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Abstract. We here provide a comprehensive study of the utility-deviation-risk portfolio selection
problem. By considering the first-order condition for the corresponding objective function, we first
derive the necessary condition that the optimal terminal wealth satisfying two mild regularity con-
ditions solves for a primitive static problem, called Nonlinear Moment Problem. We then illustrate
the application of this general necessity result by revisiting the non-existence of the optimal solution
for the mean-semivariance problem. Secondly, we establish an alternative version of the verification
theorem serving as the sufficient condition that the solution, which satisfies another mild condition
different from that for necessity, of the Nonlinear Moment Problem is the optimal terminal wealth of
the original utility-deviation-risk portfolio selection problem. We then apply this general sufficiency
result to revisit the various well-posed mean-risk problems already known in the literature, and to
also establish the existence of the optimal solutions for both utility-downside-risk and utility-strictly-
convex-risk problems under the assumption that the underlying utility satisfies the Inada Condition.
To the best of our knowledge, the positive answers to the latter two problems have long been absent
in the literature. In particular, the existence result in the utility-downside-risk problem is in contrast
to the well-known non-existence of an optimal solution for the mean-downside-risk problem. As a
corollary, the existence result in utility-semivariance problem allows us to utilize the semivariance as
a proper risk measure in the classical portfolio management paradigm.
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1. Introduction. Since its first introduction in Markowitz [25], the portfolio
selection problem has become one of the most important research topics in finance.
Expected utility and mean-variance are two common criteria for evaluating portfo-
lio performance. For example, Merton [30] and Samuelson [37] investigated utility
maximization problems in continuous time and multiperiod settings respectively, by
formulating them as a stochastic control problem. The advantage of that formulation
allows a direct application of dynamic programming or via HJB by invoking the inher-
ent tower property; see [10, 30, 39] for details. In addition to the use of the Dynamic
Programming Principle, the martingale method can be applied to solve for this utility
maximization problem in a complete market, where the existence of the optimal solu-
tion can be shown by using duality method, and then utilize the Clark-Ocone formula
to seek for the optimal weight; see [9, 15, 16, 19, 35].

Apart from utility optimization, many scholars use the mean-variance criteria for
evaluating the portfolio performance. For example, Markowitz [26] and Merton [31]
aimed to minimize the variance of the portfolio return subject to a constraint on the
expected return of the terminal wealth, and they also established the efficient frontier.
The advantage of using mean-variance criteria is due to its relative computational
simplicity and convenience in selling in bulk to accommodate market demand; indeed,
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different consumers possess different utilities towards return, but due to the limitation
of resources available, it is more convenient to sell a uniform package which can cater
for the needs of most people. Levy and Markowitz [22] showed that the optimal
portfolio in utility maximization can be approximated by the mean-variance efficient
frontier over ranges of commonly used utilities, return rates and volatilities. Hence,
the mean-variance portfolio can basically entertain the almost optimal satisfaction of
common consumers. Further studies support this approximation; for instances, see
[20, 27, 29, 36].

Due to the nonlinear nature of the square function of the expectation of the ter-
minal wealth involved in the variance, an immediate application of dynamic program-
ming principle is not viable, which results that the analytic research in mean-variance
portfolio optimization is used to mainly focused on single-period models at the first
stage. The embedding technique developed by Li and Zhou [23] broke the ice by
converting the mean-variance problems under both continuous time and multiperiod
settings into the canonical linear-quadratic stochastic control problems. From that
point on, more complicated mean-variance problems have also been investigated, in
work such as [4, 6, 7, 24].

Variance is not the only risk measure commonly adopted in the portfolio selection
problem. Jin et al. [14] consider a general convex risk function of the deviation of
the terminal payoff from its own mean, by following the Lagrangian approach as
proposed in [4], to characterize the optimal terminal payoff, and then they applied
the Clark-Ocone formula to determine the optimal portfolio weights. Besides, they
also studied the mean-downside-risk problem and established the non-existence of an
optimal solution by showing that the optimal value function is unattainable by any
admissible control. The downside-risk measure can remedy the common criticism
on incurring penalty on the upside return which happens in the use of variance.
Markowitz [28] also claims that “semivariance (an example of downside risk measure)
seems more plausible than variance as a measure of risk since it is concerned only
with adverse deviations”. In contrast to continuous time models, Jin et al. [13] solved
for the single-period mean-semivariance portfolio selection problem. After that, the
study on the optimization problem subject to downside risk measure has been absent
until the recent study by Cao et al. [5], in which they showed that mean-lower-partial-
moments problem possesses a positive solution if we impose a uniform upper bound
on the terminal payoff. For the relevant literature in connection with downside risk
measure and semivariance, see also [12, 32, 33, 38]. Apart from using deviation risk
measure, He et al. [11] studied continuous-time mean-risk portfolio choice problems
with general risk measures including VaR, CVaR, and law-invariant coherent risk
measures.

Turning back to reality, a number of financial crises have been observed frequently
over recent decades, so tighter government regulations have been enforced in the
financial market. On the other hand, the intensive competition in the market pushes
any old-fashioned profitable strategies to the edge; all of these urge most companies
to provide more tailor-made investment products in order to maintain their profit
margins. A uniform package such as the mean-variance portfolio mentioned above
can barely satisfy the demand of sophisticated investors nowadays, and a definitive
answer to utility maximization with minimal risk is eagerly sought. Nevertheless,
before our present work, the solution to this most relevant optimization problem has
still been long absent in the literature.
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In this article, we first provide a comprehensive study of utility-risk1 portfolio
selection problems: we suggest that the objective function of portfolio selection is
not simply the expected value of a certain functional of the terminal payoff, but it
also deals with the deviation risk caused by the underlying portfolio. Our proposed
problem follows the recent trend of embedding various risk management criteria into
the utility maximization framework. Such risk-monitoring mechanisms reduce the
drawback caused by the ambitious investment strategy in pure utility maximization
problems, which could lead to higher risk of potential pecuniary loss (see [42]). To
name a few along this direction, Basak and Shapiro [2] first suggested implementing
a Value-at-Risk (VaR) constraint into the portfolio optimization due to the prevailing
regulation on VaR limitation. Some researches in [8, 21, 41] further turn the VaR
limitation from a static constraint to a dynamic one in various utility-optimization
problems. Besides, Zheng [42] studied the efficient frontier problem of both maximiz-
ing the expected utility of the terminal wealth and minimizing the conditional VaR
of any potential loss. To the best of our knowledge, our present work is the first
attempt to apply risk management to utility maximization subject to the deviation
risk measure.

More precisely, we model the objective function as the difference of deviation risk
(function of the deviation of the terminal payoff from its own mean) from the util-
ity (concave increasing function of the terminal payoff) as in (2.2). We first follow
the same idea as in [4] and [14] to convert our dynamic optimization problem into
an equivalent static problem. By considering the first-order condition for the objec-
tive function, we can obtain a primitive static problem, called the Nonlinear Moment
Problem, which characterizes the optimal terminal wealth with respect to the respec-
tive necessity and sufficiency results (Sections 3.1 and 4.1), which are fundamentally
different, and not equivalent to each other. For necessity, the optimal terminal wealth
satisfying two mild regularity conditions (Conditions 3.1 (i) and (ii)) solves for the
Nonlinear Moment Problem; while for sufficiency, the solution of the Nonlinear Mo-
ment Problem that satisfies Condition 4.1 serves as the optimal terminal wealth. Note
that this Nonlinear Moment Problem includes a variational inequality (3.1) with a set
of constraints (3.2)-(3.4) involving the expectation of some nonlinear functions of the
optimal terminal wealth and its own mean, or the “mean-field term” in the context
of mean-field type control theory. The formulation of the Nonlinear Moment Prob-
lem is motivated by the mean-field approach developed in [3], in which the authors
studied the classical mean-variance problem with the aid of a novel mean-field type
HJB equation. Note that the same static problem may be obtained via the formal
Lagrangian multiplier approach as in [4] and [14].

With the aid of the Nonlinear Moment Problem, our necessity conditions warrant
an alternative deduction of the non-existence result of the mean-semivariance problem,
first considered in [14]. On the other hand, for the application of the sufficiency
conditions together with the Nonlinear Moment Problem, we replicate the explicit
construction of the optimal solutions of various well-posed mean-risk problems in
the existing literature. Furthermore, the novelty of our new approach allows us to
establish new existence result for the optimal solutions for a variety of utility-risk
problems, especially the utility-downside-risk (in Section 4.2) and the utility-strictly-
convex-risk problems (in Section 4.3), in which the underlying utility satisfies the

1Jin et al. [14] call their problem formulation mean-risk problem, though they only consider
deviation risk measure in their work, so to avoid ambiguity, we use a single word “risk” to stand for
the deviation risk measure in the remaining of this paper.
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common Inada Condition. To the best of our knowledge, these problems have not
been considered so far before our work. Note that by the sufficiency result in Theorem
4.2, we can conclude that there exists an optimal solution for the utility-downside-risk
problem including utility-semivariance problem, and this result is in contrast to [14],
in which they find that the continuous-time mean-downside-risk problem possesses no
optimal solution at all. As a consequence, the possibility of using semivariance as a
natural risk measure in portfolio selection can now be legitimately implemented.

