, the market-maker posts a

buy limit order at a price of St − δ−t , and a sell limit order at a price of St + δ+t . The

market-maker provides liquidity to the market and earns profits from the bid-ask spread.

We assume that transactions only occur when market orders arrive and match with the

pending limit orders posted by the market-maker. Let the counting processes M+
t and M−

t

with intensities λ+t and λ−t denote the arrival of other participants’ buy and sell market

orders, respectively. We denote the market-maker’s filled buy and sell limit orders by the

counting processes N−t and N+
t , respectively. As a measure of the probability with which

the market-maker’s limit buy and sell orders are executed, we consider the fill probabilities

h(δ±t , c
±
t ) at time t for limit orders placed δ±t away from St. Since the market buy orders lift

the market-maker’s sell limit orders and the market sell orders hit the market-maker’s buy

limit orders, the probability that limit orders are filled increases as the distance from the

mid-price δ decreases, and vice versa. The process ct can be interpreted as the parameters

directly determining the shape of the limit order book.

From this setup, the processes N±t can be regarded as the pathwise stochastic integral

with respect to M±
t :

N−t =

ˆ t

0

I−s dM−
s and N+

t =

ˆ t

0

I+s dM+
s . (1)

Here, I±t are defined by

I−t =

0 if M−
t −M−

t− = 0

ε−t otherwise
and I+t =

0 if M+
t −M+

t− = 0

ε+t otherwise
, (2)

where ε±t are Bernoulli random variables with probability h(δ±t−, c
±
t−), respectively. If the

expectation of λ±t is bounded for 0 ≤ t ≤ T , M±
t have only a finite number of jumps along

the time interval [0, T ] almost surely. It follows that I±t are progressively measurable,

and therefore N±t are well defined as the Lebesgue-Stieltjes integrals and are progressively

measurable. We address the condition for bounded intensities later in Lemma 1.
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In this study, we assume that market order volumes are independent and identically

distributed and exponentially distributed and that the shape of the limit order book is

flat, similar to the setup used by Avellaneda and Stoikov (2008) and Cartea et al. (2014).

Given that market orders arrive, the probability that a limit order at price level St± δ±t is

executed is assumed to be h(δ±t , c
±
t ) = e−δ

±
t c

±
t .

From the flatness assumption of the limit order book, ct can be regarded as the market

depth of the order book. Precisely, c−t and c+t represent the depth of the limit buy (-) and

sell (+) order books at the price levels, respectively. For a small c, this suggests that the

volume of accumulating limit orders before where the agent’s posted is almost zero, which

implies that the posted limit orders are highly likely to be executed by market orders even

when they are a long distance from the mid-price δ. Conversely, in the case of a large c,

the posted limit orders should wait until the stacking limit orders are executed even for a

short distance δ.

The market-maker’s execution processes have two driving factors: the frequency at

which market orders walk into the limit order book (i.e. λt) and the volume depth for

the limit order book (i.e. ct). We model λt and ct by including comovement features and

feedback effects in the limit and market order arrival dynamics.

First, we design the intensity processes for market sell/buy orders λt = (λ−t , λ
+
t )t≥0 as

a process that has interacting, self-exciting, and mutually exciting features:

dλ−t = β(θ− − λ−t + κλ+t )dt+ ηdM−
t + νdM+

t ,

dλ+t = β(θ+ − λ+t + κλ−t )dt+ ηdM+
t + νdM−

t

(3)

where β, θ± are strictly positive and η, ν, κ are non-negative coefficients. The market order

arrival intensity jumps immediately after any market order arrival, where the parameters

η and ν govern the responsiveness of the self-exciting and mutually-exciting components of

the intensity due to additional market orders, respectively. However, their states revert to

the original mean level with speed β since the exciting impacts from market order arrivals

are temporary.

Unlike existing models, we take the stochastic mean-reversion level of θ− + κλ+t for

the sell intensity and θ+ + κλ−t for the buy intensity, where θ± are constant mean levels.

This indicates that two processes may have a higher endogenous correlation besides the

exogenous exciting responses due to the increase in strategy executions related to round-

trip trading by HFT traders. Hence, even when no buy or sell market order arrives, the two

processes can retain their interaction tendency in dynamics. From a traditional economics

perspective, the effect could be insignificant if transactions only exist for typical supply

and demand purposes. However, it is necessary to consider this effect to model the current

market microstructure in electronic exchange-traded assets with high liquidity. Thus, the

8



parameter κ represents the degree to which the strength of such an endogenous interactive

tendency is retained in buy and sell orders; hereafter, we call this the synchronising factor.

Second, we assume that the depth dynamics of the limit buy/sell order book ct =

(c−t , c
+
t ) are the processes that are excited by market order arrivals and are coupled through-

out the synchronising factor:

dc−t = ξ(α− c−t + κcc
+
t )dt+ ηcdM

−
t + νcdM

+
t ,

dc+t = ξ(α− c+t + κcc
−
t )dt+ ηcdM

+
t + νcdM

−
t

(4)

where α, ξ are strictly positive and ηc, νc, κc are nonnegative constants. This indicates

that the depth of the limit order book jumps when both market buy/sell orders arrive.

This is a one-way effect because market orders cause jumps in subsequent limit orders,

whereas jumps in limit orders do not induce jumps in market order arrivals (Large, 2007).

In addition, the depth processes of both limit buy/sell orders interact with each other

similar to λt. Precisely, α is the long-run mean level, κc is the synchronising factor, ξ is

the mean-reverting speed, and ηc, νc are the exciting terms of market orders for the depth

processes in the buy/sell sides of the limit order book.

To examine the conditions that guarantee that the intensity processes for market and

limit orders are stable, we define the mean future rate, m±t (u) = E[λ±u |Ft] and n±t (u) =

E[c±u |Ft], respectively, for u ≥ t. For the intensity processes λ±t (c±t ) to be stable, m±t (n±t )

must remain bounded as a function of u for each t. As a stability condition of λ±t , we

obtain (1− κ)β > η + ν. Appendix A.1 provides more detailed results and proofs.

3.2. Optimisation problems for market-makers

This section presents the market-maker’s optimisation problem based on the proposed

order book dynamic model. We consider a market-maker’s cash process Xt that satisfies

dXt = (St + δ+t−)dN+
t − (St − δ−t−)dN−t ,

which accounts for the cash increase when a sell limit order is lifted by a buy market order,

and the cash decrease when a buy limit order is hit by a sell market order. Accordingly, a

market-maker’s inventory process qt is given as

dqt = dN−t − dN+
t .

A market-maker seeks the strategy (δ−t , δ
+
t )0≤t≤T that maximises the cash value at the

terminal date T . At time T , the market-maker liquidates the terminal inventory qT using

market orders at a price lower than the mid-price to account for liquidity costs as well as
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the market orders walking into the limit order book. The performance of the market-maker

achieved during [t, T ] is given by

ΦT = XT + qT (ST − φqT )− ψ
ˆ T

t

q2udu, (5)

where φ ≥ 0 is the cost attributed to liquidity as well as the impact of the market order

walking into the limit order book, and ψ ≥ 0 is the running inventory penalty parameter.

The value function of the market-maker is given by

V (t, x, s, q,λ, c) = max
(δ+u ,δ

−
u )t≤u≤T

E
(
ΦT

∣∣∣∣Xt = x, St = s, qt = q,λt = λ, ct = c

)
, (6)

where φ, ψ ≥ 0, and the initial states of the cash amount x, stock price s, inventory amount

q, and intensity levels λ = (λ−, λ+), c = (c−, c+) are given.

The control problem in Eq.(6) can be employed to use the dynamic programming

principle to show that the function V solves the following HJB equation

∂V

∂t
+

1

2
σ2s2

∂2V

∂s2
+ β(θ− − λ− + κλ+)

∂V

∂λ−
+ β(θ+ − λ+ + κλ−)

∂V

∂λ+

+ ξ(α− c− + κcc
+)
∂V

∂c−
+ ξ(α− c+ + κcc

−)
∂V

∂c+

+ λ−max
δ−≥0
{e−δ−c−(∆−x,q,λ,cV − V ) + (1− e−δ

−c−)(∆−λ,cV − V )}

+ λ+ max
δ+≥0
{e−δ+c+(∆+

x,q,λ,cV − V ) + (1− e−δ
+c+)(∆+

λ,cV − V )} − ψq2 = 0

(7)

with the terminal condition

V (T, x, s, q,λ, c) = x+ q(s− φq), (8)

where the shift operators ∆±x,q,λ,c and ∆±λ,c are defined as

∆−x,q,λ,cV (t, x, s, q,λ, c) = V (t, x− s+ δ−, s, q + 1,λ+ (η, ν), c+ (ηc, νc)),

∆+
x,q,λ,cV (t, x, s, q,λ, c) = V (t, x+ s+ δ+, s, q − 1,λ+ (ν, η), c+ (νc, ηc)),

∆−λ,cV (t, x, s, q,λ, c) = V (t, x, s, q,λ+ (η, ν), c+ (ηc, νc)),

∆+
λ,cV (t, x, s, q,λ, c) = V (t, x, s, q,λ+ (ν, η), c+ (νc, ηc)),

with the given controls δ− and δ+.

To obtain the simpler form of the HJB, we consider the following ansatz solution. Since

the initial cash and initial stock price do not affect the market-maker’s strategy, we propose

V (t, x, s, q,λ, c) = x+ qs+ g(t, q,λ, c), (9)
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which is inspired by observing the terminal condition Eq.(8) for V .

