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Abstract

In this paper we propose a new algorithm to find the optimal static replicating portfolios
for general path-independent nonlinear payoff functions and give an estimate for the rate of
convergence that is absent in the literature. We choose the static replication by designing an
adaptation function arising in the error bound between the nonlinear payoff function and the
linear spline approximation and derive the equidistribution equation for selecting the optimal
strikes. The numerical tests for variance swaps, swaptions, static quadratic hedges, and also for
a jump diffusion process allowing for the default of the underlying asset, show that the proposed
iterative equidistribution equation algorithm is simple, fast and accurate. The paper generalizes
and improves the results of the static replication and approximation in the literature.
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1 Introduction

It is well known that hedging a derivative is in general much more difficult than pricing it, as
hedging requires the determination of the feasible trading strategy, whereas pricing only involves
the computation of the expected payoff, which may be found with the numerical integration or
simulation. Dynamic replication can be used for hedging with the help of the martingale represen-
tation theorem if the market is complete, but it is often difficult to implement as the market is in
fact incomplete. Static replication is a viable alternative.

The idea of using a portfolio of options to replicate complex payoffs dates back to Ross (1976)
and Breeden and Litzenberger (1978). If options with strikes from zero to infinity are all available,
then a nonlinear path-independent payoff function at maturity with certain regularity conditions
can be replicated exactly with static hedging. Under the assumption of no arbitrage, the price
of the derivative being replicated is then the total premium of the replicating options. Compared
to dynamic replication, which may incur prohibitively high transaction costs, static replication
has many advantages, see e.g., Derman et al. (1995), Carr and Chou (1997), Carr et al. (1998),
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Demeterfi et al. (1999). Static replication with a portfolio of European calls and puts is easy to
implement and does not incur running transaction costs. Carr and Wu (2014) discuss and compare
static hedging with delta hedging when the underlying asset price is exposed to the possibility of
jumps of random sizes. They conclude that static hedging strongly outperforms delta hedging.

To find a static replication, one needs first to have a good approximation to the payoff function.
Linear spline approximation is a simple yet effective method. The key benefit of using a linear
spline is that the resulting static replicating portfolio consists of simple European calls, puts, and
digital options, and the weights of these options can be easily computed however complex the payoff
function. In theory the approximation error can be made arbitrarily small if the maximal distance
between adjacent grid points is sufficiently small. In practice one has to strike a balance between
accuracy and cost, which means one needs to choose grid points carefully to minimize the error if
the number of grid points is fixed.

Demeterfi et al. (1999) use European calls and puts with equally-spaced strikes to replicate the
log payoff, which is not optimal because of the equal spacing. Broadie and Jain (2008) propose
a simulation method to obtain the optimal approximation of a static replication; this minimizes
the approximation error, but is computationally expensive. Liu (2010) discusses three optimal
approximations of nonlinear payoffs. The first two approaches are to minimize the expected area
(simple average and weighted average) enclosed by the payoff curve and the chords, which implicitly
assume the payoff function is convex (or concave) and cannot be applied to general payoffs. The
third is to minimize the expected sum of squared differences of the payoff and the replicating
portfolio, which is computationally expensive in solving the optimization equation for complex
nonlinear payoffs. These papers do not discuss convergence rates.

In this paper, motivated by the idea from de Boor (1973), we propose a new algorithm for
finding the optimal approximation for general path-independent nonlinear payoffs satisfying suitable
regularity conditions and provide the convergence theory for the algorithm. We first give an estimate
of the error bound between the nonlinear payoff function and the linear spline approximation. We
then choose the strikes of the static replication so that the error bound achieves an optimal order
of convergence. The reason for working on the error bound is that we can derive a tractable
equidistribution equation for selecting the optimal strikes, which would be difficult by directly
working on the error itself. This approach of static replication works well if options with strikes
from zero to infinity are all available. In practice, we use options with given strikes traded in the
market and we may have no choice over the strikes. In that case we use static quadratic hedging
to find the optimal weights of the options. The equidistribution equation algorithm is again useful
in computing the optimal weights with some modified payoff functions.

The main contribution of the paper is that a simple, fast and accurate iterative equidistribution
equation algorithm is proposed to find the optimal static replicating portfolio for general nonlinear
payoff functions, and convergence rates are given. The results of the paper improve and generalize
those of Liu (2010) and others in the literature.

The paper is organized as follows. In section 2 we discuss the approximation of a nonlinear
payoff function by a linear spline and a portfolio of calls and puts and estimate the error bound
(Theorem 2.1). In section 3 we propose an iterative equidistribution equation algorithm to find the
optimal strikes in static replication and estimate of convergence rate (Theorem 3.1). We also apply
quadratic hedging to find the optimal weights of the static replicating portfolio when the number
of traded calls and puts in the market are fixed and finite. In section 4 we perform some numerical
tests and compare the results with those from analytic formulas or simulations for different payoffs
and asset price distributions. We also compare the static hedging performances for variance swaps
with the equidistribution equation method and with the spanning relation method of Carr and
Chou (1997). In section 5 we conclude. In the appendix we give the proofs of Theorems 2.1 and
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3.1 and the derivations of formulas (2) and (26).

2 Static replication and error bound on approximation

In this section, we give a formula as in Liu (2010) for replicating the nonlinear payoff with a basket
of European options, and derive the error bound on the approximation.