The determination of an optimal portfolio subject to the semivariance constraint
plays a crucial role in the daily capital budgeting management. This semivariance
risk measure is a reasonable one because it penalizes the downside loss deviation but
not the upside profit. In the meantime, using the expected payoff or using a concave
utility function of portfolio reward are the common means to measure the agent’s
satisfaction of the portfolio payoff. Hence, the portfolio management using either
mean-semivariance or utility-semivariance criteria is crucial in both academia and
industry. However, under the mean-semivariance setting, even though it has been
shown that this problem has an optimal solution under the single-period setting,
but no optimal solution exists in the continuous-time paradigm. In this article, we
shall study the continuous-time utility-semivariance problem and provide a positive
solution which settles the alternative standing problem in portfolio management. In
addition to utility-semivariance setting, we actually consider the problem under a more
general utility-deviation-risk framework. To tackle this general utility-risk problem,
we convert it to the Nonlinear Moment Problem whose solution is directly related
to the existence of optimal solution of the former. To the best of our knowledge,
our newly proposed approach, via the Nonlinear Moment Problem, is crucial and it
cannot be replaced by the standard approaches commonly encountered in the existing
literature, such as (1) the direct approach (by constructing the optimal solution from
an optimizing sequence) and (2) the indirect approach (by applying convex analysis
through the conjugate functions); for details, we provide a comprehensive discussion
on their infeasibility in Section A in Appendix. Alternatively, our problem can also
be tackled using the common Lagrangian multiplier approach, however it will still
eventually lead to exactly the same Nonlinear Moment Problem; the detail shall be
demonstrated in Appendix A.3. Hence, the resolution of our Nonlinear Moment
Problem is indispensable for establishing the existence of an optimal solution for
our present utility-risk problem.

In this paper, we first introduce the problem formulation in Section 2 and con-
vert our continuous-time utility-risk problem into an equivalent static formulation as
stated in Theorem 2.5. In Section 3, we derive the necessary condition that the opti-
mal terminal wealth satisfying two mild regularity conditions, Conditions 3.1 (i) and
(ii), solves for the Nonlinear Moment Problem in Theorem 3.2. We then apply this ne-
cessity result to revisit the non-existence result for the mean-semivariance problem. In
Section 4, we establish the verification theorem (Theorem 4.2), serving as the sufficient
condition that the solution of the Nonlinear Moment Problem satisfying Condition
4.1 serves as the optimal terminal wealth. We then apply the sufficiency result to es-
tablish the existence of the corresponding optimal solutions for utility-downside-risk
and utility-strictly-convex-risk problems in Sections 4.2 and 4.3 respectively; the tech-
nical proofs are deferred to the Appendix. Finally, we apply the Nonlinear Moment
Problem to establish the sufficient condition for the existence of an optimal solution
of mean-risk problem in Section 4.4. Such sufficient condition can be used to revisit
the various well-known mean risk problems such as mean-weighted-power-risk (Exam-
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ple 4.18) (which includes mean-weighted-variance and mean-variance as special cases,
also see Remark 4.19) and mean-exponential-risk problems (Example 4.20).

2. Problem Setting. Let (Ω,F ,P) be a fixed complete probability space, over
which W (t) = (W1(t), . . . ,Wm(t))t denotes m−dimensional standard Brownian mo-
tion; M t denotes the transpose of a matrix M . We adopt the same market modelling
setting as in Jin et al. [14]. Define Ft := σ(W (s) : s ≤ t). Suppose that the market
has one riskless money account with price process B(t) and m risky assets with the
joint price process, S(t) := (S1(t), . . . , Sm(t))

t
, such that the pair (B(t), S(t)) satisfies

the following equations:{
dB(t) = r(t)B(t)dt, B(0) = b0 > 0,

dSk(t) = µk(t)Sk(t) dt+ Sk(t)
∑m

j=1 σkj(t)dWj(t), Sk(0) = sk > 0, k = 1, . . . ,m,

where r(t) is the riskless interest-rate, µk(t) and σk(t) := (σk1(t), . . . , σkm(t)) are
respectively the appreciation rate and volatility of the k-th risky asset, all assumed
to be uniformly bounded. We also assume that the volatility matrix of assets σ(t) :=
(σkj(t))m×m is uniformly elliptic, so that σ(t)σ(t)t ≥ δI for some δ > 0, so the

market is complete and (σ(t))−1 exists for all t.

Let π(t) := (π1(t), . . . , πm(t))
t
, where πk(t) is the money amount invested in the

k-th risky asset of the portfolio at time t. The dynamics of controlled wealth process
is:

dXπ(t) = (r(t)Xπ(t) + π(t)tα(t))dt+ π(t)tσ(t)dW (t), Xπ(0) = x0 > 0,(2.1)

where α(t) := (α1(t), . . . , αm(t))
t
and αk(t) := µk(t) − r(t) for any k ∈ {1, . . . ,m}.

The objective functional is:

(2.2) J(π) := E[U(Xπ(T ))]− γE[D (E[Xπ(T )]−Xπ(T ))],

where the terminal time T is finite and γ > 0 denotes the risk-aversion coefficient.
We denote by U a utility function such that U : Dom(U) → R is strictly increasing,
concave and continuously differentiable in the interior; here the domain of U , D :=
Dom(U), is a convex set in R. Define the lower end point of the domain D, K :=
inf(D) ∈ [−∞,∞). For completeness, we extend the definition of U over R so that
U(x) = −∞ for x ∈ R/D and U ′(K) := limx↓K U ′(x). Here the function D : R → R+

stands for a risk function which measures the deviation of the random return from
its own expectation. We assume that D is non-negative, convex and continuously
differentiable.

For any given p ≥ 1, denote Lp :=
{
Z| ∥Z∥p := E[|Z|p]

1
p < ∞

}
and L∞ :=

{Z| ∥Z∥∞ := supω∈Ω |Z(ω)| < ∞}. Define H2 to be the class of all Ft-adapted pro-

cesses π, equipped with a norm ∥π∥2H2 := E
[∫ T

0
π(t)tπ(t)dt

]
< ∞.

Definition 2.1. We define the class of all admissible controls π ∈ A as follows:

A :=
{
π ∈ H2

∣∣Xπ(T ) ∈ X
}
,

where X is the class of all admissible terminal wealths, such that

X := {X ∈ L2|X ∈ FT , X ∈ D a.s., U(X) ∈ L1, D(E[X]−X) ∈ L1}.
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Note that, for every admissible terminal wealth, both its expected utility and expected
deviation risk are well-defined. It is clear that X is a convex subspace of L22. For
any admissible control π, we have Xπ ∈ H2 and Xπ(t) ∈ L2 for any t ∈ [0, T ] by
Theorems 1.2 and 2.1 in [40].

Under the above settings, our utility risk problem can be stated as follows:
Problem 2.2.

Maximize J(π),

subject to π ∈ A and (Xπ(·), π(·)) satisfies (2.1) with initial wealth x0.

We define ξ(t) as

ξ(t) := exp

(
−
∫ t

0

(
r(s)ds+

1

2
α(s)t

(
σ(s)σ(s)t

)−1
α(s)ds+ α(s)t

(
σ(s)t

)−1
dW (s)

))
.

By applying Itô’s formula to ξ(t)Xπ(t), it is clear that ξ(t) is the pricing kernel.
Denote ξ := ξ(T ) ∈ Lp for any p ≥ 1. Hence, for a given initial condition Xπ(0) = x0,
E[ξXπ(T )] = x0 for any π ∈ A. If x0 < E [ξ]K, A is empty3. If x0 = E [ξ]K, even
when A is non-empty, all such π ∈ A will give the same terminal wealth, Xπ(T ) = K
a.s.4, so no actual optimization is required, thus the corresponding problem becomes
trivial. In the rest of this paper, based on this observation, we only consider our
problem under this natural assumption:

Assumption 2.3. The initial wealth x0, the lower end point of D, K ∈ [−∞,∞),
and pricing kernel ξ := ξ(T ) altogether satisfy:

x0 > E [ξ]K.

Note that if we choose U to be linear and D to be quadratic, i.e. U(x) = x and
D(x) = x2, then Problem 2.2 reduces to the classical mean-variance problem. If we
only choose U to be linear, then Problem 2.2 reduces to the mean-risk problem as
in [14]; in particular, if we alternatively choose D(x) = ax+ + bx−, then Problem
2.2 reduces to the mean-weighted-variance problem. If we just set D to be a convex
function with D(x) = 0 for x ≤ 0, Problem 2.2 is to maximize utility and minimize
the downside risk of terminal wealth; its resolution will be established in Subsection
4.2.

Since our market is complete, all L2-integrable and FT -measurable terminal
wealth can be attained by an admissible control, in the light of Martingale Represen-
tation Theorem. Our dynamic utility-risk optimization problem 2.2 can be converted
into the following static optimization problem:

Define Ψ : X → R such that

Ψ(X) := E[U(X)]− γE[D(E[X]−X)].(2.3)

2Note that U is increasing and D is convex, and hence we have

|U(θx+ (1− θ)y)| ≤ |U(x)|+ |U(y)| for all x, y ∈ D and θ ∈ [0, 1];

0 ≤ D(θx+ (1− θ)y) ≤ θD(x) + (1− θ)D(y) for all x, y ∈ R and θ ∈ [0, 1].