From the substitutions, Eq.(7) is simplified to

∂g

∂t
+ β(θ− − λ− + κλ+)

∂g

∂λ−
+ β(θ+ − λ+ + κλ−)

∂g

∂λ+

+ ξ(α− c− + κcc
+)

∂g

∂c−
+ ξ(α− c+ + κcc

−)
∂g

∂c+

+ λ−max
δ−≥0
{e−δ−c−(δ− +∆−q,λ,cg − g) + (1− e−δ

−c−)(∆−λ,cg − g)}

+ λ+ max
δ+≥0
{e−δ+c+(δ+ +∆+

q,λ,cg − g) + (1− e−δ
+c+)(∆+

λ,cg − g)} − ψq2 = 0,

(10)

where the shift operators ∆±q,λ,c and ∆±λ,c are defined as follows:

∆−q,λ,cg(t, q,λ, c) = g(t, q + 1,λ+ (η, ν), c+ (ηc, νc)),

∆+
q,λ,cg(t, q,λ, c) = g(t, q − 1,λ+ (ν, η), c+ (νc, ηc)),

∆−λ,cg(t, q,λ, c) = g(t, q,λ+ (η, ν), c+ (ηc, νc)),

∆+
λ,cg(t, q,λ, c) = g(t, q,λ+ (ν, η), c+ (νc, ηc)).

Thus, we explicitly obtain the optimal controls

(δ−t )∗ =
1− c−(∆−q,λ,cg −∆

−
λ,cg)

c−
1{c−(∆−

q,λ,cg−∆
−
λ,cg)<1},

(δ+t )∗ =
1− c+(∆+

q,λ,cg −∆
+
λ,cg)

c+
1{c+(∆+

q,λ,cg−∆
+
λ,cg)<1}.

(11)

By substituting the derived optimal controls into Eq.(10), we finally obtain

∂g

∂t
+ β(θ− − λ− + κλ+)

∂g

∂λ−
+ β(θ+ − λ+ + κλ−)

∂g

∂λ+

+ ξ(α− c− + κcc
+)

∂g

∂c−
+ ξ(α− c+ + κcc

−)
∂g

∂c+

+ λ−(∆−q,λ,cg − g)1{c−(∆−
q,λ,cg−∆

−
λ,cg)≥1}

+ λ+(∆+
q,λ,cg − g)1{c+(∆+

q,λ,cg−∆
+
λ,cg)≥1}

+ λ−

(
ec

−(∆−
q,λ,cg−∆

−
λ,cg)

ec−
+∆−λ,cg − g

)
1{c−(∆−

q,λ,cg−∆
−
λ,cg)<1}

+ λ+

(
ec

+(∆+
q,λ,cg−∆

+
λ,cg)

ec+
+∆+

λ,cg − g

)
1{c+(∆+

q,λ,cg−∆
+
λ,cg)<1} − ψq

2 = 0

(12)

with the terminal condition

g(T, q,λ, c) = −φq2.
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4. Evidence of Synchrony in the Market

Empirical observations can detect the properties of the stochastic process of the order

arrival intensities. Figure 1 presents the empirical intensity processes for the IBM stock’s

market buy and sell orders, which are inferred from the estimated model defined in Eq. (3)

on a particular date (3 January, 2018) for the two five-minute time-frames (13:37 to 13:52

and 14:21 to 14:26). The unit time for the intensities is set to one second. Even at first

glance, we see that the arrival patterns of buy and sell orders are highly interactive and

synchronised. Similar patterns can be observed when the stock, date, and time are chosen

randomly. An important feature of the paths is that each market order arrival is highly

clustered with the spikes of arrivals tending to disappear quickly. In addition, it appears

that neither the buy nor the sell-side order arrivals are independent with no one-sided order

arrivals, and the bursts of activities tend to arrive almost contemporaneously.
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Intensity process, IBM, 2018−01−03
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1000
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Intensity process, IBM, 2018−01−03

Figure 1: Empirical intensity processes λ+, λ− of IBM (NYSE ticker: IBM) for the buy and sell market

orders traded from 13:37 to 13:52 (left) and from 14:21 to 14:26 (right) on 3 January 2018

To justify the proposed model, this section aims to capture the synchrony tendency

using real market data. Owing to the difficulties in accessing limit order book data, the

test is conducted based on transacted prices, which are assumed to be the market order

executed by incoming limit orders. To investigate order arrival patterns, we calibrate all

the model parameters using the maximum likelihood estimation (MLE) method and then

examine the evidence, especially whether synchronising and exciting factors have changed

considerably over time.

To perform MLE for the six parameters in the proposed model (β, θ−, θ+, κ, ν, η), we

employ the Broyden-Fletcher-Goldfarb-Shanno algorithm (Fletcher, 1987), a kind of quasi-

Newton method for numerical optimisation that facilitates the adequate estimation of

Hawkes-type processes. The numerical procedure for MLE is implemented using an R

optimisation function and its wrapper package maxLik1. The methodology involves max-

1https://cran.r-project.org/web/packages/maxLik/index.html
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imising the log-likelihood function:

L(s) =

ˆ T

0

log λ+t dM+
t +

ˆ T

0

log λ−t dM−
t −
ˆ T

0

(λ+t + λ−t )dt, (13)

where s is the set of parameters to maximise (Ogata, 1978; Henningsen and Toomet,

2011). The market order arrivals λ±t are given as closed forms in Eqs.(A.7) and (A.9) in

Appendix A.2, which are used to implement Eq.(13). The MLE algorithm is processed

until a tolerance of 10−6 is achieved. More details of the calibration procedure of Hawkes-

type models appear in Da Fonseca and Zaatour (2014); Bacry and Muzy (2014); Bacry

et al. (2016); Lee and Seo (2017); Lu and Abergel (2018).

We select six representative stocks among US large cap equities, Microsoft, Amazon,

Apple, JP Morgan, Chevron, and IBM. Our data consist of trades and quotes for NYSE-

listed (JP Morgan, Chevron, and Apple) and NASDAQ-listed (Microsoft, Amazon, and

IBM) equities2. The trade and quote data are recorded at micro- or nanosecond decimal

precision. The estimations are conducted using the trade prices and their arrival times

reported on the exchanges on which they are listed. To investigate how the dynamic

patterns in market order arrivals have changed over the past decade, we collect data from

2008 to 2018. On each day, trade data between 10:30 and 15:30 are analysed, excluding

trades in the beginning and ending times to avoid seasonal effects.

For data pre-processing, to classify the transacted prices for buy- and sell-initiated

orders, we employ the Lee-Ready algorithm (Lee and Ready, 1991). Using the best bid

and ask price flows from the quote data, the mid-price processes are derived and the trade

type – whether the transaction is seller-initiated or buyer-initiated – is determined using

the relative position of the trade price compared with the mid-price. Precisely, when the

trade price is less (greater) than the mid-price, which means that the transaction occurs

on the bid (ask) side, the market order is considered to be a sell (buy) market order. When

the mid and trade prices are equal, the tick test is applied: if the traded price falls below

(rises above) the most recent traded price, which is different from the current trade price,

it is considered to be a sell (buy) market order. If it increases, the transaction is regarded

as a buy market order.

For the two end-years of 2008 and 2018, Table 1 presents the descriptive statistics

for the number of arrivals of market buy/sell orders in a day following the preprocessing

procedure. For all the stocks, the buy/sell order arrival frequency was 200,326 in 2008 and

139,039 in 2018; that is, the absolute size of orders in 2008 was larger than that in 2018

2The trade and quote information of NYSE and NASDAQ stocks is obtained from the Consolidated Tape

Association (https://www.ctaplan.com/index) and Unlisted Trading Privileges (http://www.utpplan.

com/), respectively.
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Table 1: Summary of data statistics for the number of market buy and sell order arrivals in a day.

2008 2018

Mean Std Max Min Mean Std Max Min

Buy

Microsoft 33,445 19,173 136,025 4,536 20,035 9,767 61,549 6,531

Amazon 9,563 4,192 31,329 1,500 13,788 7,173 38,780 4,071

Apple 36,111 15,078 103,042 7,576 22,587 9,685 69,497 8,210

JP Morgan 10,501 4,658 35,598 2,199 5,859 2,734 16,520 2,205

Chevron 5,809 2,105 15,062 1,894 2,542 1,128 11,207 1,027

IBM 4,466 1,618 12,367 1,289 2,295 1,294 8,729 762

Sell

Microsoft 33,702 18,763 137,227 5,346 21,159 10,690 68,887 6,558

Amazon 9,440 4,005 28,434 1,317 14,777 8,082 50,443 4,478

Apple 35,635 14,744 100,928 8,082 24,382 10,200 72,341 9,778

JP Morgan 10,773 4,581 35,329 2,202 6,523 2,994 17,922 2,599

Chevron 6,173 2,179 11,975 1,849 2,659 1,073 9,074 1,114

IBM 4,708 1,622 10,976 1,137 2,429 1,424 11,654 957

(increase by 140%). One feature of order flows is that the difference between buy and sell

orders3 widened in 2018 compared with 2008: for all the stocks, the difference was 536 in

2008, whereas it was 4,823 in 2018.