Let S be a nonnegative random variable, representing the asset price at maturity, and f(S) the
derivative value, with f a continuous payoff function defined on the positive real line. Let [0,+∞)
be partitioned by X0, X1, . . . , Xn, with 0 < Xmin ≡ X0 < X1 < · · · < Xn ≡ Xmax < +∞ and
Xmin, Xmax being fixed so that the probabilities P (S < Xmin) and P (S > Xmax) are extremely
small. Then f can be approximated by the following piecewise linear functions:

Li(S) =
Xi+1 − S

hi
f(Xi) +

S −Xi

hi
f(Xi+1), S ∈ [Xi, Xi+1], (1)

where hi ≡ Xi+1 −Xi, i = 0, 1, . . . , n− 1. We can represent the payoff curve approximately by

f(S) ≈
n−1∑
i=0

Li(S)1Xi≤S<Xi+1 + f(S)1S<X0 + f(S)1S≥Xn

=
[
f(S)−

(
L0(X0)− b0(X0 − S)

)]
1S<X0

+
[
f(S)−

(
Ln−1(Xn) + bn−1(S −Xn)

)]
1S≥Xn + Lk(Xk)

+
k−1∑
i=1

(bi − bi−1)(Xi − S)1S<Xi − bk−1(Xk − S)1S<Xk

+ bk(S −Xk)1S≥Xk +
n−1∑
i=k+1

(bi − bi−1)(S −Xi)1S≥Xi , (2)

with 1A the indicator function (1A = 1 if x ∈ A and 0 otherwise.) and bi = (f(Xi+1)−f(Xi))/hi, see
Appendix A or Liu (2010) for its proof. In (2), the first two terms of the last equality can be regarded
as the error of linear polynomial approximations of f(S)1S<X0 and f(S)1S≥Xn , respectively, the
third term is a cash amount, and the remaining terms are European puts and calls with strikes Xi,
i = 0, 1, . . . , n− 1. Both puts and calls are likely to be out-of-money options.

Since the probabilities P (S < X0) and P (S > Xn) are extremely small, the approximation
errors involving these events in the formula (2) have little impact on the valuation, so may be
replaced. In such a case, the following formula from Demeterfi et al. (1999) can be used for static
replication:

f(S) ≈ Lk(Xk) +

k−1∑
i=1

(bi − bi−1)(Xi − S)+ − bk−1(Xk − S)+

+ bk(S −Xk)
+ +

n−1∑
i=k+1

(bi − bi−1)(S −Xi)
+. (3)

Liu (2010) chooses the strikes X0, X1, . . . , Xn so that the total area enclosed by the payoff curve
and the chords

n−1∑
i=0

∫ Xi+1

Xi

[Li(S)− f(S)] dS
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is minimized. Liu (2010) also finds that the performance can be improved if the weighted total area

n−1∑
i=0

∫ Xi+1

Xi

[Li(S)− f(S)]g(S) dS

is used, where g is the density function of S (conditional on today’s price of the underlying). It
is clear that f needs to be convex to ensure all integrands are nonnegative. For a general payoff
function f we measure the error with the weighted squared norm

Error ≡

√√√√n−1∑
i=0

∫ Xi+1

Xi

[Li(S)− f(S)]2g(S) dS.

The error bound on the linear spline approximation (1) is given by the following theorem.

Theorem 2.1 Assume that f is continuous on [X0, Xn] and twice continuously differentiable on
(Xi, Xi+1), i = 0, 1, . . . , n − 1, with finite second-order left and right directional derivatives at
Xi, i = 0, 1, . . . , n. Then the error of the linear spline approximation (1) to the nonlinear payoff
function f is bounded by√√√√n−1∑

i=0

∫ Xi+1

Xi

[Li(S)− f(S)]2g(S) dS ≤

√√√√2

n−1∑
i=0

h4i

∫ Xi+1

Xi

G(S)(f ′′(S))2 dS,

where

G(S) ≡ Ĝ

(
S −Xi

hi

)
,

Ĝ(t) ≡
∫ t

0
ĝi(ξ)

ξ2(1− ξ)3

3
dξ +

∫ 1

t
ĝi(ξ)

(1− ξ)2ξ3

3
dξ,

ĝi(ξ) ≡ g(Xi + hiξ).

Proof See Appendix B.

3 Equidistribution equation methods and convergence analysis

In this section we propose two algorithms for static replication of nonlinear payoff functions with
European call and put options. The first algorithm selects the optimal strikes when the strikes of
options from zero to infinity are all available. The second algorithm finds the optimal weights of
the options when there are only a limited number of strikes are available.

We develop an equidistribution equation to determine the values of strikes Xi, i = 1, . . . , n− 1,
(with fixed boundary values X0 and Xn) so that the error estimation in Theorem 2.1 achieves an
optimal order of convergence. (From numerical analysis the second-order convergence is optimal for
the linear spline approximation.) The idea of the equidistribution equation is that for approximation
of a function without good smoothness, equidistributing a suitable quantum monitored by an
adaptation function can lead to an optimal order of convergence for the approximation. In this
paper we define an adaptation function that purely stems from the approximation error bound
given by Theorem 2.1 and equidistribute the area enclosed by the adaptation function curve (see
Fig. 1 (right) in Section 4.1) to give the equidistribution equation for selecting the strikes. The
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equidistribution equation can be implemented by an efficient and reliable iteration algorithm. This
approach for selecting the strikes for the static replication is called the equidistribution equation
method in this paper.

Liu (2010) proposes a minimum expected area method (the area enclosed by the payoff function
and the approximating linear spline function) that leads to a system of highly nonlinear algebraic
equations for the strikes. Liu (2010) provides an iteration algorithm to solve the system without
convergence analysis, which leaves unclear whether the algorithm actually works. Our iterative
equidistribution equation method here is simple to implement and has theoretical convergence
rate.

In the following we design the adaptation function ρi. To better control the strike concentration
without damaging the convergence rate of the approximation, using a similar idea of Huang (2005),
we introduce an intensity parameter1,

αh ≡

[
1

Xn −X0

n−1∑
i=0

hi

(
1

hi

∫ Xi+1

Xi

G(S)(f ′′(S))2dS

)γ/2]2/γ
, (4)

for some γ ∈ (0, 2], in the error bound provided in Theorem 2.1 and get the following inequality:√√√√n−1∑
i=0

∫ Xi+1

Xi

[Li(S)− f(S)]2g(S) dS ≤

√√√√2αh

n−1∑
i=0

h5i

(
1 +

1

αhhi

∫ Xi+1

Xi

G(S)(f ′′(S))2 dS

)
.

Referring to the above inequality, we define the adaptation function

ρi ≡
(

1 +
1

αhhi

∫ Xi+1

Xi

G(S)(f ′′(S))2dS

)γ/2
, (5)

and the equidistribution equation for selecting strikes X1, . . . , Xn−1,

hiρi =

∑n−1
j=0 hjρj

n
, i = 0, . . . , n− 1. (6)

To solve equation (6), we rewrite it as

i−1∑
`=0

h`ρ` =
i

n

n−1∑
j=0

hjρj , i = 1, . . . , n. (7)

Define a piecewise constant function

ρX(x) = ρi, when x ∈ [Xi, Xi+1], i = 0, . . . , n− 1.