From which, the claim follows.
3If A is non-empty, we have x0 = E[ξXπ(T )] ≥ E [ξ]K since Xπ(T ) ∈ X for any π ∈ A, which

implies Xπ(T ) ≥ K a.s.
4If there exists π ∈ A such that P[Xπ(T ) > K] > 0, then x0 = E[ξXπ(T )] > E [ξ]K.
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Problem 2.4.

Maximize Ψ(X),(2.4)

subject to X ∈ X and E[ξX] = x0.

Then, the optimal solution of Problem 2.4 is the optimal terminal wealth of
Problem 2.2:

Theorem 2.5 (Theorem 2.1 in [4] and Theorem 2.1 in [14]). If π(t) is optimal
for Problem 2.2, then Xπ(T ) is optimal for Problem 2.4. Conversely, if X ∈ X is
optimal for Problem 2.4, there exists π ∈ A such that Xπ(T ) = X and π is optimal
for Problem 2.2.

Note that the maximization in Problem 2.4 is confined to the set X , so that the
solution obtained in Problem 2.4 is an admissible terminal wealth in Problem 2.2. Our
present paper aims to establish an admissible terminal wealth X ∈ X that maximizes
Ψ(X) under rather general scenarios, including those not yet covered in the existing
literature.

3. Necessary Condition.

3.1. Maximum Principle. We first introduce the following two very mild tech-
nical conditions:

Condition 3.1.
(i) Both U ′(Z) ∈ L1 and D′ (E[Z]− Z) ∈ L1.
(ii) There exists δ > 0 such that D (E [Z]− Z − δ) ∈ L1 and D (E [Z]− Z + δ) ∈

L1.
To show the necessity for optimality, we assume that the optimal solution of

Problem 2.4, X̂ ∈ X , satisfies Conditions 3.1 (i) and (ii). Now, it is necessary for X̂
to solve for the following auxiliary static problem, we call it the Nonlinear Moment
Problem:

Theorem 3.2 (Nonlinear Moment Problem). If X̂ is the optimal solution of
Problem 2.4 satisfying Conditions 3.1 (i) and (ii), then it is necessary that there exist

constants Y,M,R ∈ R such that the quadruple
(
X̂, Y,M,R

)
solves for the following

variational inequality:

(3.1)

Y ξ = U ′(X̂)− γR+ γD′
(
M − X̂

)
, a.s. on {X̂ > K},

Y ξ ≥ U ′(X̂)− γR+ γD′
(
M − X̂

)
, a.s. on {X̂ = K},

subject to the nonlinear moment constraints

E[ξX̂] = x0,(3.2)

E[X̂] = M,(3.3)

E
[
D′
(
M − X̂

)]
= R.(3.4)

Note that if P[X̂ = K] = 0, the variational inequality (3.1) is reduced to an equality.
To prove the necessity, we first apply the first-order conditions as stated in Propo-

sition 3.3. Next, we make use of Proposition 3.3 to give a preliminary result for char-
acterizing the optimal solution of Problem 2.4, X̂, in Lemma 3.5: if we can find a
random variable, Z, as described in Lemma 3.5, then it is necessary that X̂ has to
satisfy the variational inequality (3.1). Finally, in Proposition 3.9, we construct such
a Z.
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3.1.1. Proof of Theorem 3.2. Let X̂ ∈ X be an optimal solution of Problem
2.4. We define Γ : L2 ×D → R by

(3.5) Γ (X,x) := U ′(x)− γE [D′ (E[X]−X)] + γD′ (E[X]− x) .

For simplicity of notation, in the rest of the paper, we shall denote the random variable

Γ
(
X̂, X̂

)
by Γ̂.

Proposition 3.3. If X̂ is optimal for Problem 2.4 satisfying Condition 3.1 (i),
then

E
[
X̃Γ̂
]
≤ 0,

for all X̃ ∈ Θ :=
{
Z ∈ L∞ |E[Zξ] = 0 and X̂ + Z ∈ X

}
.

For any X̃ ∈ Θ, by the convexity of X , X̂ + θX̃ ∈ X for all 0 < θ < 1. The
directional derivative of Ψ(X) is

d

dθ
Ψ(X̂ + θX̃)

∣∣∣∣
θ=0

=
d

dθ

(
E
[
U(X̂ + θX̃)

]
− γE

[
D
(
E[X̂ + θX̃]− (X̂ + θX̃)

)]) ∣∣∣∣
θ=0

.

Before we proceed on the proof of Proposition 3.3, we first justify the interchange
of the order of differentiation and taking expectation of the above expression. To this
end, we need the following lemma (whose proof is postponed to Appendix B):

Lemma 3.4. Given two random variables X̂ ∈ X and X̃ ∈ L2 such that X̂+ X̃ ∈
X ,

lim
θ↓0

E

U(X̂ + θX̃)− γD
(
E
[
X̂ + θX̃

]
− (X̂ + θX̃)

)
−
(
U(X̂)− γD

(
E
[
X̂
]
− X̂

))
θ


= E

lim
θ↓0

U(X̂ + θX̃)− γD
(
E
[
X̂ + θX̃

]
− (X̂ + θX̃)

)
−
(
U(X̂)− γD

(
E
[
X̂
]
− X̂

))
θ

 .

Proof of Proposition 3.3. By Lemma 3.4, the chain rule and Condition 3.1 (i), we
have

d

dθ
Ψ(X̂ + θX̃)

∣∣∣∣
θ=0

= E
[
U ′(X̂)X̃

]
− γE

[
D′
(
E[X̂]− X̂

)(
E[X̃]− X̃

)]
= E

[
X̃Γ̂
]
.(3.6)

Our claim follows by the first-order necessary condition for optimality.

To characterize the optimal solution X̂, we first have the following lemma:

Lemma 3.5. Given that X̂ is optimal for Problem 2.4 satisfying Condition 3.1
(i), if there exists a random variable, Z ∈ [0, 1], such that the following three items
hold:

(3.7)

Z > 0 a.s. on
{
X̂ > K

}
,

Z = 0 a.s. on
{
X̂ = K

}
,
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(3.8) ZξΓ̂ ∈ L1, Z
(
Γ̂− Y ξ

)
∈ L∞, where Y :=

E
[
ZξΓ̂

]
E[Zξ2]

, and

(3.9) X̂ + Z
(
Γ̂− Y ξ

)
∈ X ,

then it is necessary that Γ̂ defined in (3.5) satisfies the following algebraic structure:

(3.10)

Γ̂ = Y ξ a.s. on
{
X̂ > K

}
,

Γ̂ ≤ Y ξ a.s. on
{
X̂ = K

}
.

Proof. We split our proof into two parts: (i) Γ̂ = Y ξ a.s. on
{
X̂ > K

}
, and (ii)

Γ̂ ≤ Y ξ a.s. on
{
X̂ = K

}
.

(i) Take

(3.11) X̃ = Z
(
Γ̂− Y ξ

)
,

(3.8) and (3.9) warrants that X̃ ∈ L∞ with X̂ + X̃ ∈ X and

E[X̃ξ] = E
[
ZξΓ̂

]
− Y E[Zξ2] = 0.

By Proposition 3.3 and the fact that Y = E
[
ZξΓ̂

]
/E[Zξ2],

0 ≥ E
[
X̃Γ̂
]
= E

[
Z
(
Γ̂− Y ξ

)
Γ̂
]
− Y E

[
ZξΓ̂

]
+ Y 2

[
Zξ2

]
= E

[
Z
(
Γ̂− Y ξ

)2]
.

(3.7) ensures that Z
(
Γ̂− Y ξ

)2
≥ 0, and therefore E

[
Z
(
Γ̂− Y ξ

)2]
= 0,

which implies that Z
(
Γ̂− Y ξ

)2
= 0 a.s. By (3.7), on

{
X̂ > K

}
, Z > 0,

hence Γ̂ = Y ξ a.s. on
{
X̂ > K

}
.

(ii) Assume the contrary that P
[
I
{
X̂ = K

}(
Γ̂− Y ξ

)
> 0
]
> 0. Consider

X̃ = kI
{
X̂ = K

}
− min{X̂ −K, 1}

2

where k := E
[(

min{X̂ −K, 1}
)
ξ
]/(

2E
[
I
{
X̂ = K

}
ξ
])

> 0 in light of the

required feasibility of X and our interest being only on non-trivial setting.
We have

X̂ + X̃ =

{
max

{
X̂+K

2 , X̂ − 1
2

}
, if X̂ > K,

K + k, if X̂ = K.

Obviously, X̃ ∈ L∞, K ≤ X̂ + X̃ ∈ D a.s. and E
[
X̃ξ
]
= 0.
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Since U is monotonic,

|U(X̂+X̃)| ≤ |U(K+k)|+

∣∣∣∣∣U
(
max

{
X̂ +K

2
, X̂ − 1

2

})∣∣∣∣∣ ≤ |U(K+k)|+|U(K)|+|U(X̂)|.