We perform MLE based on daily data from 2 January to 31 December for each year (e.g.

the estimation is conducted 252 times for the data in 2008 and 250 times in 2018). First,

we investigate the result of the synchronising factor κ. Table 2 presents the average of the

estimated κ, the number of significant estimates at the 5% significance level in the whole

sample in each year, and the average of the stability condition (1 − κ)β/(η + ν) derived

in Lemma 1 with the estimated samples. The column ‘Overall’ contains the average of all

the stocks for κ as well as the stability and sum of all the significantly estimated samples.

We see that the synchronising level in 2018 jumped by about eight times than that in 2008

on average and that the number of significant estimations increased 5.1 times during the

same period; the total number of significant samples was 152 in 2008, but 775 in 2018 for

all the stocks, and the number of order arrivals every single day, on average, is specified in

Table 1. Further, overall market stability increased marginally due to increase in stability

of JP Morgan and Microsoft despite decrease in the other stocks. Note that the stability

of the process can be highly guaranteed because all are greater than one4.

3The difference = the number of sell orders - the number of buy orders
4Using this condition without the synchronising parameter, the literature has discussed the measure-
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Table 2: Results of the mean of the estimated κ, the number of significant estimation for κ, and computing

the stability condition (1− κ)β/(η + ν)

2008 2018

κ(%) # significance stability κ(%) # significance stability

IBM 0.1343 8 (3.2%) 3.2342 7.0297 136 (54.2%) 2.9650

Chevron 0.3359 10 (3.9%) 3.3635 5.9676 163 (64.9%) 3.0852

Apple 0.8712 58 (23.1%) 1.8783 1.7943 146 (58.1%) 1.7770

Amazon 1.6632 76 (30.4%) 1.9250 0.2066 58 (23.1%) 1.6500

JP Morgan 0.0000 0 (0%) 2.6078 8.4821 209 (83.3%) 3.4369

Microsoft 0.0000 0 (0%) 1.1912 0.5315 63 (25.2%) 1.6503

Overall 0.5008 152 (10.1%) 2.3667 4.0020 775 (51.5%) 2.4274

Next, we discuss the calibration results of θ+, θ−, η, ν, and β in 2008 and 2018 for

the basic statistics – mean, standard deviation, skewness, and kurtosis (see Table B.9).

The column ‘Average’ represents the average value of all the stock’s estimations. All the

estimations of the five parameters are statistically significant. The mean-reversion levels

θ+ and θ− for the six stocks dropped in 2018 compared with in 2008 by 57% on average.

The exciting levels η and ν declined by 26% and 33%, respectively, and the reverting speed

β by 10% on average over the same period. For these parameters, however, there were

differences in the increase and decrease for each stock. While Apple and Amazon showed

clear increases in η, ν, and β, the others showed decreases in 2018 compared with in 2008.

In addition, we can see that the self-exciting factor η has a remarkably higher value than

the mutually-exciting factor ν across all the stock samples. We provide more detailed

calibration results of different aspects in Appendix B.

Such a consistent tendency in the market in terms of hyper-dependency is presumably

closely related to the dramatic increase in HFT activities over the past decade. Although

the total number of arrivals in 2018 decreased by 31% compared with in 2008, the syn-

chrony tendency in buy and sell orders increased eight times over the same period. These

empirical results may support the argument that the arrival intensities for buy and sell

orders dynamically incorporate the synchrony impact as well as the exciting tendency.

Thus, we need a model with greater explanatory power to develop more profitable trading

strategies.

ment of the degree of market instability and resiliency (e.g.,Danielsson et al., 2012; Filimonov and Sornette,

2012; Hardiman et al., 2013).
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5. Neural Network Approximation for the HJB Equation

In this section, we propose an approximation method to find a solution to the high-

dimensional HJB equation using DNNs. To do so, we adopt a mesh-free scheme called the

deep Galerkin method proposed by Sirignano and Spiliopoulos (2018). Although mesh-

based methods, such as the finite difference method are the most common way of solving

PDEs, they are computationally infeasible for high-dimensional cases. However, the deep

Galerkin method trains batches of randomly sampled time and space points through neural

networks instead of forming a mesh, making it flexible and versatile, as required for high-

dimensional PDE problems. The deep Galerkin method takes input values from the domain

of the PDE and produces a candidate of the PDE solution by composing a smooth acti-

vation function repeatedly. The extent of composing represents the depth of the network

and the composed function can solve the PDE numerically by tuning the DNN parame-

ters. The training procedure aims to find the best DNN parameters that minimise a loss

function, which indicates how close the DNN architecture is to satisfying the PDE’s given

conditions.

5.1. Neural network approximation

This section explains the procedure of the proposed DNN-based approximating method

to solving the HJB equation derived in Section 3.2. We first consider a domain of the PDE

such that D = (−∞,∞)× [0,∞)4 ⊂ R5 and DT = [0, T )×D. We assume that there exists

a unique solution u(t, q,λ, c) ∈ C1(DT ) to the following PDE:

∂u

∂t
(t, q,λ, c) + Lu(t, q,λ, c) = 0, for (t, q,λ, c) ∈ DT

u(T, q,λ, c) = −φq2, for (q,λ, c) ∈ D,
(14)

where L is a nonlinear PDE operator with a one time variable and five state variables

defined in Eq.(A.10). If the PDE (12) has a unique solution g(t, q,λ, c), then

u(t, q,λ, c) = g(t, q,λ, c), for (t, q,λ, c) ∈ DT .

According to the deep Galerkin method, u can be approximated with a DNN structure

defined by f(·, Θ), where Θ is a set of the DNN parameters. Among the various architec-

tures of f , we employ a fully-connected feedforward network, which is the most basic type

of neural network but has outstanding performance in finding our PDE solution.

Now, we consider a reduced compact domain so that differential operators can be

defined with respect to all the variables to use the universal approximation theorem pro-

posed by Hornik (1991). Assume a compact set D̃ = [−N1, N1]× [n2, N2]
2 × [n3, N3]

2 ⊂ D
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for any large positive numbers N1, N2, N3 and small positive numbers n2, n3, and let

D̃T = [0, T )× D̃. In the reduced domain, we construct the following loss function

L(f) =

∥∥∥∥∂f∂t (t, q,λ, c;Θ) + Lf(t, q,λ, c;Θ)

∥∥∥∥2
D̃T ,µ1

+

∥∥∥∥f(T, q,λ, c;Θ) + φq2
∥∥∥∥2
D̃,µ2

, (15)

where µ1 and µ2 are probability measures of D̃T and D̃, respectively, which are absolutely

continuous with respect to the Lebesgue measure5. The loss function represents how far

f deviates from the original PDE’s operator and terminal conditions. We verify that a

feedforward neural network f exists that makes the loss function in Eq.(15) sufficiently

small on the compact set D̃T (see Theorem 3, Appendix C).

The goal is to find the DNN parameters Θ such that the error in Eq.(15) is minimised.

To do so, we develop Algorithm 1 which states the DNN algorithm using the stochastic

gradient descent method on a sequence of time and state points randomly sampled on D̃T
and D̃ with respect to µ1 and µ2, respectively. In Step 2 the mean squared error L̃(f ;Θ) is

an unbiased estimator of the loss function L(f). The algorithm proceeds in a descending

direction, which means that the loss function decreases after an iteration and the next Θ

can be a better parameter estimate than the previous one.

Algorithm 1 The DNN algorithm for solving the PDE (14).

1: Generate random samples {(ti, qi,λi, ci)}mi=1 from the probability measure µ1 in D̃T
and {(q̃i, λ̃i, c̃i)}mi=1 from the probability measure µ2 in D̃ with the batch size m.

2: Calculate the mean squared error L̃(f ;Θ) as

L̃(f ;Θ) =
1

m

m∑
i=1

{(
∂f

∂t
(ti, qi,λi, ci;Θ) + Lf(ti, qi,λi, ci;Θ)

)2

+
(
f(T, q̃i, λ̃i, c̃i;Θ) + φq̃2i

)2} (16)

3: Update the parameters Θ in the opposite direction of the gradient of L̃(f ;Θ) with

regard to the parameters:

Θ ← Θ − `∇ΘL̃(f ;Θ)

with the learning rate `.

4: Repeat until the gradient approaches zero.

5The loss function could be defined using the Sobolev training (Czarnecki et al., 2017; Matthias and

Diepold, 2019), which additional work may leave as a future study.
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To implement Algorithm 1, we employ the hyperbolic tangent function as the activation

function to enable f to become smooth and apply the differential operator to the neural

network. We find the following DNN architecture to be effective6:

h1 = tanh(W0x+ b0)

hl+1 = tanh(Wlhl + bl), l = 1, · · · , L (17)

f(x;Θ) = WL+1hL+1 + bL+1,

with hl ∈ Rn and L hidden layers having n hidden units in each hidden layer. The function

tanh(·) is taken to each component of hl. This network takes the input x = [t q λ c]T and

maps this input to the value of the function f(x;Θ) as a candidate for the solution of the

PDE. The parameter Θ consists of weight matrices W0 ∈ Rn×6, Wl ∈ Rn×n,WL+1 ∈ R1×n

and bias vectors b0 ∈ Rn, bl ∈ Rn, bL+1 ∈ R1.

For the key hyperparameters L and n in the DNN, we find that three-hidden-layers (L =

3) and 900 hidden nodes (n = 900) perform well for the given market model parameters.