Then equation (7) can be rewritten as∫ Xi

X0

ρX(x) dx =
i

n

∫ Xn

X0

ρX(x) dx. (8)

Noting that equation (8) cannot be solved exactly, we propose the following iterative algorithm to
solve it.

1Note that αh is uniformly bounded, see Appendix C. As mentioned in Huang (2005), the optimal choice of γ for
the smallest error bound is γ = 2/5.
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Algorithm 3.1 (Iterative Equidistribution Equation Algorithm) Set initial values

X
(0)
i = X0 + i

Xn −X0

n
, i = 0, 1, . . . , n.

Then the (k + 1)th-step values for k = 0, 1, . . ., are calculated by the following iteration∫ X
(k+1)
i

X
(k+1)
0

ρX(k)(x) dx =
i

n

∫ X
(k)
n

X
(k)
0

ρX(k)(x) dx, (9)

where X
(k+1)
0 ≡ X0, X

(k+1)
n ≡ Xn and ρX(k) is a piecewise constant function defined by

ρX(k)(x) = ρ
(k)
i , when x ∈ [X

(k)
i , X

(k)
i+1], i = 0, . . . , n− 1,

and ρ
(k)
i is given by (5) with Xi being replaced by X

(k)
i .

The piecewise constant function ρX(k) in iteration equation (9) is defined on the (k)-th step
mesh X(k). To evaluate the integrals we need to determine an interval of the (k)-th step in which

the point X
(k+1)
i of the (k + 1)-th step locates. Let j index an interval (X

(k)
j , X

(k)
j+1] of the (k)-th

step in which the point X
(k+1)
i of the (k + 1)-th step falls, i.e., X

(k+1)
i ∈ (X

(k)
j , X

(k)
j+1]. Then using

(9), we get the following form:

j−1∑
`=0

h
(k)
` ρ

(k)
` <

i

n

n−1∑
`=0

h
(k)
` ρ

(k)
` ≤

j∑
`=0

h
(k)
` ρ

(k)
` ,

which can be used to determine the index j in the implementation, since all the information is
known in the (k)-th step. So the iteration equation (9) explicitly determines

X
(k+1)
i = X

(k)
j +

i
n

∑n−1
`=0 h

(k)
` ρ

(k)
` −

∑j−1
`=0 h

(k)
` ρ

(k)
`

ρ
(k)
j

, i = 1, . . . , n− 1, (10)

where h
(k)
` ≡ X

(k)
`+1 −X

(k)
` .

In the implementation of Algorithm 3.1, we need to find ρ
(k)
j , j = 0, . . . , n−1 in expression (10).

ρ
(k)
j with γ = 2/5 can be calculated approximately by some quadrature rule, e.g., the rectangle

rule:

ρ
(k)
j ≈

1 +
G(X

(k)
j+1)

(
f ′′(X

(k)
j+1)

)2
(

1
Xn−X0

∑n−1
`=0 h

(k)
`

(
G(X

(k)
`+1)

)1/5 (
f ′′(X

(k)
`+1)

)2/5)5


1/5

,

with

G(X
(k)
`+1) = Ĝ(1) =

∫ 1

0
ĝ`(ξ)

ξ2(1− ξ)3

3
dξ,

ĝ`(ξ) ≡ g(X
(k)
` + h

(k)
` ξ).

The sequences X
(k)
i , i = 0, 1, . . . , n, generated by the iteration equation (9) (or equivalently from

(10)) converge to Xi, i = 0, 1, . . . , n, generated by the equidistribution equation (6) (or the equiv-
alent forms (7), (8)) as the iteration number k → +∞. Since the proof falls into the mathematical

6



framework of Xu et al. (2011), the details are omitted. We only need to show the convergence rate
of the approximation to the nonlinear payoff with the equidistribution equation (6) for selecting
the strikes.

Since the strikes are not uniformly distributed, the error estimation (2.1) cannot reveal the
convergence rate of the approximation. In the following theorem, we derive the convergence rate
with respect to the number of the strikes which are generated by the equidistribution equation (6).

Theorem 3.1 Assume that f is continuous on [X0, Xn] and twice continuously differentiable on
(Xi, Xi+1), i = 0, 1, . . . , n − 1, with finite second-order left and right directional derivatives at Xi,
i = 0, 1, . . . , n. Then the convergence rate of the static replication of the nonlinear payoff f using
the linear spline approximation (1) with the equidistribution equation (6) for selecting the strikes
Xi, i = 0, . . . , n, is given by√√√√n−1∑

i=0

∫ Xi+1

Xi

[Li(S)− f(S)]2g(S) dS ≤ Cn−2,

with C a positive constant independent of the strikes Xi, i = 1, . . . , n− 1, and n the number of the
strikes used in the replication.

Proof See Appendix C.
In the options market only a limited number of options with fixed strikes are traded. Suppose

that the fixed strikes are Xj , j = 1, . . . , n, in increasing order. We form a portfolio of call options
at maturity to replicate the nonlinear payoff f ,

f(S) ≈ Π ≡
n∑
j=1

wj(S −Xj)
+,

with wi, i = 1, . . . , n, chosen to minimize the approximation error

V (w1, . . . , wn) ≡
∫ ∞
0

[f(S)−Π]2g(S) dS.

The first-order optimality conditions lead to a system of equations

Qw = u,

with Q = (qij)i,j=1,...,n, w = (w1, . . . , wn)T , u = (u1, . . . , un)T and

qij =

∫ ∞
max{Xi,Xj}

(S −Xi)(S −Xj)g(S) dS, i, j = 1, . . . , n, (11)

ui =

∫ ∞
Xi

(S −Xi)f(S)g(S) dS, i = 1, . . . , n. (12)

In the literature, there are many discussions on this quadratic hedging approach, see, e.g., Carr
and Mayo (2007), Broadie and Jain (2008), Liu (2010). In general, for complex nonlinear payoff f ,
there is no closed-form formula for ui, which have to be computed numerically. The fast algorithm
developed in this paper can be readily used to compute ui. More precisely, write f̃i(S) ≡ (S −
Xi)

+f(S). Then

ui =

∫ ∞
0

f̃i(S)g(S) dS = E[f̃(ST )],
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from which we can apply Algorithm 3.1 to the new nonlinear payoff function f̃i with X0 ≡ Xi.
In many cases, qij in (11) can be computed explicitly. For the lognormal distribution, for

example, (see models in Section 4.1), qij can be calculated by the following formula (see Liu
(2010)):

qij = S2
0Φ(d0)e

2r+σ2)T − (Xi +Xj)S0Φ(d1)e
rT +XiXjΦ(d2),

with Φ the standard normal distribution function and

d1 =
ln
[
S0/max{Xi, Xj}

]
+ (r + σ2/2)T

σ
√
T

, d2 = d1 − σ
√
T , d0 = d1 + σ

√
T .