As P[X̂ = K] > 0 and P[X̂ = K] · |U(K)| ≤ E[|U(X̂)|] is finite, they prevent
U(K) from taking −∞. Clearly, K + k ∈ D, and so U(K + k) is finite. Since
X̂ ∈ X , we also have U(X̂) ∈ L1. These three claims altogether imply that
U(X̂ + X̃) ∈ L1.
Note that

E
[
X̂ + X̃

]
= E

[
(K + k) I[X̂ = K]

]
+ E

[
max

{
X̂ +K

2
, X̂ − 1

2

}(
1− I[X̂ = K]

)]

= kP[X̂ = K] + E

[
max

{
X̂ +K

2
, X̂ − 1

2

}]
,

we then establish the upper bound of D
(
E
[
X̂ + X̃

]
−
(
X̂ + X̃

))
into three

different cases: (1) X̂ = K, (2) K < X̂ < K + 1, and (3) X̂ ≥ K + 1.

(1) D
(
E
[
X̂ + X̃

]
−
(
X̂ + X̃

))
= D

(
E
[
X̂ + X̃

]
−K − k

)
is a finite con-

stant.
(2) Note that

E

[
X̂ +K

2

]
− X̂ +K

2
≤ E

[
max

{
X̂ +K

2
, X̂ − 1

2

}]
− X̂ +K

2

≤ E

[
max

{
X̂ +K

2
, X̂ − 1

2

}]
−K.

By convexity of D, we have

D
(
E
[
X̂ + X̃

]
−
(
X̂ + X̃

))
= D

(
kP
[
X̂ = K

]
+ E

[
max

{
X̂ +K

2
, X̂ − 1

2

}]
− X̂ +K

2

)

≤ D

(
kP
[
X̂ = K

]
+ E

[
max

{
X̂ +K

2
, X̂ − 1

2

}]
−K

)
+D

(
kP
[
X̂ = K

]
+ E

[
X̂ +K

2

]
− X̂ +K

2

)

≤ C +D

kP
[
X̂ = K

]
+

E
[
X̂
]
− X̂

2

 ≤ C +D

kP
[
X̂ = K

]
+

E
[
X̂
]
−K

2

+D

E
[
X̂
]
− X̂

2


≤ C +D(0) +D

(
E
[
X̂
]
− X̂

)
, where C is a constant.

(3) By the same arguments as that for case (ii), we have

D
(
E
[
X̂ + X̃

]
−
(
X̂ + X̃

))
≤ D

(
kP
[
X̂ = K

]
+ E

[
max

{
X̂ +K

2
, X̂ − 1

2

}]
−K

)
+D

(
kP
[
X̂ = K

]
+ E

[
X̂
]
−K

)
+D

(
E
[
X̂
]
− X̂

)
.
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Since X̂ ∈ X , we have D(E[X̂]− X̂) ∈ L1, so D(E[X̂ + X̃]− (X̂ + X̃)) ∈ L1.
Finally,

E
[
Γ̂X̃
]
= kE

[
I
{
X̂ = K

}
Γ̂
]
−

E
[(

min
{
X̂ −K, 1

})
Γ̂
]

2

= kE
[
I
{
X̂ = K

}
Γ̂
]
−

E
[(

min
{
X̂ −K, 1

})
Y ξ
]

2

= k
(
E
[
I
{
X̂ = K

}
Γ̂
]
− E

[
I
{
X̂ = K

}
Y ξ
])

> 0,(3.12)

where the second equality follows because we have shown that Γ̂ = Y ξ when

X̂ > K and the third equality follows because k = E
[(

min
{
X̂ −K, 1

})
ξ
]/(

2E
[
I
{
X̂ = K

}
ξ
])

.

(3.12) violates Proposition 3.3, this implies that P
[
I
{
X̂ = K

}(
Γ̂− Y ξ

)
> 0
]
>

0 leads to a contradiction. We have

P
[
I
{
X̂ = K

}(
Γ̂− Y ξ

)
≤ 0
]
= 1.

Therefore, the complete characterization as specified in (3.10) now follows.
The overall necessity claim will be accomplished if the explicit construction of Z

as described in the hypothesis in Lemma 3.5 can be obtained. Even the nature of
such Z appears to be complicated and uncommon in the literature, we shall devote
the remaining part of this subsection to the establishment of its existence.

In order to satisfy (3.9), X̃ expressed in terms of Z as in (3.11) needs to be
bounded so that the deviation of U(X̂ + X̃) from U(X̂) is less than some constant,
say 1 for simplicity, almost surely. To warrant this, we need the following lemma:

Lemma 3.6. There exists δU : int(D) → (0, 1] such that for any x0 ∈ int(D),

|U(x)− U(x0)| ≤ 1,∀x ∈ D such that |x− x0| < δU (x0).

Proof. See Appendix.
We shall make use of δU defined in Lemma 3.6 to construct Z so that U(X̂+X̃) ∈

L1 , where X̃ in terms of Z is given in (3.11). Beforehand, for any y ∈ (0,∞), define
a random variable Zy ∈ [0, 1] by:

Zy :=


0, if X̂ = K,

1, if X̂ > K and Γ̂ = yξ,

min

{
min{δU(X̂), 12 (X̂−K), δ2}

|Γ̂−yξ| , 1

}
, otherwise.

(3.13)

First, we show that (3.8) is satisfied for any y ∈ (0,∞):

Lemma 3.7. For any y ∈ (0,∞), we have ZyξΓ̂ ∈ L1 and Zy

(
Γ̂− yξ

)
∈ L∞.

Proof. By the definition of Zy in (3.13),
∣∣∣Zy

(
Γ̂− yξ

) ∣∣∣ ≤ δ, so Zy

(
Γ̂− yξ

)
∈ L∞.

Since ∣∣ZyξΓ̂
∣∣ ≤ ∣∣∣Zyξ

(
Γ̂− yξ

) ∣∣∣+ ∣∣yξ2Zy

∣∣ ≤ δξ + yξ2,

we have ZyξΓ̂ ∈ L1.
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Next, we want to ensure one can find a y so that y =
E[ξΓ̂Zy]
E[ξ2Zy ]

is satisfied.

Lemma 3.8. Define f : (0,∞) → R by

f(y) := yE
[
ξ2Zy

]
− E

[
ξΓ̂Zy

]
.

There is a root y∗ ∈ (0,∞) such that f(y∗) = 0.
Proof. See Appendix.
Proposition 3.9. Suppose the optimal solution of Problem 2.4, X̂, satisfies

Conditions 3.1 (i) and (ii). There exists a random variable Z ∈ [0, 1] satisfying
(3.7)-(3.9) in Lemma 3.5.

Proof. We shall verify that Z := Zy∗ with Zy as defined in (3.13) and y∗ obtained
in Lemma 3.8 satisfies (3.7)-(3.9). Note that δU and δD in Lemma 3.6 only take posi-
tive values no matter what the corresponding arguments are; in particular, according
to (3.13), when X̂ > K, Z > 0. Therefore, Z satisfies (3.7).

Note that y∗ = E
[
ZξΓ̂

] /
E[Zξ2] by Lemma 3.8. By Lemma 3.7, we have ZξΓ̂ ∈

L1 and Z
(
Γ̂− y∗ξ

)
∈ L∞, thus (3.8) is satisfied.

By a simple calculation under the third case in (3.13),
∣∣∣Z (Γ̂− y∗ξ

) ∣∣∣ ≤ 1
2

(
X̂ −K

)
,

thus we have

X̂ + Z

Γ̂−
E
[
ZξΓ̂

]
E[Zξ2]

ξ

 ≥ X̂ − 1

2

(
X̂ −K

)
=

1

2

(
X̂ +K

)
∈ D a.s.

Since
∣∣∣Z (Γ̂− y∗ξ

) ∣∣∣ ≤ δU
(
X̂
)
, by a direct application of Lemma 3.6 (a), we

have
∣∣∣U (X̂ + Z

(
Γ̂− y∗ξ

))
− U(X̂)

∣∣∣ ≤ 1, and thus

∣∣∣∣∣U
X̂ + Z

Γ̂−
E
[
ZξΓ̂

]
E[Zξ2]

ξ

∣∣∣∣∣ ≤ ∣∣U(X̂)
∣∣+ 1

. Hence, U

(
X̂ + Z

(
Γ̂− E[ZξΓ̂]

E[Zξ2] ξ

))
∈ L1.

Similarly, since we also have
∣∣∣E [Z (Γ̂− y∗ξ

)]
− Z

(
Γ̂− y∗ξ

) ∣∣∣ ≤ δ, we have

D
(
E
[
X̂ + Z

(
Γ̂− y∗ξ

)]
−
(
X̂ + Z

(
Γ̂− y∗ξ

)))
= D

(
E
[
X̂
]
− X̂ − Z

(
Γ̂− y∗ξ

)
+ E

[
Z
(
Γ̂− y∗ξ

)])
≤ D

(
E
[
X̂
]
− X̂ − δ

)
+D

(
E
[
X̂
]
− X̂ + δ

)
.

Hence, by Condition 3.1 (ii), D
(
E
[
X̂ + Z

(
Γ̂− y∗ξ

)]
−
(
X̂ + Z

(
Γ̂− y∗ξ

)))
∈ L1.

We can now conclude X̂ + Z
(
Γ̂− y∗ξ

)
satisfies all the admissibility conditions

of X , and hence Z satisfies (3.9).
In summary, by Proposition 3.9, we have Zy∗ satisfying (3.7)-(3.9) in Lemma 3.5.