We use a batch size of 25,000 (m = 25, 000) drawn from the uniform probability measures

µ1 and µ2 on D̃7. The initial learning rate ` is chosen as 10−4 and this is reduced by a factor

of 10 when the loss function stops decreasing. DNN testing is conducted using TensorFlow

in Python, and the DNN parameters are updated using the Adam optimisation algorithm,

which is a momentum-based stochastic optimisation method (Kingma and Ba, 2014). The

DNN parameters are initialised using the Xavier initialisation. Our computations are

performed on a Windows 10 PC with an AMD Ryzen Threadripper 1950X CPU, a 3.40

GHz 16-core processor, 64 GB RAM, and an NVIDIA Titan V GPU. Under the network

structure and this computing environment, this DNN-training takes 35.83 seconds per 100

iterations. In total, iterations are run 170,000 times to obtain the target loss level, which

is the level that no longer reduces even with more iterations.

The estimation domain D̃T is adopted to N1 = 100, N2 = 250, N3 = 150, n2 = 0.5,

and n3 = 0.3, and T = 10800 to generate random samples as inputs8. To ensure that the

five state variables stay in the reduced domain D̃T , we confirm that millions of simulated

paths qt, λ
±
t , and c±t are contained in D̃T . Furthermore, we choose the parameters of the

6From the tests of various types of architectures including the classic/modified LSTM, monotonic non-

linear transformation, drop-out layers, skip connections models and different activation functions, we chose

the best practice.
7Noting that a lower sample size produces a big oscillation in the error convergence with large confidence

intervals, this batch size is adopted to ensure more highly convincing estimation for the function values

over the whole domain, less relying on random sampling of the variables.
8The time T represents 10800 seconds because all the parameters in our model are measured at the

unit level of seconds, which means that the trading lasts three hours.
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market model as follows: β = 100, θ− = 0.5, θ+ = 0.4, κ = 0.2, η = 20, ν = 15 (for the

intensity processes λ in Eq.(3)), ξ = 40, α = 0.3, κc = 0.1, ηc = 8, νc = 5 (for the depth

processes c in Eq.(4)), φ = 0.1 and ψ = 0.01 (penalty on the inventory in Eq.(5)).

Figure 2 presents a contour plot of the optimal quote distances δ− and δ+ with regard

to the inventory q and time t. The intensities for the market order and limit order depth

processes are taken as λ− = 3.5, λ+ = 3 and c− = 1.5, c+ = 2, respectively. The level of

optimal distances from the mid-price is outstandingly prominent when the market-maker

retains a large amount of inventory that needs to be liquidated or acquired, and little time

is left to trade the stocks. As the inventory q becomes positively larger, the market-maker’s

strategy is more reluctant to buy stocks over time, and such a strategy is likely to place

the limit buy order δ−, which is far from the mid-price, to reduce the chance of executions.

As q becomes negatively larger (i.e. the short position increases), the strategy tends

to increase the stocks by placing the limit buy order almost at the mid-price to enhance

the chance of executions. In a similar manner, as q becomes negatively larger, the strategy

becomes more hesitant to sell stocks by placing the limit sell order δ+, which is far from the

mid-price. As q becomes positively larger, the strategy tends to reduce the stock position

by placing the limit sell order almost at the mid-price.
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Figure 2: Contour plots of the optimal quotes δ− for limit buy (left) and δ+ for limit sell (right) orders

depending on the change in inventory q when λ− = 3.5, λ+ = 3, c− = 1.5, c+ = 2.

5.2. Neural network training loss

This section investigates the convergence of the proposed DNN algorithm in Section 5.1

by reporting the training loss computed as the mean-squared loss L̃(f) in Eq.(16). The

training is run until the loss no longer decreases. In this case, following the training is

conducted 170,000 iterations, the loss eventually reduces to 189.7, after initially starting

at 180,244. Figure 3 illustrates the training loss against the number of iterations on the

estimation domain. The shaded area represents a 95% confidence interval for computing
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the expectation of the mean-squared loss under a batch size of 25,000 samples, which

represent that the loss is likely to stay in this interval with 95% probability.

When applying the estimated optimal strategies to the generated scenarios, the absolute

inventory size varies between ±7 in the selected parameter set, as discussed in Section 6.

To check the accuracy of the ultimately employed values of the estimation f to obtain

the optimal strategy, it is worthy to note the training loss in the local domains of |q|.
To examine the training loss over the more reduced domain for q, additional trainings

are conducted by choosing N1 = 10 and 50 while the other conditions remain the same.

Figure 4 illustrates the training loss against the number of iteration steps in theses domains

of inventory q with |q| ≤ 50 (left) and |q| ≤ 10 (right). The case of |q| ≤ 50 has the ultimate

training loss of 47.70 when the number of iterations approaches 80,000, initially starting

from 9105.9. Figure 4 (left) displays the training loss after running 20,000 iterations. The

case of |q| ≤ 10 has a loss of 10.62 with 30,000 iterations, starting from 123.7. Hence, the

local loss for which the estimations are mainly employed to compute the ultimate values

is relatively small.

Figure 3: DNN training loss against the number of iteration steps until 170,000 – the loss with iteration

from 1 to 100,000 (left) and the loss with iterations from 100,000 to 170,000 (right). The shaded area

represents the 95% confidence interval in the computing loss with the batch size of samples.

Next, we present the DNN-approximated solution f for 0 ≤ t ≤ T with respect to the

inventory size q with the given φ. The other variables λ± and c± are randomly sampled

with 100,000 points for each and taken on average for this visualisation. In Figure 5, the

left panel illustrates the contour lines of the estimated solution of g over the whole period,

and the right panel shows only the part of the estimated value of g under the differential

operator ∂
∂t

+ L, which has a value of zero in the true solution. In Figure 6, the left panel

indicates the true solution g (red line) and the DNN-estimated solution (blue line) at the

end time T over the domain q, whereas the right panel shows its error computed as the
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Figure 4: DNN training loss against the number of iteration steps in the estimation domains of |q| ≤ 50

(left) and |q| ≤ 10 (right). The shaded area represents the 95% confidence interval in the computing loss

with the batch size of samples.

absolute difference between the two curves that appear in the right panel. We can see

that the estimation error measured at the terminal boundary rises, as the inventory size

either increases or decreases. However, given that the error in the case of |q| = 100 is

about 14, whereas the true values are -1000, we may judge that the absolute error level

may be acceptable. Moreover, to observe more distinct difference in the estimated values,

we illustrate f by zooming in on the partial domains of |q| ≤ 50 and |q| ≤ 10 from the

original graphs. Figure 7 presents a closer look of Figure 5 over the particular domains of

q with the corresponding heat maps (i.e. |q| ≤ 50 (top) and |q| ≤ 10 (bottom)).

6. Simulation

In this section, we conduct numerical simulations for the market-maker’s wealth under

the optimal and other various deterministic strategies by exploiting the DNN estimation

discussed in Section 5. To do so, we compute the distribution of the terminal profit and

loss (PnL) of a market-maker as follows:

PnL = XT + qT (ST − φqT )

with the liquidation cost φ under the posting controls δ±, by generating the required sample

paths.

A sample path of the terminal PnL can be generated by the following procedure. First,

based on the thinning algorithm (Ogata, 1978), the sample paths of the intensity λ±t and

market order processes M±
t are obtained. Since our model contains additional synchrony

factors compared with a typical exciting Hawkes model, we modify the original sampling

21



Approximate solution g
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Figure 5: The DNN-approximate solution f for g (left) and the DNN-approximated value for the differential

operator ∂
∂tg+Lg (right). Each value is obtained by taking the average of all the values (g and ∂

∂tg+Lg)

computed with 100,000 random samples of λ± and c±.
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Figure 6: The terminal condition of g (blue line) and its DNN-approximated solution f (red-dot) by taking

the average of the values with respect to λ± and c± with 100,000 random sampling for each (left) and its

absolute difference (right).

algorithm that specified in Algorithm 2 (presented in Appendix A.4). Accordingly, the

sample paths of the depth of the limit order book c±t withM±
t are generated. Next, a sample

of N±t is filtered from M±
t using a Bernoulli variable generator under the fill probability

h(δ±t , c
±
t ) = e−δ

±
t c

±
t with the estimated (or given) δ±t . Lastly, with the generated stock price

path St, Xt and qt are computed. This procedure runs until the accumulated interarrival

time of either N+
t or N−t reaches T . Initial wealth starts at zero and we obtain K samples

of the terminal PnL by repeating the procedure. We generate K paths of the stock price

St, market orders M±
t , and depth of limit order book c±t . We then obtain the terminal

PnL by activating market-making trades with the limit orders for which the execution is

determined by the fill probability of the arrival of the market orders.
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Figure 7: A closer look at the DNN-approximated solution f for g (left) and the DNN-approximated value

for the differential operator ∂
∂tg + Lg (right) shown in Figure 5 on the partial domains of |q| ≤ 50 (top)

and |q| ≤ 10.

6.1. Optimal or simple strategy?

This section considers several practically feasible market-making strategies and imple-

ments the corresponding market-making PnLs by comparing it with the optimal result.

First, we compute the performance of the optimal strategy and compare it with a

rough constant strategy and a more elaborate strategy. The detailed strategies are given

as follows: (i) the controls are constant (i.e. δ−t = δ+t = d0); (ii) the controls are chosen

asymmetrically and are linearly dependent on inventory qt, that is,

δ−t (qt) =


2qt +

1

2
if qt ≥ 0

−1

2
qt +

1

2
if qt < 0

, δ+t (qt) =


1

2
qt +

1

2
if qt ≥ 0

−2qt +
1

2
if qt < 0

; (18)

and (iii) the optimal controls δ∗ in Eq.(11) are taken.