4 Numerical implementations and applications

4.1 Static replication under lognormal process

Let S be a lognormal variable under a risk-neutral measure. Then lnS is a normal variable with
mean lnS0 +

(
r − σ2/2

)
T and variance σ2T , where r is the constant risk-free interest rate, σ

the constant volatility, and T the maturity. The European call and put prices can be computed
explicitly by the Black-Scholes formula.

Example 4.1 A variance swap: Consider the following nonlinear payoff

f(S) =
2

T

(
S − S0
S0

− ln
S

S0

)
, (13)

studied in Liu (2010) and Demeterfi et al. (1999). This gives a $1 exposure for one volatility point
squared.

In Table 1 we list the replication values for different maturities and volatilities. The data
used are r = 5%, S0 = 100, T = 0.25, 0.5, 1 and σ = 20%, 30%, 60%. When asset volatility σ
increases, one has to decrease Xmin and increase Xmax to ensure the probabilities P (S < Xmin)
and P (S > Xmax) remain extremely small. Since the interval [Xmin, Xmax] becomes wider, the
number of grid points n needs to be increased to keep the accuracy. We implement Algorithm 3.1
by selecting 18 strikes (i.e., 20 grid points, including two fixed boundary points) between 45 and
140 for volatility σ = 20% , 78 strikes between 25 and 200 for volatility σ = 30%, and 158 strikes
between 15 and 300 for volatility σ = 60%. The computational results are shown for a notional
exposure of $100 per volatility point squared. We see that the replication values using formula (3)
are very close to the true values of the nonlinear payoffs.

Table 1: Replications by Algorithm 3.1 (The numbers outside the brackets are the values of repli-
cations by Algorithm 3.1 and those inside the brackets are the exact values of the nonlinear payoffs.
The computational results are shown for a notional exposure of $100 per volatility point squared.)

HH
HHHHT

σ
20% 30% 60%

0.25 4.1122 (4.0123) 8.9664 (8.9502) 35.6283 (35.6148)

0.5 4.0729 (4.0242) 8.9114 (8.9007) 35.2220 (35.2341)

1 3.9718 (4.0467) 8.7864 (8.8029) 34.2173 (34.4861)

In Table 2, we test the convergence rate of Algorithm 3.1 for the case σ = 20% and T = 0.25.
By increasing the total number of strikes between 45 and 200, we calculate the total value of
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the replication. We see that the replication values converge to the true value (4.0123) of the
given nonlinear payoff (13) as the total number of strikes n goes to infinity. In addition, we test
the convergence rate as follows. Let TRV(n) denote the total replication values using n points.
Assume that the convergence rate of Algorithm 3.1 is p, i.e.,

|Error(n)| ≡ |TRV(n)− (True Value)| = O(n−p), (14)

where O(n−p) means that there exists a positive constant C such that O(n−p) ≈ Cn−p. Equation
(14) gives the formula for testing the convergence rate

p ≈ log (|Error(n)|/|Error(2n)|)
log 2

. (15)

In Table 2 we calculate the value p using formula (15) and find p ≈ 2. So the convergence rate
of Algorithm 3.1 is 2, consistent with the theoretical result of Theorem 3.1.

Table 2: Convergence rates of Algorithm 3.1 for replications (The computational results are shown
for a notional exposure of $100 per volatility point squared.)

Number of strikes (n) Total replication values (TRV) Error(n) Convergence rates (p)
20 4.1651 0.1528 –
40 4.0484 0.0361 2.1
80 4.0211 0.0088 2.0
160 4.0145 0.0022 2.0
320 4.0128 0.0005 2.1
640 4.0124 0.0001 2.3

In Table 3 we test for the static quadratic replication algorithm for nonlinear payoff (13). A set
of strikes {50, 70, 90, 100, 110, 130} are used for the replications2. The optimal weights and the
replication values are computed by the static quadratic replication algorithms in Section 3. The
numerical results in Table 3 show that the total replication value is 4.0224, close to the true value
4.0123.

Table 3: Numerical results for the static quadratic replication algorithms (The computational
results are shown for a notional exposure of $100 per volatility point squared.)

Strikes Weight Value per option Cost today
50 1.7393 50.6211 88.0450
70 −3.3196 30.8698 −102.4741
90 1.2107 11.6701 14.1288
100 0.7073 4.6150 3.2642
110 0.8639 1.1911 1.0290
130 1.2978 0.0228 0.0296

Total 4.0224

Carr and Chou (1997), Carr et al. (1998), Takahashi and Yamazaki (2009a,b), Carr and Wu
(2014) use a spanning relation in the static hedging. At maturity time T , for any twice continuously

2In real applications, the strikes can be picked up from the traded option market.
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differentiable f , performing a Taylor expansion at point Xmin gives a spanning relation:

f(S) = f(Xmin) + f ′(Xmin)(S −Xmin) +

∫ Xmin

0
f ′′(K)(K − S)+dK +

∫ ∞
Xmin

f ′′(K)(S −K)+dK.

Choose a very small Xmin and large Xmax so that the probabilities P (S < Xmin) and P (S > Xmax)
are extremely small. Then the above spanning relation gives an approximation

f(S) ≈ f(Xmin) + f ′(Xmin)(S −Xmin) +

∫ Xmax

Xmin

f ′′(K)(S −K)+dK.