By Lemma 3.5, it is necessary that Γ̂ in terms of X̂ as in (3.5) satisfies the following
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algebraic structure: Γ̂ = Y ξ a.s. on
{
X̂ > K

}
,

Γ̂ ≤ Y ξ a.s. on
{
X̂ = K

}
,

where Y = E
[
ZξΓ̂

] /
E
[
Zξ2

]
and Z is obtained in Proposition 3.9. Now, by setting

M := E[X̂] and R := E[D′(M − X̂)] together with the constraint E[X̂ξ] = x0 given
in Problem 2.4, the claim described in Theorem 3.2 follows.

Remark 3.10 (Comments on the Proof of Theorem 3.2).
We sincerely thank the anonymous referee for his/her suggestion on an inspiring

alternative proof of Theorem 3.2 in a special case when the domain of the utility is
the whole real line (D = R). We now streamline his/her arguments as follows:

To avoid technical difficulties, all random variables are supposed to be integrable.
Together with D = R, X becomes a collection of all real-valued random variables. By
Proposition 3.3, for an arbitrary X̃ ∈ Θ := {Z|E[Zξ] = 0}, which is the collection of

all plausible perturbation of X̂, we have E
[
X̃Γ̂
]
≤ 0 and E

[
−X̃Γ̂

]
≤ 0. Thus, we

conclude that, for any X̃ ∈ Θ,

E
[
X̃Γ̂
]
= 0(3.14)

and therefore, Γ̂ is orthogonal to Θ.

Define y := E[Γ̂ξ]
E[ξ2] ∈ R, we have

E[(Γ̂− yξ)ξ] = E[Γ̂ξ]− yE[ξ2] = 0,(3.15)

thus Γ̂− yξ ∈ Θ. By (3.14), we have

E[(Γ̂− yξ)Γ̂] = 0.(3.16)

Further applying (3.15) and (3.16), we have

E[(Γ̂− yξ)2] = E[(Γ̂− yξ)Γ̂]− yE[(Γ̂− yξ)ξ] = 0,

which concludes that Γ̂ = yξ a.s., and the necessity result in Theorem 3.2 follows.
More rigorously, we now revert to discuss on the integrability conditions which we

assumed. With such consideration, X and Θ are confined as the following:

X := {X ∈ L2|X ∈ FT , X ∈ D a.s., U(X) ∈ L1, D(E[X]−X) ∈ L1};
Θ := {Z ∈ L∞|E[Zξ] = 0, X̂ + Z ∈ X}.

To conclude that Γ̂ is orthogonal to Θ, we need −X̃ ∈ Θ for any X̃ ∈ Θ but it is not
apparent because U(X̂− X̃) may not be integrable. The integrability of U(X̂− X̃) can

be warranted if limx→−∞
U(x)
x < ∞. On the other hand, to have Γ̂− yξ ∈ Θ, we need

both (3.15) and Γ̂ − yξ ∈ L∞, but the validity of the latter is usually not immediate
either.

Furthermore, the domain of the utility may not be necessarily the whole real line
in general. For instance, the domains of power utility and logarithm utility, which are
commonly considered in literature, are usually only the positive half real line. Also,
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the existence results of optimal solution of utility-downside-risk and utility-strictly-
convex-risk problems, which will be considered in Sections 4.2 and 4.3 respectively,
require the assumption that the utility function satisfies the Inada conditions, under
which the domain of the utility is certainly not the whole real line. In these cases,

X̂−X̃ ∈ D a.s. may not hold for any X̃ ∈ Θ. Thus, the inequality E
[
−X̃Γ̂

]
≤ 0 may

also not hold for all X̃ ∈ Θ, and hence we cannot have E
[
X̃Γ̂
]
= 0 for any X̃ ∈ Θ.

3.2. Application to the Mean-Semivariance Problem. In this subsection,
we take U(x) = x, D(x) = 1

2x
2
+. Then D′(x) = x+. We revisit the non-existence

result first obtained in [14] via our Theorem 3.2.

Theorem 3.11. There is no optimal solution for the continuous-time mean-
semivariance problem.

Proof. Assume the contrary, that there exists an admissible optimal control π̂;
then its corresponding optimal terminal wealth X̂ ∈ L2 solves Problem 2.4 by Theo-
rem 2.5. Since D and D′ are bounded by quadratic and linear functions respectively,
it is clear that X̂ satisfies Conditions 3.1 (i) and (ii). Hence, by Theorem 3.2, it is
necessary that there exist constants Y,M,R ∈ R such that the quadruple (X̂, Y,M,R)
solves for the following Nonlinear Moment Problem:

(3.17) Y ξ + γR− 1 = γ
(
M − X̂

)
+

a.s.,

subject to the constraints: E
[
ξX̂
]
= x0, E

[
X̂
]
= M and E

[(
M − X̂

)
+

]
= R.

Firstly, by taking expectation on the both sides of (3.17), we immediately have

Y = 1/E[ξ] > 0. If γR − 1 ≥ 0, then by (3.17), γ
(
M − X̂

)
+

> 0 a.s., and hence

E[X̂] < M which is in conflict with the constraint E[X̂] = M . If γR − 1 < 0, there
exists some ξ0 > 0 such that γR−1+Y ξ < 0 for all ξ ∈ (0, ξ0), which contradicts the
positivity of the right hand side in (3.17). Thus, the nonlinear moment problem has
no solution. We conclude that mean-semivariance problem does not admit an optimal
solution.

Remark 3.12. The mean-semivariance problem has been investigated in [14].
The authors considered the semivariance minimization problem with a fixed mean, and
showed that this problem does not have an optimal solution except for the trivial case in
which the mean is equal to the terminal wealth, which is the initial wealth accumulated
at riskless interest rate. The nonexistence was proven in their work by showing that
the optimal value function is non-attainable. The constrained optimization problem in
[14] and in Problem 2.2 are equivalent for suitable values of mean and risk aversion
parameter. The trivial riskless solution becomes optimal in Problem 2.2 only when
γ = ∞. For γ < ∞, the riskless strategy is dominated by another strategy attaining
x0

E[ξ] + θ
(
1− E[ξ]

E[ξ2]ξ
)
as the corresponding terminal wealth for sufficiently small values

of θ5.

4. Sufficient Condition.

5Because the mean of x0
E[ξ] + θ

(
1− E[ξ]

E[ξ2] ξ
)

is greater than x0
E[ξ] in the order of O(θ) while the

semivariance of x0
E[ξ] + θ

(
1− E[ξ]

E[ξ2] ξ
)

is of the order O(θ2), therefore x0
E[ξ] + θ

(
1− E[ξ]

E[ξ2] ξ
)

has a

greater objective value for sufficiently small θ.
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4.1. Verification Theorem. We first introduce the following technical condi-
tion:

Condition 4.1. Both U ′(Z) ∈ L2 and D′ (E[Z]− Z) ∈ L2.
In this subsection, we aim to show that the solution of the Nonlinear Moment

Problem satisfying Condition 4.1 is optimal terminal wealth of Problem 2.2. There
is a fundamental difference between the necessary condition in Theorem 3.2 and the
sufficient condition in the next theorem. Conditions 3.1 (i) and (ii) are needed for the
optimal terminal wealth satisfying the Nonlinear Moment Problem in the necessity
result, while Condition 4.1 is required for the sufficiency.

Theorem 4.2. Suppose that there exists X̂ ∈ X satisfying Condition 4.1 and

there exist constants Y,M,R ∈ R so that the quadruple
(
X̂, Y,M,R

)
solves for the

Nonlinear Moment Problem (3.1)-(3.4). Then, X̂ is optimal for Problem 2.4, and it
is also the optimal terminal wealth of Problem 2.2.

Remark 4.3. Theorem 4.2 boils the optimal control problem 2.2 down to a static
problem. Suppose that there exists an implicit function I(m, y) ∈ R satisfying:

(4.1) U ′(I(m, y)) + γD′(m− I(m, y)) = y, for any (m, y).

Then the Nonlinear Moment Problem (3.1)-(3.4) will be solved by (max{I (M,γR+ Y ξ) ,K}, Y,M,R),
where the constants Y,M and R satisfy the following system of nonlinear equations:

E[ξmax{I (M,γR+ Y ξ) ,K}] = x0,(4.2)

E[max{I (M,γR+ Y ξ) ,K}] = M,(4.3)

E [D′ (M −max{I (M,γR+ Y ξ) ,K})] = R.(4.4)

After we verify that max{I (M,γR+ Y ξ) ,K} belongs to X and also satisfies Condi-
tion 4.1, max{I (M,γR+ Y ξ) ,K} is the optimal solution for Problem 2.4.

Proof of Theorem 4.2.
Let (X̂, Y,M,R) be the solution of Nonlinear Moment Problem (3.1)-(3.4) and

X̃ ∈ L2 be an arbitrary random variable such that X̂ + X̃ is admissible for Problem

2.4, i.e. X̂ + X̃ ∈ X and E
[
ξ
(
X̂ + X̃

)]
= x0. By (3.2), we have E

[
ξX̃
]
= 0. By

Lemma 3.4, the chain rule and and under our hypothesis that X̂ satisfies (3.1) and
Condition 4.1, we have

d

dθ
Ψ(X̂ + θX̃)

∣∣∣∣
θ=0

= E
[
U ′(X̂)X̃

]
− γE

[
D′
(
E[X̂]− X̂

)(
E[X̃]− X̃

)]
= E

[
X̃
(
U ′(X̂)− γE

[
D′
(
E[X̂]− X̂

)]
+ γD′

(
E[X̂]− X̂

))]
≤ E

[
X̃(Y ξ)

]
= 0.(4.5)

The last inequality follows from the fact that X̂ satisfies (3.1), and X̃ ≥ 0 whenever
X̂ = K due to the admissibility of X̂ + X̃ ∈ X which demands that X̂ + X̃ ≥ K.