Strategy (ii) is inspired by the estimation results of the optimal δ∗ that has an asym-

metric pattern depending on the current inventory size. Although the pattern is nonlinear,

we consider the strategy with a linear but asymmetric relation with respect to the amount

of inventory, which has zero computational costs. The reason for choosing a factor of two

in this strategy is that it performs better than all other alternatives.
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For this simulation, we adopt the market parameters based on the calibration results

from the market data shown in Section 4, which are also applied to the numerical tests

in Section 5. The parameters are chosen as follows: trading time T = 10, 800; liquidation

cost φ = 0.1; volatility of the stock mid-price σ = 0.00019; market order intensities are

determined under β = 100, θ− = 0.5, θ+ = 0.4, κ = 0.2, η = 20, ν = 15; and limit order

intensities are determined under ξ = 40, α = 0.3, κc = 0.1, ηc = 8, νc = 5. With this

selection, we generate 50,000 samples of the terminal PnL.

Figures 8 and 9 illustrate the histograms of the terminal wealth PnL achieved by the

three strategies of posting δ±. Table 4 presents the terminal wealth PnL achieved under the

three strategies of posting δ± with the descriptive statistics (i.e. mean, standard deviation,

minimum, and maximum) of the constant, asymmetric, and optimal posting strategies.

For the expected terminal PnL, posting at the optimal distance performs better than the

other cases. In addition, the optimal posting case significantly outperforms the others in

all the samples, considering the minimum PnL of the optimal strategy and maximum PnLs

of all the other constant cases. The PnL’s diversity is considerably smaller than that of

the others, which implies that the optimal strategy can achieve the highest expected profit

with a comparatively lower risk than the others.

Table 3: Descriptive statistics of the terminal PnLs using three strategies (constant, asymmetric, and

optimal) when trading lasts 10800 seconds.

Market-making strategy Mean SD Min Max

(i) Constant

d0 = 1 -26,701 10,472 -87,524 1,937

d0 = 2 -6,242 6,174 -46,834 9,746

d0 = 3 2,969 3,667 -17,546 11,858

d0 = 4 6,629 2,226 -6,563 11,648

d0 = 5 7,578 1,346 -861 10,509

d0 = 6 7,253 832 1,452 9,230

d0 = 7 6,411 532 2,824 7,786

(ii) Asymmetric δ± in Eq.(18) 8,902 146 8,351 9,582

(iii) Optimal δ∗ 12,333 183 11,583 13,349

We next show the simulated path of the cash process Xt and inventory process qt over

time. Figure 10 illustrates the sample paths of Xt and qt when using the optimal δ∗t strategy

(left) and a constant strategy with d0 = 5 (right). Posting an optimal distance tends to

9This volatility is measured to ‘second’, which is transformed to the daily volatility of 1.47% (= 0.0001×√
3600× 6 assuming the trading time in a day is 6 hours long.
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Figure 8: Distribution of the terminal PnL for a market-maker with constant d0 = 1, 2, 3 (left) and

d0 = 4, 5, 6, 7 (right) when trading lasts 10,800 seconds.

Figure 9: Distribution of the terminal PnL for a market-maker with asymmetric δ (left) and with optimal

δ∗ (right) which depend on inventory when trading lasts 10,800 seconds.

increase profit gradually over time, while posting a naive constant can result in a cumulative

loss. In terms of inventory management, the inventory process under an optimal execution

tends to move within a small range between ±7 points at the most, whereas the inventory

process under the constant execution increases over time and reaches over 150 points on

this path.

Such inventory management within the tight bounds of optimal posting can be under-

stood as a consequence of the objective function that aims to maximise final wealth by

penalising large exposure to inventories. In practical terms, the capital amount available

to market-makers is strictly constrained by their internal rules, because firms or regula-

tors penalise activities that take large exposures. Another reason for the need for tight

inventory management is that the piling (long or short) positions during market-making

should be liquidated at the end of the trading day by paying transaction costs. Given

that strict control of exposure to inventories is required for market-making, market-makers

might prefer to adopt a high penalising rate ψ when their risk appetite reduces.

Second, we compute the difference in the market-maker’s PnLs between the optimal and
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Figure 10: Sample paths of the cash process Xt (upper) and inventory process qt (lower) for the optimal

posting (left) and a constant posting (right) for 10,800 seconds trading. The values of terminal wealth

PnL are 12,085 (optimal δ±∗; upper left) and 7,477 (constant d0 = 5; lower right).

suboptimal strategies. As a suboptimal strategy, we consider the optimal posting strategy

under the no (or half) synchrony model that applies to scenarios with the synchronising

factor for the PnL simulation. We investigate how much lower the performance of this

suboptimal strategy than the fully optimal strategy in the market-maker’s PnLs.

The optimal strategies are estimated with the same DNN architecture proposed in

Eq.(16). This simulation chooses the following parameters10: T = 1800; for market orders

β = 50, θ− = 0.5, θ+ = 0.4, η = 4, ν = 0.1; and for limit orders ξ = 40, α = 0.3, ηc =

3, νc = 0.1. In addition, to investigate the effect of κ differentiated from κc on the market

maker’s PnL, we consider the following cases: (i) full synchrony with κ = κc = 0.9; (ii)

half synchrony with κ = 0 and κc = 0.9; and (iii) no synchrony, that is, κ = κc = 0. Then,

we generate 30,000 synchronising samples and apply the strategies estimated in each case.

Table 4 presents the terminal PnL’s statistics under the optimal strategies with the full,

10To examine the impact of synchrony in the simulation, we decrease the mutually-exciting factor and

increase the synchronising factor compared with the previous simulations.
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half, and no synchrony models when the synchronising tendency exists in the market. The

expected value of the terminal PnL when market-makers ignore both κ and κc (or, only κ)

becomes significantly smaller than when they do not. On average, the market-maker’s PnL

of case (i) outperforms those of cases (ii) and (iii) by 9.2% and 42.2%, respectively. Indeed,

the worst scenario of case (i) is better than the best of case (iii). If the synchrony effect

decreases (or the mutually-exciting effect increases), the performance differences between

the two cases can reduce.

Table 4: Descriptive statistics of the terminal PnLs using the optimal strategies of full, half, and no

synchrony under the synchronising scenarios for market and limit orders with the 1800-second trading

time.

Order Arrival Model Mean SD Min Max

(i) Full synchrony κ = κc = 0.9 801.9 9.2 768.3 839.5

(ii) Half synchrony κ = 0 and κc = 0.9 734.5 9.8 699.1 772.9

(iii) No synchrony κ = κc = 0 564.0 7.2 537.6 597.1

6.2. How good is the full synchrony model to choose?

In this section, we compare the terminal PnLs when posting the optimal strategy and

posting a strategy without the synchronising factor when the synchrony tendency between

buy and sell orders exists. In addition, we observe how the instability of the high-frequency

market could affect the market-maker’s PnLs. These tests aim to investigate how the

posting strategy under various order book models and order arrival markets may produce

differences in the market-maker’s PnLs.

In the first part of simulations, we demonstrate the following models of λt and ct: the

synchrony model with κ 6= 0 and κc 6= 0, the no synchrony model with κ = κc = 0. To do

so we calibrate each model from the high-frequency market order arrival data in the year

of 2018. Table 5 exhibits the MLE results of all the required parameters in the models

with/without the synchronising factor for the six stocks in 2018. Each value is computed

by taking the average on all the daily estimations. This result shows that the no synchrony

model leads to sharp increases in not only the self- and mutually-exciting effects but also

the mean-reverting speed compared with the synchrony model. On the contrary, there is

little difference in the constant mean-reverting speeds of θ± between both models. From a

stability perspective, the long-term moving patterns under the two models do not change

considerably.

To investigate the respective contributions of κ and κc, we take the half synchrony

model with κ = 0 and κ 6= 0, adding to the two models earlier mentioned. For this

simulation, the λt parameters are adopted based on the scales of the true estimations (e.g.
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Table 5: MLE results of the market order arrival model with the synchronising factor (top) and without

the synchronising factor (bottom). Each estimated parameter is reported by taking the mean of all the

daily results in 2018

Model IBM Chevron Apple Amazon JP Morgan Microsoft

Synchrony

θ+ 0.071 0.080 0.477 0.257 0.189 0.375

θ− 0.075 0.084 0.494 0.246 0.199 0.383

η 224 215 3447 3089 156 4849

ν 27.4 29.7 435 181 30.1 723

β 749 767 7030 5349 684 9146

κ(%) 7.03 6.00 1.79 0.21 8.48 0.53

No

Synchrony

θ+ 0.073 0.087 0.488 0.259 0.191 0.375

θ− 0.078 0.092 0.506 0.248 0.201 0.383

η 828 938 3181 3169 1377 3944

ν 140 156 445 186 188 615

β 1916 2240 6455 5281 3055 7532

IBM, Chevron, and JP Morgan in Table 5) for η, ν, β, and κ, while the θ’s are chosen as

the average size of the samples because of high diversity in their values. Table 6 describes

the considered models and their selected values. For the parameters of ct, we consider the

scales of the parameters estimated in λt and those employed in the numerical examples of

Cartea et al. (2014). Under each parameter assumption in Table 6, we generate sample

paths of λ− and λ+, and Figure 11 illustrates the generated sample paths of λ under each

market order model. Note that, comparing the measure of the true intensity values of IBM

stock in Figure 1, we can observe that the synchrony model generates λ’s samples that

have a more feasible scale than the no synchrony model does.