To implement the hedging in practice one needs to discretize the integral and may use the following
Gauss-Legendre quadrature:∫ b

a
f ′′(K)(S −K)+dK ≈

n∑
i=1

Wif
′′(Ki)(S −Ki)+, (16)

with

Wi =
b− a

2
wi, Ki =

b− a
2

zi +
a+ b

2
, i = 1, . . . , n,

where the Gauss points zi, i = 1, . . . , n, are the roots of the n-th order normalized Legendre
polynomials Pn(x) and the weights wi, i = 1, . . . , n, are given by the formula

wi =
2

(1− zi)2 [P ′n(zi)]
2 ,

see Abramowitz and Stegun (1965) for the lists of Gauss points zi and weights wi. Writing the
integral as ∫ Xmax

Xmin

f ′′(K)(S −K)+dK =
m−1∑
j=0

∫ Cj+1

Cj
f ′′(K)(S −K)+dK,

with

Cj = Xmin +
Xmax −Xmin

m
j, j = 0, . . . ,m,

we may then apply the Gauss-Legendre quadrature (16) to each sub-integral

∫ Cj+1

Cj
f ′′(K)(S−K)+dK

with a ≡ Cj and b = Cj+1. We name the above described approach the spanning relation method.
Taking the variance swap as an example, with parameters r = 5%, S0 = 100, T = 0.25, σ =

20%, we compare the hedging performance of the equidistribution equation method with that of
the spanning relation method. The hedging error is defined as f̂(S)− f(S), where f̂(S) is obtained
by either method for the static hedging portfolio setup at time 0. The statistics performance of the
hedging error is calculated by Monte-Carlo methods. For the spanning relation method, we take
Xmin = 45 and Xmax = 140 and use five-point Gauss-Legendre quadrature for each sub-integral
with the number of sub-integrals m = 2, 4, 8, 16 (i.e., the number of strikes are 10, 20, 40, 80).
The numerical results are summarized in Table 4. The exact value for the variance swap is 4.0123.

For the equidistribution equation method the hedging errors (mean, deviation, maximum, min-
imum) decrease to zero as the number of grid points increases. The minimum hedging errors are
always positive, which means our static hedging portfolio is actually a super-hedging portfolio.
This is reasonable as the payoff for the variance swap is a convex function and the linear spline
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approximation is above the payoff function. The static hedging portfolio value at time 0 is greater
than the exact value and the excess may be interpreted as the premium for superhedging.

For the spanning relation method the hedging errors (mean, deviation, maximum) also tend to
zero as the number of grid points increases, although at slower rates. In contrast to our method,
the minimum hedging errors are always negative and do not tend to zero as the number of grid
points increases, which means the static hedging portfolio has not fully hedged the variance swap
and the shortfall (−7.6547) is significant under some scenarios, even though the number of grid
points (80) is large and the initial static hedging portfolio value (4.0262) is higher than the exact
value (4.0123). For this numerical example it is clear that the equidistribution equation method
outperforms the spanning relation method.

Table 4: Simulated statistics performance of hedging error (The computational results are shown
for a notional exposure of $100 per volatility point squared.)

Static hedging Equidistribution equation method Spanning relation method
Grid points 20 40 80 160 10 20 40 80
Mean 0.1542 0.0365 0.0089 0.0022 −0.0026 −0.0004 −0.0003 −0.0003
Std deviation 0.1015 0.0232 0.0057 0.0014 0.3406 0.1093 0.0353 0.0322
Maximum 3.0594 0.7589 0.1591 0.0432 0.9884 0.2446 0.0683 0.0180
Minimum 1.1e-05 7.4e-07 9.8e-08 1.1e-08 −4.0413 −6.9229 −4.1317 −7.6547
Skewness 3.7674 3.6587 3.7182 3.5360 −0.7892 −5.8809 −36.54 −168.61
Kurtosis 45.3871 56.4423 50.5866 48.0058 3.7934 277.59 3383 35419
Option value 4.1651 4.0484 4.0211 4.0145 3.9936 4.0097 3.9866 4.0262

In Figure 1 (left), we plot the variance swap payoff function and its linear spline approximation
by the equidistribution equation method (with T = 0.25, σ = 20%, S0 = 100, r = 5%, K = 0.01,
and 20 strikes.). As seen from the figure, the variance swap payoff is well approximated by the
linear splines with the selected strikes. In Figure 1 (right), we plot the adaptation function (5)
used in the equidistribution equation method for selecting the strikes and the area enclosed by the
adaptation function curve. It can be shown by the figure that the equidistribution equation (6)
reads as equidistributing the total area enclosed by the adaptation function curve.

Example 4.2 A swaption: Consider the following nonlinear payoff

f c(S) =

(
2

T

(
S − S0
S0

− ln
S

S0

)
−K

)+

. (17)

We compute the replication value of nonlinear payoff (17) using Algorithm 3.1. It is more convenient
to replicate the put swaption with

fp(S) =

(
K − 2

T

(
S − S0
S0

− ln
S

S0

))+

, (18)

and then the call swaption can be computed easily by put-call parity. Let

h(S) = K − 2

T

(
S − S0
S0

− ln
S

S0

)
, S > 0.

A simple check shows that h is strictly concave, has the maximum value at S = S0 and has
only two solutions SL and SR (SL < SR) to the nonlinear equation h(S) = 0.
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Figure 1: The left figure is for variance swap payoff function and its linear spline approximation.
The marks ‘∗’ on the approximation curves indicate the positions of the strikes obtained by the
equidistribution equation method. The right figure is for the adaptation function and the area
enclosed by the adaptation function curves.

The strikes used in the replication can be selected between SL and SR. The values of SL and
SR are calculated by Newton’s method:

S(k) = S(k−1) −
h
(
S(k−1))

h′
(
S(k−1)

) , k = 1, . . . (19)

with the initial point S(0) to be chosen sufficiently small (and large) such that h(S(0)) < 0. Then
Newton’s iteration (19) converges to SL (and SR) quadratically.

In Table 5 we list the replication values of the call swaption for different maturities and volatil-
ities with S0 = 100, r = 5% and K = 0.01. Using Newton’s iteration (19), we obtain the val-
ues SL ≈ 95.0840;SR ≈ 105.0827 for T = 0.25, SL ≈ 93.0956;SR ≈ 107.2377 for T = 0.5,
SL ≈ 90.3315;SR ≈ 110.3351 for T = 1. 18 strikes between SL and SR are selected using Algo-
rithm 3.1.