By the concavity of U and convexity of D, it is clear that Ψ(X̂ + θX̃) ≥ (1 −
θ)Ψ(X̂) + θΨ(X̂ + X̃) for any θ ∈ (0, 1]. Then

Ψ
(
X̂
)
≥ Ψ

(
X̂ + X̃

)
−

Ψ
(
X̂ + θX̃

)
−Ψ(X̂)

θ
.(4.6)
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By (4.5), limθ↓0
Ψ(X̂+θX̃)−Ψ(X̂)

θ = d
dθΨ(X̂ + θX̃)

∣∣
θ=0

≤ 0. After taking limits on

both sides of (4.6), Ψ
(
X̂
)
≥ Ψ

(
X̂ + X̃

)
, hence X̂ is optimal for Problem 2.4. By

Theorem 2.5, We can now conclude that X̂ is the optimal terminal wealth of Problem
2.2.

In the next three subsections, we apply Theorem 4.2 to establish the existence of
optimal solutions for different utility-risk frameworks: (i) Utility-Downside-Risk, (ii)
Utility-Strictly-Convex-Risk, and (iii) Mean-Risk. In particular, the positive answers
to the first two problems have long been absent in the literature.

4.2. Application to the Utility-Downside-Risk Problem. In this subsec-
tion, we take D = [0,∞). We assume that U : [0,∞) → [0,∞) is strictly concave,
and U and D : R → [0,∞) are continuously differentiable. We consider D to be a
downside risk function, so D is positive and strictly convex on (0,∞) and D(x) = 0
for x ≤ 0. Thus, we have D′(x) > 0 when x > 0 and D′(x) = 0 when x ≤ 0. In
this proposed model, the payoff greater than its mean will not be penalized, and only
the downside risk would be taken into account. Moreover, we assume that U and D
satisfy the following conditions:

(4.7) U ′(0) = ∞, U ′(∞) = 0 and D′(∞) = ∞.

Thus any utility functions satisfying the Inada conditions can be covered. Note
that this formulation can cover the utility-semivariance problem, its positive an-
swer has a substantial contrast to the nonexistence of an optimal solution to the
mean-semivariance problem. We further make the following assumption on the utility
function:

Assumption 4.4. There exists k0 > 0 so that the inverse of the first-order
derivative of U , (U ′)−1, satisfies (U ′)−1(k0ξ) ∈ L2. 6

According to Remark 4.3, we first find an implicit function satisfying (4.1), then
the Nonlinear Moment Problem (3.1)-(3.4) can be reduced into a nonlinear program-
ming problem (4.2)-(4.4).

Proposition 4.5. There exists an implicit function I : R× (0,∞) → (0,∞)
satisfying:

(4.8) U ′(I(m, y)) + γD′(m− I(m, y))− y = 0, for any (m, y) ∈ R× (0,∞).

Moreover, this function I possesses the following regularities:
(a) (i) For each m ∈ R, I(m, y) is strictly decreasing in y on (0,∞).

(ii) For each y ∈ (0,∞), I(m, y) is strictly increasing in m on {m ∈ R| y ≥
U ′(m)}; I(m, y) = (U ′)−1(y) ∈ (0,∞) for all m ∈ {m ∈ R| y ≤ U ′(m)}.

(b) I(m, y) is jointly continuous in (m, y) ∈ R× (0,∞).
Proof. See Appendix C.1.
Since the implicit function I never takes value in the boundary of D, so we now

look for numbers Y,M and R that solve the following system of equations as described
in Remark 4.3:

E[ξI (M,γR+ Y ξ)] = x0;(4.9)

E[I (M,γR+ Y ξ)] = M ;(4.10)

E [D′ (M − I (M,γR+ Y ξ))] = R.(4.11)

6This assumption can be satisfied if there exist β ∈ (0, 1) and γ > 1 such that U ′(βy) ≤ γU ′(y)
for all y > 0, and this condition has been adopted in [42].
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Proposition 4.6. There exist numbers Y,M,R ∈ (0,∞) such that the system of
nonlinear equations of (4.9)-(4.11) is satisfied. Thus, (I (M,γR+ Y ξ) , Y,M,R) is a
solution of the system of Equations (3.1)-(3.4), where I is given in Proposition 4.5.

We shall solve for roots Y,M and R one by one via applying the intermediate
value theorem successively. We shall provide the main idea here and the technical
details will be collected in Appendix C.

Lemma 4.7. Given Y,M ∈ (0,∞), there exists a unique R = RY,M ∈ (0, D′(M))
satisfying

(4.12) E [D′ (M − I (M,γR+ Y ξ))] = R;

or equivalently by (4.8):

(4.13) E [U ′ (I (M,γR+ Y ξ))] = Y E[ξ].

Furthermore, RY,M is strictly increasing in M for a fixed Y and is also strictly in-
creasing in Y for a fixed M .

Lemma 4.8. Given Y ∈ (0,∞) and RY,M as specified for each M ∈ (0,∞) in
Lemma 4.7, there exists a unique M = MY ∈ (0,∞) such that

(4.14) E[I (M,γRY,M + Y ξ)] = M.

Furthermore, MY is strictly decreasing in Y .

Lemma 4.9. Given RY,M and MY as specified in Lemmas 4.7 and 4.8 respectively
for each Y,M ∈ (0,∞), there exists a (not necessarily unique) Y ∗ ∈ (0,∞) such that

(4.15) E[ξI (MY , γRY,MY
+ Y ξ)] = x0.

The existence result of these three Lemmas can be verified via the application of the
intermediate value theorem. The technical details for the proof of these lemmas are
similar; they will be provided in the Appendix for completeness.

Proof of Proposition 4.6. According to Lemmas 4.7, 4.8 and 4.9, the triple
(Y ∗,MY ∗ , RY ∗,MY ∗ ) solves the system of nonlinear equations in (4.9)-(4.11).

Next, we shall verify that X̂ = I (M,γR+ Y ξ), where I is given in Proposition
4.5 and the numbers Y,M and R are warranted in Proposition 4.6, belongs to X and
satisfies Condition 4.1. Then, the optimal terminal wealth can be found by Theorem
4.2:

Theorem 4.10. X̂ = I (M,γR+ Y ξ) is an optimal terminal wealth to the utility-
downside-risk problem, where I is given in Proposition 4.5 and the numbers Y,M and
R are warranted in Proposition 4.6.

Proof. According to Proposition 4.5, I(m, y) is finite on R× (0,∞) and is strictly
decreasing in y for a fixed m. We have 0 ≤ I (M,Y ξ + γR) ≤ I (M,γR) < ∞,
thus U (I (M,Y ξ + γR)) and D (M − I (M,Y ξ + γR)) are both uniformly bounded.
Hence, X = I (M,Y ξ + γR) ∈ X . Since D′ is increasing, D′(M − I (M,γR)) ≤
D′ (M − I (M,Y ξ + γR)) ≤ D′(M), and henceD′ (M − I (M,Y ξ + γR)) is uniformly
bounded and in L2. Furthermore, by (4.8), U ′ (I (M,Y ξ + γR)) = Y ξ + γR −
γD′ (M − I (M,Y ξ + γR)), which is in L2, hence X̂ = I (M,Y ξ + γR) satisfies Con-
dition 4.1.

With (Y,M,R) as warranted in Proposition 4.6, (I (M,Y ξ + γR) , Y,M,R) solves
the Nonlinear Moment Problem (3.1)-(3.4). Then, by Theorem 4.2, X̂ = I (M,Y ξ + γR)
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is an optimal solution to Problem 2.4 with downside risk function D. Finally, by The-
orem 2.5, X̂ = I (M,Y ξ + γR) is an optimal terminal wealth of utility-downside-risk
problem.

From the construction, we can see that the optimal terminal wealth is actually
uniformly bounded; its proof together with the financial motivation will be included
in Appendix D.

Remark 4.11.
To show the existence of optimal solution to our present utility-risk problem from

Theorem 4.2, we first characterize the optimal terminal wealth in terms of an implicit
function and a solution of a system of equations from Nonlinear Moment Problem,
as described in Remark 4.3. Then, we show that the implicit function and the solu-
tion of equation system exist in Propositions 4.5 and 4.6 through applications of the
intermediate value theorem.

4.3. Application to the Utility-Strictly-Convex-Risk Problem. In this
subsection, we take D = [0,∞). We assume that U : [0,∞) → [0,∞) is strictly
concave and continuously differentiable, while D : R → [0,∞) is strictly convex and
continuously differentiable. Moreover, we assume that U and D satisfy (4.7) and
D′(−∞) = −∞. Thus any utility functions satisfying the Inada conditions can be
covered.

We can establish the existence of the solution of the nonlinear moment problem
in (3.1) by using the same approach as in Subsection 4.2. Since most derivations are
similar, we only indicate here the major differences from the last subsection.