Table 6: The chosen order arrival model parameters for λ and c for testing the market-maker’s PnL.

Order Arrival Model
Parameters for λ Parameters for c

θ± η ν β κ α ηc νc ξ κc

(i) Full Synchrony 0.3 200 20 700 0.1 0.3 100 20 400 0.1

(ii) Half Synchrony 0.3 800 130 2000 - 0.3 100 20 400 0.1

(iii) No Synchrony 0.3 800 130 2000 - 0.3 400 130 1200 -

Next, we find the optimal posting δ∗ using the same DNN architecture proposed in

Eq.(17) with a 300-second trading time for each case. Once solving the optimal control

in each case separately, we repeat the PnL simulations obtained by the optimal controls
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Figure 11: The generated samples of λ± under the market order model with the synchronising (left) and

without the synchronising factor κ (right) using the calibrated parameter in Table 6, respectively.

using the same set of 30,000 full synchronising simulated samples. Table 7 presents the

detailed statistics of market-making PnLs under the optimal strategies derived from each

model when the synchronising tendency exists in the high-frequency market. Figure 12

(left) illustrates the distributions of the PnLs derived in the three cases.

The optimal strategy from the full synchrony model produces the highest expected

profit, whereas it leads to the least risk (i.e. standard deviation), compared with the other

models. The full synchrony model creates +2.9 (+1.4%) and +4.7 (+2.3%) higher returns

than the half and no synchrony models, respectively, whereas it takes -4.97 (-15.9%) and

-3.89 (-12.9%) less risk than the half and no synchrony models, respectively11. In addition,

Figure 12 shows that the PnL in the full synchrony model has the shortest left tail of all

the models; moreover, there is a remarkably high chance of earning a profit in the range

of the expected return ± standard deviation in this model.

This simulation implies that it is beneficial to reflect the synchronising effect in the

market and limit order dynamics in terms of wealth management from market-making

in the high-frequency market. As discussed in Section 4, the synchronising tendency has

appeared in the real market between buy and sell order arrivals and the tendency level has

significantly increased in the past ten years. Market-makers may consider the synchronising

factor in their order book models that enable them to expect higher and more stable

performance than existing models.

In the second part, we conduct simulation to assess how a market-maker’s PnLs can

be different with respect to the stability of the market order arrivals. For the test, we

consider the stability of market order arrivals that recorded the highest, middle, and lowest

levels in 2018 among the six stocks under the synchrony model. This test compares the

11This difference in the expected profits between two model assumptions can be widened if the synchro-

nising level increases or the exciting levels decrease.
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Table 7: Terminal PnLs trading with the optimal strategy derived under the full, half, and no synchrony

models when trading lasts 300 seconds.

Order Arrival Model Mean SD Min Max

(i) Full Synchrony 209.8 26.23 120.00 314.1

(ii) Half synchrony 206.8 30.13 50.44 314.2

(iii) No synchrony 205.1 31.20 55.02 346.3

Difference
(i)-(ii) +2.9 -3.89 +69.55 -0.1

(i)-(iii) +4.7 -4.97 +67.98 -31.2

market-maker’s optimal PnLs under the three different cases of stability under the same

order arrival model. For the parameters of c, we employ the same values specified in the

synchrony model (Table 6) to the three cases.

To ensure fair comparison of the stability indicator, we use θ = 0.3 and κ = 0.1 in all

cases. Based on Table 6 employed in the previous comparison test, we set the similar scales

of the other synchrony model parameters (η, ν, and β), where Table 8 (left) presents the

details. Using the same procedure, we estimate the optimal strategy through DNN training

for a 300-second time horizon and conduct the market-making simulation under 30,000 sce-

narios generated in each parameter case; and we finally obtain the terminal PnLs. Table 8

(right) and Figure 12 (right) illustrate the descriptive statistics and the distributions of

the market-maker’s PnLs depending on the market stability level, respectively. This result

shows that a higher expected return is more likely to occur in the optimal market-making

as market instability rises. The reason may be that market-makers in an unstable market

are able to explore more opportunities to earn profit as market orders arrive more fre-

quently and irregularly. This finding may be useful to market practitioners because there

have been apparent increases in instability of high-frequency market order arrivals in the

past ten years for the particular stocks such as IBM, Chevron, and Amazon.

Table 8: The chosen market order arrival model parameter sets with θ = 0.3 and κ = 0.1 which lead

to different stability levels (left); and the descriptive statistics of the optimal market-maker’s PnLs for

300-seconds trading time (right).

Stability
Model parameters Market-maker’s PnL

η ν β Mean SD Min Max

(i) High 3.5 150 30 700 204.7 25.90 92.34 313.3

(ii) Middle 2.9 200 20 700 209.8 26.23 120.0 314.1

(iii) Low 1.6 200 20 400 214.1 28.17 121.3 356.4
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Figure 12: The market-maker’s PnL distributions under the different assumptions. Comparison between

the order book models with the full, half, and no synchronising factor (left); and comparison of the

synchrony models with different stability assumptions – high (3.5), middle (2.9), and low (1.6) (right).

7. Conclusion

This study investigates the optimal execution strategy of market-making for the market

and limit order arrival dynamics using a novel model with a synchronising factor between

buy and sell orders. To examine the synchrony tendency in the market, we estimate the

relevant model parameters using the MLE algorithm modified for the proposed model.

The empirical results confirm that the arrival frequencies of market buy orders have the

propensity to follow sell orders’ long-term mean level and vice versa. This is presumably

caused by the huge increase in the influence of HFT activities in the markets, and such

a phenomenon may continue to appear or become stronger with further innovation in

technologies.

To solve the high-dimensional HJB equation derived as the optimal decision problem,

we propose the DNN approximation instead of mesh-based methods. We verify the ex-

istence of a DNN structure that guarantees that the loss function is sufficiently small on

the restricted compact domain. We then estimate the solution of the HJB equation and

optimal placement strategy within an acceptable range of numerical errors. Finally, we

simulate the performance of the end profit from market-making under a variety of strate-

gies and compare their statistical distributions. As a complementary test, we observe that

the optimal controls estimated by the DNN method and existing method (Cartea et al.,

2014) produce statistically non-distinguishable distributions for the market-maker’s profits

(Appendix C).

From the simulations, we find that the estimated optimal strategy outperforms the other

deterministic and suboptimal strategies significantly. It enables us to accomplish a profit
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profile with stable and steady accumulation over time under tight inventory management.

In addition, we show the importance of reflecting the synchronising effects in both market

and limit order dynamics to improve the wealth management (higher expected profit and

less risk) of high-frequency market-making. In particular, we show that more unstable the

high-frequency market provides the more likely that market-makers are to obtain higher

expected returns.
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Appendix A. Proofs

Appendix A.1. Lemma 1

We derive the conditions that guarantee the intensity processes for market orders be

stable in Lemma 1 with the mean future rate m±t (u) = E[λ±u |Ft] for u ≥ t.

Lemma 1. The mean future rates m±t (u) = E[λ±u |Ft] are bounded for all u ≥ t if and only

if (1− κ)β > η + ν. Furthermore,

lim
u→∞

m±t (u) = D−1π, where D =

[
β − η −κβ − ν
−κβ − ν β − η

]
and π =

[
βθ−

βθ+

]
.

Proof. Similar to the scheme of Cartea et al. (2014), taking the integral of both sides of

Eq.(3), the conditional expectation E[·|Ft] by applying Fubini’s theorem, and the derivative

gives the following system of ordinary differential equations (ODEs) for m±t (u), then we

have
d

du

[
m−t (u)

m+
t (u)

]
=

[
βθ−

βθ+

]
+

[
−β + η κβ + ν

κβ + ν −β + η

][
m−t (u)

m+
t (u)

]
(A.1)

with initial values m−t (t) = λ−t ,m
+
t (t) = λ+t . If D has no zero eigenvalues, it takes a unique

solution such that [
m−t (u)

m+
t (u)

]
= e−D(u−t)

([
λ−t
λ+t

]
−D−1π

)
+D−1π. (A.2)

Since the eigenvalues of D are (1± κ)β − (η∓ ν), limu→∞mt(u) converges to D−1π if and

only if (1± κ)β > η ∓ ν. It implies (1− κ)β > η + ν since β, η, ν, κ > 0.
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We also obtain the conditional expectation n±t (u) = E[c±u |Ft] by solving a system of

ODEs derived by taking the integral, conditional expectation, and derivative in Eq.(4).

Remark 2. The mean future rate n±t (u) is given by, for all u ≥ t,[
n−t (u)

n+
t (u)

]
= e−D̃(u−t)

ˆ u

t

eD̃(s−t)G(s)ds+ e−D̃(u−t)

[
n−t
n+
t

]
, (A.3)

where

D̃ =

[
ξ −κcξ
−κcξ ξ

]
and G(s) =

[
ξα

ξα

]
+ ηk

[
m−t (s)

m+
t (s)

]
+ νk

[
m+
t (s)

m−t (s)

]
(A.4)

with the initial condition n±t = n±t (t) and m±t (s) in Eq.(A.2).