Table 5: Replications by Algorithm 3.1 for swaption (17) (The numbers outside the brackets are the
values of replications by Algorithm 3.1 and those inside the brackets are the values of Monte-Carlo
simulation. The computational results are shown for a notional exposure of $100 per volatility
point squared.)

HHH
HHHT
σ

20% 30% 60%

0.25 3.2796 (3.2791) 8.1353 (8.1469) 34.7138 (34.6813)

0.5 3.2998 (3.3019) 8.0960 (8.0907) 34.3438 (34.3599)

1 3.3389 (3.3457) 8.0180 (8.0034) 33.6168 (33.5928)

The put swaption payoff function and its linear spline approximation by the equidistribution
equation method are drawn in Figure 2 (left). The figure shows that the payoff function is well
approximated by the linear spline with the selected strikes.
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The replication methods may also be applied to nonlinear path-dependent payoffs. Consider,
for example, f(MT ) with MT = max

0≤t≤T
St. It is known from Shreve (2004) that the pdf of MT has

an explicit form. So Algorithm 3.1 can be used and the value of f(MT ) may be replicated by a
portfolio of barrier options with payoff 1MT≥K and lookback options with payoffs (MT −K)+ or
(K −MT )+. Note that this is a very special case and hedging for nonlinear path-dependent payoffs
is in general much more involved; see Carr and Chou (1997), Carr et al. (1998), Carr and Wu
(2014).

4.2 Static replication for a jump-diffusion model

In this section we consider a financial market model with a risky asset subject to counterparty
risk: the dynamics of the risky asset is affected by the possibility of the counterparty defaulting.
However, this stock still exists and can be traded after such default.

Let W = (Wt)t∈[0,T ] be a Brownian motion with horizon T < ∞ on the probability space
(Ω,G, P ) and denote by F = (Ft)t∈[0,T ] the natural filtration of W . Let τ , a nonnegative and finite
random variable on (Ω,G, P ), represent the default time. Before τ , the filtration F represents the
information accessible to the investors. After τ , the investors add this new information τ to the
reference filtration F.

Write the risky asset price St as

St = SF
t 1t<τ + Sdt (τ)1t≥τ , 0 ≤ t ≤ T,

with SF
t F-adapted and Sdt (θ) θ-measurable and F-adapted. Then we assume that the asset price

follows the following dynamics under physical measure:

dSF
t = SF

t

(
µFdt+ σFdWt

)
, 0 ≤ t < τ, (20)

dSdt (τ) = Sdt (τ)
(
µdt (τ)dt+ σdt (τ)dWt

)
, τ < t ≤ T, (21)

Sdτ (τ) = SF
τ−(1− γFτ ). (22)

Here for simplicity we assume that

µF = µ1, σ
F = σ1, µ

d
t (τ) = µ2, σ

d
t (τ) = σ2, γ

F
τ = γ,

with µ1, σ1, µ2, σ2 nonnegative constants and the distribution of γ (γ ≤ 1) fixed. Moreover γ, τ, Wt

are independent and τ is an exponential variable with parameter λ. For more general set-ups, see
Jiao and Pham (2011).

Assume that r is a riskless interest rate. Changing measure by Girsanov’s theorem, the dynamics
(20)–(22) for asset price St under physical measure are transformed into the following form under
the equivalent martingale measure:

dSF
t = SF

t ((r + λm)dt+ σ1dWt) , 0 ≤ t < τ, (23)

dSdt (τ) = Sdt (τ) (rdt+ σ2dWt) , τ < t ≤ T, (24)

Sdτ (τ) = SF
τ−(1− γ), (25)

where m = E(γ). From (23)–(25), we see that if γ = 0 then there is no jump of asset price at time
τ , and this is a simple regime switching model. In practice, we may assume γ is a discrete random
variable to simplify the computation, e.g., we may assume that γ takes value γi with probability

13



pi for i = 1, 2, 3, where 0 < γ1 ≤ 1 (loss), γ2 = 0 (no change) and γ3 < 0 (gain). The distribution
function of random variable S = ST is given by

F (S) = e−λTΦ

(
ln(S/S0)− a(T )

b(T )

)
(26)

+
3∑
i=1

pi

∫ T

0
λe−λtΦ

(
1

b(t)

(
ln

(
S

S0(1− γi)

)
− a(t)

))
dt,

with a(t) = (r + λm − σ21/2)t + (r − σ22/2)(T − t), b(t) =
√
σ21t+ σ22(T − t) and Φ the standard

normal distribution function. The proof of formula (26) is given in Appendix D.
Combining the distribution function F in (26) and the formula∫ ∞

0
(S −K)+dΦ

(
1

B

(
ln

(
S

C

)
−A

))
= CeA+

B2

2 Φ(x0 +B)−KΦ(x0),

with A a constant, B,C,K positive constants and x0 = 1
B

(
A− ln

(
K
C

))
, we can easily compute the

value of a call option at time 0 with counterparty risk as

e−rTE
[
(S −K)+

]
(27)

= S0e
−(1−m)λTΦ

(
d̃0 + b(T )

)
−Ke−(r+λ)TΦ

(
d̃0

)
+ e−rT

3∑
i=1

pi

∫ T

0
λe−λt

[
S0(1− γi)ea(t)+b

2(t)/2Φ
(
d̃i(t) + b(t)

)
−KΦ

(
d̃i(t)

)]
dt,

with d̃0 = 1
b(T )

(
a(T )− ln

(
K
S0

))
and d̃i(t) = 1

b(t)

(
a(t)− ln

(
K

S0(1−γi)

))
for i = 1, 2, 3. The value of

a put option can be computed by put-call parity:

e−rTE
[
(K − S)+

]
− e−rTE

[
(S −K)+

]
(28)

= Ke−rT − S0e−(1−m)λT − λS0e−rT
(∫ T

0
ea(t)+b

2(t)/2−λt dt

) 3∑
i=1

pi(1− γi).