Proposition 4.12.
There exists an implicit function I : R2 → (0,∞) satisfying:

(4.16) U ′(I(m, y)) + γD′(m− I(m, y))− y = 0, for any (m, y) ∈ R2.

Moreover, this function I possesses the following regularities:
(a) (i) For each y ∈ R, I(m, y) is strictly increasing in m.

(ii) For each m ∈ R, I(m, y) is strictly decreasing in y.
(b) I(m, y) is jointly continuous in (m, y) ∈ R2.
Proof. See Appendix C.5.
Proposition 4.13. There exist constants Y,M ∈ (0,∞) and R ∈ R satisfying

a system of nonlinear equations in (4.9)-(4.11). Thus, (I (M,γR+ Y ξ) , Y,M,R) is
the solution of system of Equations (3.1)-(3.4), where I is given in Proposition 4.12.

Proof. The approach is again the same as that of Proposition 4.6. Major changes
will be demonstrated in Appendix C.6.

Using the same argument as in Section 4.2, we can draw the same existence
conclusion:

Theorem 4.14. X̂ = I (M,γR+ Y ξ) is an optimal terminal wealth of the utility-
strictly-convex-risk problem, where I is specified in Proposition 4.12 and the numbers
Y,M and R are warranted in Proposition 4.13.

Furthermore, if we specify risk function D to be the square function, i.e. D(x) =
x2, and hence variance of the terminal payoff is the risk measure concerned, then the
solution of the Nonlinear Moment Problem in Theorem 4.2 is unique:

Proposition 4.15. There exists a unique set of numbers Y,M ∈ (0,∞) and
R ∈ R such that a system of nonlinear equations in (4.9)-(4.11) is satisfied. Thus,
X = I (M,γR+ Y ξ), where I is a function defined in Proposition 4.12, is the unique
optimal terminal wealth of the utility-variance problem.
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Proof. Now, D′(x) = 2x, then RY,MY = 0 for all Y by (4.10) and (4.11). Since
MY is strictly decreasing in Y , by Proposition 4.12 (b), I (MY , γRY,MY

+ Y ξ) =
I (MY , Y ξ) is strictly decreasing in Y . Because ξ is absolute continuous with no point
mass and its support is R, hence E [ξI (MY , γRY,MY

+ Y ξ)] is strictly decreasing in Y .
Therefore, Y ∗ obtained in Proposition 4.13 is unique. Thus, (4.9)-(4.11) is uniquely
solved by (Y ∗,MY ∗ , 0).

By remark 4.3, (I (MY ∗ , Y ∗ξ) , Y ∗,MY ∗ , 0) solve the Nonlinear Moment Problem.
By Theorems 2.5 and 4.2, the second assertion follows.

4.4. Application to the Mean-Risk Problem. In this subsection, we assume
the utility function to be linear, i.e. U(x) = x, and we set D = R. Our Problem 2.2
reduces to a mean-risk optimization problem:

(4.17) max
π∈A

E[Xπ(T )]− γE[D (E[Xπ(T )]−Xπ(T ))].

As the Inada conditions in (4.7) do not hold in this case, the method developed
in the previous subsection cannot be directly translated here. Suppose that there is
an inverse function for the first-order derivative of risk function, I2 := (D′)−1. The
Nonlinear Moment Problem (3.1) corresponding to (4.17) can be simplified as follows:

(4.18) Y ξ = 1− γR+ γD′
(
M − X̂

)
,

where the numbers Y,M,R ∈ R satisfy

E[ξX̂] = x0,(4.19)

E[X̂] = M,(4.20)

E
[
D′
(
M − X̂

)]
= R.(4.21)

In accordance with Theorem 4.2, we are going to show that the reduced Nonlinear
Moment Problem (4.18) admits a solution, so that the corresponding X̂ will be an
optimal terminal wealth for the mean-risk problem (4.17).

Theorem 4.16. If there exists a unique R ∈ R so that:

I2

(
R+

ξ

γE[ξ]
− 1

γ

)
∈ L2 and(4.22)

E
[
I2

(
R+

ξ

γE[ξ]
− 1

γ

)]
= 0,(4.23)

then by setting

X̂ := M − I2

(
R+

ξY

γ
− 1

γ

)
,(4.24)

M :=
x0

E[ξ]
+

E
[
ξI2

(
R+ ξY

γ − 1
γ

)]
E[ξ]

,(4.25)

Y :=
1

E[ξ]
,(4.26)

together with R, they will solve the reduced Nonlinear Moment Problem (4.18)-(4.21).
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Proof. Condition (4.22) guarantees thatX defined in (4.24) is in L2 and E
[
ξI2

(
R+ ξY

γ − 1
γ

)]
is finite, by the Cauchy-Schwarz inequality. It is clear that Condition 4.1 is satisfied.
Since D is convex,

D

(
I2

(
R+

ξY

γ
− 1

γ

))
≤ D(0) +

(
R+

ξY

γ
− 1

γ

)
I2

(
R+

ξY

γ
− 1

γ

)
,

hence I2

(
R+ ξY

γ − 1
γ

)
∈ X . (4.18)–(4.21) can be verified easily by direct substitution

of (4.24)–(4.26).
In Theorem 4.16, we solve the mean-risk optimization problem for any risk func-

tion satisfying (4.22) and (4.23). (4.23) can be obviously satisfied when I2 is both
continuous and coercive. Note that the uniqueness of R can be warranted by the
strict convexity of D and (4.22) can be satisfied when I2 is of polynomial growth.

Remark 4.17. In [14], they studied the same mean-risk optimization problem by
using the Lagrangian approach, and they also formulated the problem as follows:

minD(E[X(T )]−X(T )), subject to E[X(T )] = z.

This problem is equivalent to (4.17) for appropriate relationship between γ and z. The
work [14] shows that if the mean-risk problem has a solution, the optimal terminal
wealth X = z − I2(µξ − λ), where λ and µ satisfy the equations

E[I2(µξ − λ)] = 0,

E[ξI2(µξ − λ)] = zE[ξ]− x0.

For any z such that there exists γ > 0 satisfying

z =
x0

E[ξ]
+

E
[
ξI2

(
R+ ξ

γE[ξ] −
1
γ

)]
E[ξ]

,

if we set

µ =
1

γE[ξ]
, λ =

1

γ
−R,

where R is as obtained in (4.23), the solution in [14] can then be recovered.
Example 4.18 (Mean-Weighted-Power-Risk Function case).
Consider

D(x) =
a

2

xρ+1
+

ρ+ 1
− b

2

xρ+1
−

ρ+ 1

for ρ > 0 and a ≥ b > 0. a ≥ b means that the risk incurred when the return is
less than the expectation will be greater than that when the return is greater than the

expectation. Now, D′(x) = axρ
+ − bxρ

−, and I2(x) =
1
ax

1
ρ

+ − 1
bx

1
ρ

−. To verify (4.22), we
consider two cases: (i) ρ ≤ 2 and (ii) ρ > 2 respectively.

(i) If ρ ≤ 2, by Minkowski’s inequality, for any R ∈ R,

E

[(
I2

(
1

γE[ξ]
ξ +R− 1

γ

))2
]
≤ E

[
1

b2

∣∣∣∣ 1

γE[ξ]
ξ +R− 1

γ

∣∣∣∣ 2ρ
]

≤ 1

b2

E

[∣∣∣∣ ξ

γE[ξ]

∣∣∣∣ 2ρ
] ρ

2

+

∣∣∣∣R− 1

γ

∣∣∣∣


2
ρ

.
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It is clear that E
[
ξk
]
is bounded for any k ∈ R, and therefore I2

(
ξ

γE[ξ] +R− 1
γ

)
∈

L2, i.e. (4.22) is satisfied.
(ii) If ρ > 2, for any R ∈ R,

E

[(
I2

(
1

γE[ξ]
ξ +R− 1

γ

))2
]

≤ 1

b2

 2
1
ρ

γ
2
ρ (E[ξ])

2
ρ

E
[
ξ

2
ρ

]
+

2

p

(
2

γ2 (E[ξ])2

) 1
ρ−1(

R− 1

γ

)2

E
[
ξ2(

1
ρ−1)

] ,

by concavity of x
1
ρ . By the fact that E

[
ξk
]
is bounded for any k ∈ R, (4.22)

is satisfied.

Note that the expression

I2

(
ξ

γE[ξ]
+R− 1

γ

)
=

1

a

(
ξ

γE[ξ]
+R− 1

γ

) 1
ρ

+

− 1

b

(
ξ

γE[ξ]
+R− 1

γ

) 1
ρ

−

is increasing in R and L1-integrable by Jensen’s inequality, for all R ∈ R. Thus,

E
[
I2

(
R+ ξ

γE[ξ] −
1
γ

)]
is continuous in R by the Dominated Convergence Theorem. It

is not difficult to use the Monotone Convergence Theorem to show that E
[
I2

(
R+ ξ

γE[ξ] −
1
γ

)]
is coercive in the sense that

lim
R→−∞

E
[
I2

(
R+

ξ

γE[ξ]
− 1

γ

)]
= −∞, lim

R→∞
E
[
I2

(
R+

ξ

γE[ξ]
− 1

γ

)]
= ∞.