Appendix A.2. Solution for Eq. (3)

In Section 3, we consider the intensity processes (λ−t , λ
+
t )t≥0 for market sell and buy

orders (M−
t ,M

+
t )t≥0 such that

dλ−t = β(θ− − λ−t + κλ+t )dt+ ηdM−
t + νdM+

t

dλ+t = β(θ+ − λ+t + κλ−t )dt+ ηdM+
t + νdM−

t

(A.5)

with all non-negative coefficients.

For the goodness-of-fit test of the proposed intensity model using the maximum like-

lihood estimator, the explicit form of (λ−t , λ
+
t )t≥0 must have a likelihood function. Since

the synchronising terms are dλ+t and dλ−t , the system of the stochastic differential equa-

tions (SDEs) is not solved straightforward. Following Ha et al. (2015), we split each

process into an average process and each fluctuation process, which are the average pro-

cess λ̄t = 1
2
(λ+t +λ−t ), and the fluctuation processes λ̃−t = λ−t − λ̄t and λ̃+t = λ+t − λ̄t. From

this, λ̃−t + λ̃+t = 0 which is applied to derive the solution λ̃t.

First, we have the average process such as

dλ̄t =
β

2

(
θ + 2(κ− 1)λ̄t

)
dt+ ζdM−

t + ζdM+
t (A.6)

where θ = θ− + θ+ and ζ = 1
2
(η + ν). By letting A = β(κ− 1), a (strong) solution of the

linear SDE in Eq.(A.6) is given by

λ̄t = eAtλ̄0 +
θ

2(κ− 1)
(eAt − 1) + ζeAt

(ˆ t

0

e−AsdM−
s + e−AsdM+

s

)
. (A.7)
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Second, we have the SDE for each fluctuation process λ̃+t , λ̃
−
t such as

dλ̃−t =
β

2

(
θ̃ − 2(κ+ 1)λ̃−t

)
dt+ ζ̃dM−

t − ζ̃dM+
t

dλ̃+t = −β
2

(
θ̃ + 2(κ+ 1)λ̃+t

)
dt− ζ̃dM−

t + ζ̃dM+
t

(A.8)

where θ̃ = θ− − θ+ and ζ̃ = 1
2
(η − ν). By letting Ã = β(κ + 1), the (strong) solutions of

Eq.(A.8) are given by

λ̃−t = e−Ãtλ̃−0 +
θ̃

2(κ+ 1)
(1− e−Ãt) + ζ̃e−Ãt

(ˆ t

0

e−ÃsdM−
s − e−ÃsdM+

s

)
λ̃+t = e−Ãtλ̃+0 −

θ̃

2(κ+ 1)
(1− e−Ãt)− ζ̃e−Ãt

(ˆ t

0

e−ÃsdM−
s − e−ÃsdM+

s

)
,

(A.9)

respectively. From Eqs.(A.7) and (A.9), we have λ−t = λ̄t + λ̃−t and λ+t = λ̄t + λ̃+t .

Appendix A.3. Convergence theorem for the loss function L(f)

Theorem 3. Denote the set of all functions implemented by one hidden layer with n

hidden units and one output unit as Nn
k(ϕ) =

{
g : Rk → R

∣∣∣∣g(x) =
∑n

j=1 bjϕ
(
a′jx+ cj

)}
where ϕ is the activation function of the hidden units. When a function is implemented

by a network with an arbitrarily large number of hidden units, the function is contained

in Nk(ϕ) =
⋃∞
n=1N

n
k(ϕ). For every ε > 0, there exists a function f ∈ Nk(ϕ) such that

L(f) ≤ ε for the nonlinear operator L defined by

Lu(t, q,λ, c) = β(θ− − λ− + κλ+)
∂u

∂λ−
+ β(θ+ − λ+ + κλ−)

∂u

∂λ+

+ ξ(α− c− + κcc
+)

∂u

∂c−
+ ξ(α− c+ + κcc

−)
∂u

∂c+

+ λ−(∆−q,λ,cu− u)1{c−(∆−
q,λ,cu−∆

−
λ,cu)≥1}

+ λ+(∆+
q,λ,cu− u)1{c+(∆+

q,λ,cu−∆
+
λ,cu)≥1}

+ λ−

(
ec

−(∆−
q,λ,cu−∆

−
λ,cu)

ec−
+∆−λ,cu− u

)
1{c−(∆−

q,λ,cu−∆
−
λ,cu)<1}

+ λ+

(
ec

+(∆+
q,λ,cu−∆

+
λ,cu)

ec+
+∆+

λ,cu− u

)
1{c+(∆+

q,λ,cu−∆
+
λ,cu)<1} − ψq

2.

(A.10)

Proof. By the universal approximation theorem proposed by Hornik (1991), for any ε > 0,

there exists a function f ∈ N6(ϕ) such that

max
|α|≤1

sup
D̃T
|Dα(f(t, q,λ, c;Θ)− u(t, q,λ, c))| < ε, (A.11)
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where Dα is the αth order derivative operator.

The second term of loss function L(f) in Eq.(15) is∥∥∥∥f(T, q,λ, c;Θ)− φq2
∥∥∥∥2
D̃,µ2

=

ˆ
D̃
|f − u|2 dµ2. (A.12)

For the first term of Eq.(15), we can write that∥∥∥∥∂f∂t (t, q,λ, c;Θ) + Lf(t, q,λ, c;Θ)

∥∥∥∥
D̃T ,µ1

=

∥∥∥∥∂f∂t (t, q,λ, c;Θ)− ∂u

∂t
(t, q,λ, c) + Lf(t, q,λ, c;Θ)− Lu(t, q,λ, c)

∥∥∥∥
D̃T ,µ1

. (A.13)

Let A±h = {(t, q,λ, c) ∈ D̃T
∣∣ c±(∆±q,λ,ch − ∆±λ,ch) < 1}. By the Minkowski inequality,
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Eq.(A.13) is less than the following:(ˆ
D̃T

∣∣∣∣∂f∂t − ∂u

∂t

∣∣∣∣2 dµ1

)1/2

+

(ˆ
D̃T

∣∣∣∣β(Θ− − λ− + κλ+)

(
∂f

∂λ−
− ∂u

∂λ−

)∣∣∣∣2 dµ1

)1/2

+

(ˆ
D̃T

∣∣∣∣β(Θ+ − λ+ + κλ−)

(
∂f

∂λ+
− ∂u

∂λ+

)∣∣∣∣2 dµ1

)1/2

+

(ˆ
D̃T

∣∣∣∣ξ(α− c− + κcc
+)

(
∂f

∂c−
− ∂u

∂c−

)∣∣∣∣2 dµ1

)1/2

+

(ˆ
D̃T

∣∣∣∣ξ(α− c+ + κcc
−)

(
∂f

∂c+
− ∂u

∂c+

)∣∣∣∣2 dµ1

)1/2

+

(ˆ
D̃T

∣∣(λ− + λ+)(f − u)
∣∣2 dµ1

)1/2

+

(ˆ
D̃T \(A−

f ∪A
−
u )

∣∣λ−(∆−q,λ,cf −∆
−
q,λ,cu)

∣∣2 dµ1

)1/2

+

(ˆ
D̃T \(A+

f ∪A
+
u )

∣∣λ+(∆+
q,λ,cf −∆

+
q,λ,cu)

∣∣2 dµ1

)1/2

+

ˆ
A−
f ∩A

−
u

∣∣∣∣∣λ−
(

ec
−(∆−

q,λ,cf−∆
−
λ,cf)

ec−
− ec

−(∆−
q,λ,cu−∆

−
λ,cu)

ec−

)∣∣∣∣∣
2

dµ1

1/2

(∗)

+

ˆ
A+
f ∩A

+
u

∣∣∣∣∣λ+
(

ec
+(∆+

q,λ,cf−∆
+
λ,cf)

ec+
− ec

+(∆+
q,λ,cu−∆

+
λ,cu)

ec+

)∣∣∣∣∣
2

dµ1

1/2

(∗)

+

(ˆ
A−
f ∩A

−
u

∣∣λ−(∆−λ,cf −∆
−
λ,cu)

∣∣2 dµ1

)1/2

+

(ˆ
A+
f ∩A

+
u

∣∣λ+(∆+
λ,cf −∆

+
λ,cu)

∣∣2 dµ1

)1/2

+

ˆ
A−
u \A−

f

∣∣∣∣∣λ−
(
∆−q,λ,cf −∆

−
λ,cu−

ec
−(∆−

q,λ,cu−∆
−
λ,cu)

ec−

)∣∣∣∣∣
2

dµ1

1/2

(∗∗)

+

ˆ
A−
f \A

−
u

∣∣∣∣∣λ−
(
∆−q,λ,cu−∆

−
λ,cf −

ec
−(∆−

q,λ,cf−∆
−
λ,cf)

ec−

)∣∣∣∣∣
2

dµ1

1/2

(†)

+

ˆ
A+
u \A+

f

∣∣∣∣∣λ+
(
∆+
q,λ,cf −∆

+
λ,cu−

ec
+(∆+

q,λ,cu−∆
+
λ,cu)

ec+

)∣∣∣∣∣
2

dµ1

1/2

(∗∗)

+

ˆ
A+
f \A

+
u

∣∣∣∣∣λ+
(
∆+
q,λ,cu−∆

+
λ,cf −

ec
+(∆+

q,λ,cf−∆
+
λ,cf)

ec+

)∣∣∣∣∣
2

dµ1

1/2

. (†)

For the integrals (∗), the exponential functions are uniformly continuous because

c±
(
∆±q,λ,cf −∆

±
λ,cf
)
< 1 and c±

(
∆±q,λ,cu−∆

±
λ,cu
)
≤ 1.