Now we can use Algorithm 3.1 to replicate a variance swap with the payoff f in (13) and with
the asset price S having the distribution function F in (26). In Table 6 we list the replication
values and the true values for different jump sizes and probabilities. The data used are S0 = 100,
T = 1, r = 5%, σ1 = 40%, σ2 = 20%, λ = 0.5; others are in Table 6. Since f is simple we have a
closed-form formula for the valuation that can be used to compare the accuracy of the algorithm.
We choose X0 = 5 and Xn = 400 and n = 80. It is clear that the static replication values are very
close to the true values.

Table 6: Numerical results for the static replication of nonlinear payoff under counterparty risk
(The computational results are shown for a notional exposure of $100 per volatility point squared.)

γ1 γ2 γ3 p1 p2 p3 Replication value True value

0.5 0 −0.2 0.3 0.5 0.2 17.6584 17.6316

0.9 0 −0.2 1 0 0 118.0538 118.0215

0.9 0 −0.2 0.9 0 0.1 107.6932 107.6547

We plot the approximation curve of the nonlinear variance swap payoff function for the jump-
diffusion process in Figure 2 (right), which shows that the linear splines with the selected strikes
produce a good approximation.
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Figure 2: The left figure is for the linear spline approximation of the put swaption payoff function
in Example 4.2. The right figure is for the linear spline approximation of the variance swap payoff
function under jump-diffusion model. Marks ‘∗’ on the curves indicate the positions of the strikes
obtained by the equidistribution equation method.

5 Conclusions

In this paper we propose a new algorithm for optimally approximating the nonlinear path-independent
payoff and give rigorous convergence theory. We define an equidistribution equation for selecting
the strikes and construct a simple, fast and accurate iterative algorithm for implementation. In
addition we perform some numerical tests, including examples of the static quadratic replication
with the options traded in the market and the asset-price model with default. The results of the
paper generalize and improve those of the static replication and approximation in the literature.
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A Proof of formula (2)

Mathematically we can write

n−1∑
i=0

Li(S)1Xi≤S<Xi+1 = Lk(Xk)− L0(X0)1S<X0 + b0(X0 − S)1S<X0

− Ln−1(Xn−1)1S≥Xn − bn−1(S −Xn−1)1S≥Xn

+

k−1∑
i=1

(bi − bi−1)(Xi − S)1S<Xi − bk−1(Xk − S)1S<Xk

+ bk(S −Xk)1S≥Xk +
n−1∑
i=k+1

(bi − bi−1)(S −Xi)1S≥Xi . (29)

Formula (29) is essentially proved by Liu (2010). Here we re-prove it with added details for the
convenience of the reader. Since

1Xi≤S<Xi+1 = 1S<Xi+1 − 1S<Xi , 1Xi≤S<Xi+1 = 1S≥Xi − 1S≥Xi+1 ,

we can write

n−1∑
i=0

Li(S)1Xi≤S<Xi+1 =
k−1∑
i=0

Li(S)1Xi≤S<Xi+1 +
n−1∑
i=k

Li(S)1Xi≤S<Xi+1

=
k−1∑
i=0

[
Li(S)1S<Xi+1 − Li(S)1S<Xi

]
+
n−1∑
i=k

[
Li(S)1S≥Xi − Li(S)1S≥Xi+1

]
= −L0(S)1S<X0 +

k−1∑
i=1

[Li−1(S)− Li(S)] 1S<Xi

+ Lk−1(S)1S<Xk + Lk(S)1S≥Xk

+

n−1∑
i=k+1

[Li(S)− Li−1(S)] 1S≥Xi − Ln−1(S)1S≥Xn . (30)

We may re-write Li(S) as

Li(S) = Li(Xi) + bi(S −Xi) or Li(S) = Li(Xi+1) + bi(S −Xi+1). (31)

Therefore, we have
Li−1(S)− Li(S) = (bi − bi−1)(Xi − S), (32)

and

Lk−1(S)1S<Xk + Lk(S)1S≥Xk = [Lk−1(Xk) + bk−1(S −Xk)] 1S<Xk
+ [Lk(Xk) + bk(S −Xk)] 1S≥Xk

= Lk(Xk) [1S<Xk + 1S≥Xk ] (33)

+ bk−1(S −Xk)1S<Xk + bk(S −Xk)1S≥Xk
= Lk(Xk) + bk−1(S −Xk)1S<Xk + bk(S −Xk)1S≥Xk ,

where in the second equality we have used the fact Lk−1(Xk) = Lk(Xk). Combining formulas (30)
to (33) leads to formula (29). Formula (2) clearly follows from (29).
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B Proof of Theorem 2.1

Without the density function g involved, this is the standard error bound on the linear spline
interpolation (see e.g., Atkinson and Han (2005)). Following the proof of Atkinson and Han (2005)
with some additional analysis on g, we obtain the desired error bound as follows.

Transform S ∈ [Xi, Xi+1] into ξ ∈ [0, 1] by mapping S = Xi + hiξ and denote by f̂i(ξ) ≡
f(Xi + hiξ). Then, from (1), we have

L̂i(ξ) = Li(Xi + hiξ) = f̂i(0)(1− ξ) + f̂i(1)ξ, ξ ∈ [0, 1]. (34)

Taylor’s theorem gives that

f̂i(0) = f̂i(ξ)− ξf̂ ′i(ξ)−
∫ 0

ξ
tf̂ ′′i (t)dt, (35)

f̂i(1) = f̂i(ξ) + (1− ξ)f̂ ′i(ξ) +

∫ 1

ξ
(1− t)f̂ ′′i (t)dt. (36)

Using (34), (35) and (36), we have

f̂i(ξ)− L̂i(ξ) = −ξ
∫ 1

ξ
(1− t)f̂ ′′i (t)dt− (1− ξ)

∫ ξ

0
tf̂ ′′i (t)dt.

Therefore, using (a+ b)2 ≤ 2(a2 + b2) and the Cauchy-Schwartz inequality, we derive that∫ 1

0
[f̂i(ξ)− L̂i(ξ)]2ĝi(ξ)dξ (37)

≤ 2

∫ 1

0

(
ξ2
(∫ 1

ξ
(1− t)f̂ ′′i (t)dt

)2

+ (1− ξ)2
(∫ ξ

0
tf̂ ′′i (t)dt

)2
)
ĝi(ξ)dξ

≤ 2

∫ 1

0

(
ξ2

(1− ξ)3

3

∫ 1

ξ
(f̂ ′′i (t))2dt+ (1− ξ)2 ξ

3

3

∫ ξ

0
(f̂ ′′i (t))2dt

)
ĝi(ξ)dξ

= 2

∫ 1

0
Ĝ(t)(f̂ ′′i (t))2dt,

where

Ĝ(t) ≡
∫ t

0
ĝi(ξ)

ξ2(1− ξ)3

3
dξ +

∫ 1

t
ĝi(ξ)

(1− ξ)2ξ3

3
dξ. (38)

We can now estimate the weighted squared error∫ Xi+1

Xi

[Li(S)− f(S)]2g(S) dS = hi

∫ 1

0
[f̂i(ξ)− L̂i(ξ)]2ĝi(ξ)dξ

≤ 2hi

∫ 1

0
Ĝ(ξ)

[
d2f(Xi + hiξ)

dξ2

]2
dξ

= 2h4i

∫ Xi+1

Xi

G(S)
(
f ′′(S)

)2
dS, (39)

where

G(S) ≡ Ĝ
(
S −Xi

hi

)
, for S ∈ [Xi, Xi+1].

�
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C Proof of Theorem 3.1

Following the idea of Huang (2005) using a different measure, we prove this theorem. First we
prove that

∑n−1
j=0 hjρj is bounded. Note that X0 ≡ Xmin and Xn ≡ Xmax being fixed. Then it

follows from Jensen’s inequality and the definition (4) for αh that

n−1∑
j=0

hjρj =

n−1∑
j=0

hj

(
1 + α−1h

(
1

hj

∫ Xj+1

Xj

G(S)(f ′′(S))2dS

))γ/2

≤
n−1∑
j=0

hj

1 + α
−γ/2
h

(
1

hj

∫ Xj+1

Xj

G(S)(f ′′(S))2dS

)γ/2
= 2(Xn −X0) = 2(Xmax −Xmin). (40)

From the error bound in Theorem 2.1, the definition (4) for αh, and the definition (5) for ρi, we
derive that √√√√n−1∑

i=0

∫ Xi+1

Xi

[Li(S)− f(S)]2g(S) dS

≤

√√√√2
n−1∑
i=0

h5i

(
αh +

1

hi

∫ Xi+1

Xi

G(S)(f ′′(S))2 dS

)

=

√√√√2αh

n−1∑
i=0

h5i ρ
2/γ
i . (41)

Now take γ = 2/5. Then combining (40) with (41) and using the definition of (6), we derive that√√√√n−1∑
i=0

∫ Xi+1

Xi

[Li(S)− f(S)]2g(S) dS ≤

√√√√2αh

n−1∑
i=0

hiρi (hiρi)
4

=

√√√√2αh

n−1∑
i=0

hiρi

(∑n−1
j=0 hjρj

n

)4

≤
√

26αh (Xn −X0)
5n−2

≤ Cn−2,

where in the last inequality, we have used the fact that αh is uniformly bounded. This fact can
be proved as follows. From the definition of G(S) (see Theorem 2.1), we can see that G(S) has an
uniform upper bound in [X0, Xn] with X0 ≡ Xmin and Xn ≡ Xmax being fixed. Therefore, we can
derive that

αh ≤
[

C

Xn −X0

]2/γ [n−1∑
i=0

hi

(
1

hi

∫ Xi+1

Xi

(f ′′(S))2dS

)γ/2]2/γ
=

[
C

Xmax −Xmin

]2/γ
α̃h,

where we denote

α̃h ≡

[
n−1∑
i=0

hi

(
1

hi

∫ Xi+1

Xi

(f ′′(S))2dS

)γ/2]2/γ
.
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Note that α̃h can be bounded by the following lower and upper Riemann sums:[
n−1∑
i=0

hi min
S∈[Xi,Xi+1]

(
f ′′(S)

)γ]2/γ ≤ α̃h ≤
[
n−1∑
i=0

hi max
S∈[Xi,Xi+1]

(
f ′′(S)

)γ]2/γ
.

Then, as n→ +∞, α̃h converges to its continuous form

α̃h →
[∫ Xn

X0

(
f ′′(S)

)γ
dS

]2/γ
=

[∫ Xmax

Xmin

(
f ′′(S)

)γ
dS

]2/γ
.

Therefore, αh is uniformly bounded. �

D Proof of formula (26)

The solutions to (23)–(25) are given by

SF
t = S0e

(r+λm−σ2
1/2)t+σ1Wt , 0 ≤ t < τ, (42)

Sdt (τ) = Sdτ (τ)e(r−σ
2
2/2)(t−τ)+σ2(Wt−Wτ ), τ < t ≤ T, (43)

Sdτ (τ) = SF
τ−(1− γ). (44)

We now compute the distribution of ST .

F (S) = P (ST ≤ S) = E[1ST≤S ]

= E[1ST≤S1τ≥T ] + E[1ST≤S1τ<T ]

≡ A+B. (45)

A and B can be computed as follows:

A = E
[
E[1ST≤S1τ≥T

∣∣τ ]
]

=

∫ ∞
T

λe−λtE[1SF
T≤S

∣∣τ = t] dt

=

∫ ∞
T

λe−λtP (SF
T ≤ S) dt

= e−λTΦ

(
ln (S/S0)− (r + λm− σ21/2)T

σ1
√
T

)
(46)

and

B = E
[
E[1ST≤S1τ<T

∣∣τ ]
]

=

∫ T

0
λe−λtE[1SdT (τ)≤S

∣∣τ = t] dt

=

∫ T

0
λe−λtE

[
P (SdT (t) ≤ S

∣∣γ)
]
dt

=

∫ T

0
λe−λtE

[
Φ

(
1

b(t)

(
ln

(
S

S0(1− γ)

)
− a(t)

))]
dt

=
3∑
i=1

pi

∫ T

0
λe−λtΦ

(
1

b(t)

(
ln

(
S

S0(1− γi)

)
− a(t)

))
dt, (47)

where a(t) ≡ (r + λm − σ21/2)t + (r − σ22/2)(T − t) and b(t) =
√
σ21t+ σ22(T − t). We have used

(42)-(44) in computing P (SdT (t) ≤ S
∣∣γ). �
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