We can make the integrand sufficiently small by choosing f ∈ Nk(ϕ) to be sufficiently close
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to u. For the integrals (∗∗),(
∆±q,λ,cu−∆

±
λ,cu
)
<

1

c±
≤
(
∆±q,λ,cf −∆

±
λ,cf
)

and with Eq.(A.11), A±u \A±f ⊂ {(t, q,λ, c) ∈ D̃T
∣∣∆±q,λ,cu−∆±λ,cu ∈ ( 1

c±
− 2ε, 1

c±

)
}. Thus,

µ1(A
±
u \ A±f ) decreases to zero if ε becomes arbitrarily small. The integrals (†) can be

treated similarly. The other integrals and Eq.(A.12) are bounded by ε times some constant

related to the size of domain DT , therefore we can make the loss L(f) arbitrarily small.

Appendix A.4. Thinning algorithm for the proposed model

Let t1, t2, . . . with 0 < t1 < t2 < . . . denote the random arrival times at which the count-

ing processes M−
t or M+

t jump. Algorithm 2 describes a thinning algorithm to generate

the random arrival times.

Appendix B. Tables related to the MLE results

Appendix C. PnL comparison with the Cartea et al. (2014)’s formula

This test compares the market-maker’s PnLs with the optimal strategies using the

DNN-estimation and the asymptotic formula of Cartea et al. (2014), when κ = κc = 0.

Table C.10 shows the selected parameters of λt and ct; and ψ = 0.00001, φ = 012, T =

180, and σ = 0.0001 are adopted for the comparison. Figure C.13 illustrates the PnL

distributions obtained from the two different schemes for the four cases, which shows that

the expected values of the PnLs achieved under the both methods are reasonably close to

each other.

To verify the distributional similarity rather thoroughly, we apply the Kruskal–Wallis

(KW) test, which validates whether two independent samples are selected from the same

distribution (Kruskal and Wallis, 1952). At a x%-significance level, the KW test rejects

the null hypothesis H0 that the two samples originate from the same distribution, if the

p-value is less than x%; otherwise, it does not reject it indicating that the two samples

are from the same distribution. The KW test with a 5%-significance level is taken for

the two PnL distributions from the DNN-estimation and asymptotic formula. Table C.11

displays the expected terminal PnLs with their absolute difference and the p-value for each

case. We can see that H0 cannot be rejected for all the cases, as the p-values are greater

than 0.05, indicating that the two PnL values obtained using the two approaches can be

statistcally non-distinguishable.

12The asymptotic optimal controls contains an expansion error that depends on the inventory penalty

ψ; and this optimisation model considers no liquidating cost.

42



Algorithm 2 A thinning algorithm to simulate the processes M±
t .

1: Initialize t0 = 0 and n = 0.

2: while tn < T do

3: Set s− = 0 and s+ = 0.

4: while true do

5: Draw E− ∼ exp(λ−tn) and U− ∼ Unif(0, λ−tn).

6: Update s− = s− + E−.

7: Set λ−new =
(
λ−tn+λ

+
tn

2
− θ−+θ+

2(1−κ)

)
e−β(1−κ)s

−
+
(
λ−tn−λ

+
tn

2
− θ−−θ+

2(1+κ)

)
e−β(1+κ)s

−

+ θ−+θ+

2(1−κ) + θ−−θ+
2(1+κ)

.

8: if U− ≤ λ−new then

9: break

10: end if

11: end while

12: while true do

13: Draw E+ ∼ exp(λ+tn) and U+ ∼ Unif(0, λ+tn).

14: Update s+ = s+ + E+.

15: Set λ+new =
(
λ−tn+λ

+
tn

2
− θ−+θ+

2(1−κ)

)
e−β(1−κ)s

+ −
(
λ−tn−λ

+
tn

2
− θ−−θ+

2(1+κ)

)
e−β(1+κ)s

+

+ θ−+θ+

2(1−κ) −
θ−−θ+
2(1+κ)

.

16: if U+ ≤ λ+new then

17: break

18: end if

19: end while

20: Set tn+1 = tn + min(s−, s+).

21: if s− ≤ s+ then

22: Set λ−tn+1
= λ−new + η and λ+tn+1

= θ−+θ+

2(1−κ) −
θ−−θ+
2(1+κ)

+
(
λ−tn+λ

+
tn

2
− θ−+θ+

2(1−κ)

)
e−β(1−κ)s

−

−
(
λ−tn−λ

+
tn

2
− θ−−θ+

2(1+κ)

)
e−β(1+κ)s

−
+ ν.

23: else

24: Set λ+tn+1
= λ+new + η and λ−tn+1

= θ−+θ+

2(1−κ) + θ−−θ+
2(1+κ)

+
(
λ−tn+λ

+
tn

2
− θ−+θ+

2(1−κ)

)
e−β(1−κ)s

+

+
(
λ−tn−λ

+
tn

2
− θ−−θ+

2(1+κ)

)
e−β(1+κ)s

+
+ ν.

25: end if

26: Update n = n+ 1.

27: end while

28: return {tk}1≤k≤n−1.
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Table B.9: Estimation results for θ+, θ−, η, ν, β: mean(1), standard deviation(2), skewness(3), kurtosis(4)

2008 2018

θ+ θ− η ν β θ+ θ− η ν β

IBM

1 0.245 0.246 304.0 119.3 1287 0.071 0.075 224.4 27.39 749.0

2 0.202 0.189 106.5 48.15 345.7 0.068 0.075 115.4 10.53 277.8

3 0.978 1.176 0.344 0.506 1.528 2.027 2.479 1.990 0.905 1.175

4 4.876 5.388 2.381 2.333 4.572 8.076 12.52 8.451 4.689 4.935

Chevron

1 0.375 0.381 306.9 117.4 1322 0.083 0.084 214.6 29.69 767.4

2 0.255 0.247 143.1 48.15 394.5 0.069 0.060 99.95 12.05 270.6

3 0.608 0.680 1.096 0.374 1.553 2.790 1.243 0.893 1.088 0.644

4 2.699 2.804 4.410 3.092 4.690 19.59 5.908 3.594 5.401 3.072

Apple

1 1.266 1.253 859.9 179.9 1984 0.477 0.493 3447 434.5 7030

2 0.787 0.767 335.1 127.1 794.4 0.417 0.389 1796 354.6 4261

3 0.146 -0.060 -0.420 0.218 -0.453 1.005 0.661 4.262 5.244 7.452

4 3.945 3.452 3.060 1.439 2.583 3.921 2.857 33.31 44.38 85.26

Amazon

1 0.373 0.372 510.8 154.4 1267 0.257 0.246 3089 181.1 5349

2 0.434 0.428 318.4 126.9 815.6 0.274 0.252 1311 104.3 2077

3 0.772 0.785 -0.341 -0.084 -0.223 1.429 1.818 0.933 1.495 0.687

4 3.419 3.410 1.970 1.247 1.987 5.224 7.994 3.835 5.908 3.266

JP

Morgan

1 0.688 0.680 2941 674.0 8025 0.189 0.200 156.0 30.13 684.4

2 0.572 0.570 4176 2003 11040 0.159 0.170 53.14 11.23 193.9

3 1.316 1.330 4.659 8.135 5.106 1.465 1.564 1.454 2.505 1.152

4 5.791 5.831 31.18 84.65 40.18 5.176 6.166 7.062 17.26 5.192

Microsoft

1 0.497 0.501 11191 878.4 12239 0.375 0.383 4849 722.8 9146

2 1.081 1.080 14280 3533 13938 0.465 0.485 2895 377.4 4884

3 1.791 1.797 3.610 11.36 3.198 1.569 1.5798 2.964 1.029 2.612

4 7.138 7.193 19.34 154.1 14.86 5.532 5.750 16.04 4.500 14.22

Average 0.574 0.572 2703 356.8 4417 0.242 0.247 1998 237.3 3957
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Table C.10: The chosen order arrival model parameters for λ and c for comparison test with the asymptotic

solution.

Parameters for λ Parameters for c

θ± η ν β κ α ηc νc ξ κc

Case (i) 1 40 10 100 - 1 10 25 45 -

Case (ii) 1 20 5 60 - 1 5 17.5 45 -

Case (iii) 2 20 5 60 - 2 5 17.5 45 -

Case (iv) 1 60 15 150 - 1 10 25 45 -

Figure C.13: The market-maker’s PnL distributions under taking the optimal strategies with the DNN-

estimation and the Cartea’s asymptotic formula for each parameter case specified in Table C.10.
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Table C.11: The expected PnLs using the optimal strategy derived with the DNN-estimation and Cartea’s

asymptotic solution; and their absolute difference (top). The KW test p-values under the null hypothesis

H0 that the two samples are from the same distribution, and the test result of rejecting H0 at the 5%

significance level (bottom).

Expected PnL Case (i) Case (ii) Case (iii) Case (iv)

DNN-estimation 133.6656 133.8209 122.2420 122.3384

Asymptotic solution 133.7425 133.7761 122.1516 122.4094

Difference 0.0769 0.0448 0.0904 0.0710

KW test at a 5%

p-value 0.5391 0.5729 0.2390 0.4963

H0 Not reject Not reject Not reject Not reject
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