By the intermediate value theorem, there exists a unique R ∈ R so that (4.23) and
(4.22) are satisfied. The solution of the mean-weighted-power-risk problem is:

X̂ =
1

E[ξ]

(
x0 + E

[
ξ

a

(
ξ

γE[ξ]
+R− 1

γ

) 1
ρ

+

− ξ

b

(
ξ

γE[ξ]
+R− 1

γ

) 1
ρ

−

])

−1

a

(
ξ

γE[ξ]
+R− 1

γ

) 1
ρ

+

+
1

b

(
ξ

γE[ξ]
+R− 1

γ

) 1
ρ

−
,(4.27)

where R is the unique root of the equation

E

[
1

a

(
ξ

γE[ξ]
+R− 1

γ

) 1
ρ

+

− 1

b

(
ξ

γE[ξ]
+R− 1

γ

) 1
ρ

−

]
= 0.(4.28)

Remark 4.19.

If ρ = 1, this mean-weighted-power-risk model becomes the mean-weighted-variance
one, studied in [14]. The results in [14] can be recovered by choosing µ = 1

γE[ξ] ,

λ = 1
γ −R where 1

γ is selected such that

z =
1

E[ξ]

(
x0 + E

[
ξ

a

(
R+

ξ

γE[ξ]
− 1

γ

)
+

− ξ

b

(
R+

ξ

γE[ξ]
− 1

γ

)
−

])
.
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If a = b = 1, this mean-weighted-variance model further becomes the classical
mean-variance setting. We can easily get that R = 0 from (4.28). Then we can
recover the following solution:

X̂ =
x0

E[ξ]
+

1

γ

(
E[ξ2]
(E[ξ])2

− ξ

E[ξ]

)
.

This result can coincide with the solution on P.226–227 in [4] by choosing

µ =
1

γE[ξ]
, λ =

x0

E[ξ]
+

E[ξ2]
γ (E[ξ])2

, where
1

γ
=

E[ξ] (zE[ξ]− x0)

V ar[ξ]
.

Example 4.20 (Mean-Exponential-Risk Function Case). We further revisit an-
other example found in [14]. Consider the exponential risk function D(x) = ex. Then
D′(x) = ex and I2(x) = lnx for x > 0.

Proposition 4.21. Mean-Exponential-Risk Problem possesses an optimal solu-

tion if and only if γ ≥ exp
(
E
[
ln
(

ξ
E[ξ]

)])
7. Furthermore, if the problem possesses

an optimal solution, the optimal terminal wealth is

X̂ =
1

E[ξ]

(
x0 + E

[
ξ ln

(
ξ

γE[ξ]
+R− 1

γ

)])
− ln

(
ξ

γE[ξ]
+R− 1

γ

)
,(4.29)

where R ∈ [ 1γ ,∞) is the unique root of the equation:

E
[
ln

(
ξ

γE[ξ]
+R− 1

γ

)]
= 0.

Proof. See Appendix C.7.

5. Conclusion. In this paper, we studied the utility risk portfolio selection prob-
lem. We derived the Nonlinear Moment Problem in (3.1)-(3.4), whose solution can
completely characterize the optimal terminal wealth by the necessity and sufficiency
results in Theorems 3.2 and 4.2 respectively. The nonexistence of optimal solution
for the mean-semivariance problem can be revisited by the application of Theorem
3.2. Furthermore, we applied Theorem 4.2 to establish the existence of optimal so-
lutions for the utility-downside-risk and utility-strictly-convex-risk problems. Their
resolutions have long been missing in the literature, and the positive answer in utility-
downside-risk problem is in big contrast to the negative answer in mean-downside-risk
problem; with our present result, we can now use semivariance as a proper risk measure
in portfolio selection. Finally, we established the sufficient condition for the Nonlin-
ear Moment Problem through which the existence of optimal solution of mean-risk
problem can be ensured.
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7E
[
ln

(
E[ξ]
ξ

)]
is known to be the Kullback-Leibler Divergence (relative entropy) from P to Q,

the risk neutral measure.
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Appendix A. Discussion on the Possible use of Standard Approaches
to Utility-Risk Problem.

In the existing literature, there are three standard approaches of tackling the
optimization problems: (i) Direct/ Primal method: constructing the optimal solution
by considering a weak limit of an optimizing sequence or (ii) Dual method: applying
usual convex analysis through the conjugate functions of objective functions.

A.1. Direct Approach. One can find a comprehensive approach from a book
chapter of Chapter 7.3.2 in Pham [34].

Assume that the value function is non-degenerate, i.e. the optimal objective
functional is finite such that

V (x0) := sup
X∈X ,E[ξX]=x0

Ψ(X) = sup
X∈X ,E[ξX]≤x0

Ψ(X) < ∞,(A.1)

where Ψ was defined in (2.3) and the equality holds since the functional Ψ is concave
and an admissible X ∈ X will never be optimal to Problem 2.4 if E[ξX] cannot take
the largest possible value x0

8. This primal method commonly applied in literature
is to directly construct the optimal terminal wealth by using the Komlos Theorem;
also see [34]. The finiteness of the value function (A.1) implies the existence of a
maximizing sequence {Xn} ∈ X such that Ψ(Xn) → V (x0) and E[ξXn] = x0 for all
n. To avoid unnecessary technicalities, we further assume that

sup
n

E[|Xn|2] < ∞;(A.2)

also see the discussion in Remark A.3. According to Komlos Theorem, there exists a
subsequence {Yk := Xnk

} and a limit Z∗ ∈ L2 such that Zk := 1
k

∑k
i=1 Yi → Z∗ a.s.,

so that the following facts hold:

E[ξZk] = x0 for all k;(A.3)

lim
k→∞

1

k

k∑
i=1

Ψ(Yi) = V (x0);(A.4)

Ψ(Zk) ≥
1

k

k∑
i=1

Ψ(Yi).(A.5)

We aim to show that Z∗ is an optimal terminal wealth, thus we need to show (i)
V (x0) = Ψ(Z∗), (ii) Z∗ ∈ X , and (iii) E[Z∗ξ] ≤ x0. The latter statement is clear by
using the fact (A.3) and applying Fatou’s Lemma since Z∗ ≥ 0 a.s. However, the first
two claims are not necessarily immediate; indeed, consider a special case of utility-
only maximization, i.e. D ≡ 0, for if {U(Zk)} is uniformly integrable, we immediately
have U(Z∗) ∈ L1 through Fatou’s lemma. Meanwhile, by (A.4) and (A.5), we have

Ψ(Z∗) = E[U(Z∗)] = E
[
lim
k→∞

U(Zk)

]
= lim

k→∞
E [U(Zk)] = lim

k→∞
Ψ(Zk)

≥ lim
k→∞

1

k

k∑
i=1

Ψ(Yi) = V (x0).

8Indeed, for if E[ξX] < x0, there is a constant θ > 0 such that E[ξ(X + θ)] = x0. Then, we have
X + θ ∈ X and Ψ(X + θ) > Ψ(X), which means that X cannot be optimal.
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In summary, to prove the existence of optimal terminal wealth using the common
primal approach, even in the special case of utility-only maximization, there is an
outstanding technical issue: to check whether {U(Zk); k = 1, 2, . . . } is uniformly
integrable. This issue is not too certain in general; to address this, [34] made the
following assumption:

lim sup
x→∞

V (x)

x
≤ 0.(A.6)

However, as also pointed out in [34], (A.6) is hard to check in most practical con-
siderations, because the value function can barely be characterized without the prior
knowledge of the optimal solution. One may attempt to use dynamic programming
principle to find the HJB equation which characterizes the value function; however, in
general, except some common utility function such as power of logarithm, there is no
explicit guess solution of the value function for the HJB equation. Even worst, in the
presence of deviation risk measure, then the objective function does not admit Tower
property, we even cannot apply dynamic programming principle to this utility-risk
problem, and no HJB equation can even be obtained in this general case. Instead,
one may resort to the use of Legendre transform of U especially when the asymptotic
elasticity of U is less than 1; also see [18] and Section 7.3.3 in [34]. Hence, it is unlikely
to solve for the present utility-risk problem by using this primal approach.

A.2. Dual Approach. Under this approach, both the existence and characteri-
zation of an optimal solution are established through the use of the conjugate function
(Legendre transform) of the objective function and utilizing the convex analysis.

Under the case of utility-only maximization:

max
X∈X

E[U(X)] subject to E[ξX] = x0,

where U : [0,∞) → R is concave, we can utilize the convex analysis over the finite
dimensional space and consider the following conjugate function of U :

U∗(y) := sup
x∈R

{U(x)− xy} for y ≥ 0.(A.7)

Since U(x) − xy is concave, its maximizer is (U ′)−1(y). The Fenchel’s inequality
implies that U(x) ≤ U∗(y) + xy for any x, y ≥ 0. Then, we further have

E[U(X)] ≤ E[U∗(yξ)] + E[Xyξ] = E[U∗(yξ)] + yx0,(A.8)

for any {X ∈ X |E[ξX] = x0} and y ≥ 0. If we can find X∗ and y∗ so that the equality
in (A.8) holds, then X∗ is optimal for (A.7). To achieve this, X∗ = (U ′)−1(yξ) so
that y∗ satisfies E[ξX∗] = x0. For a more comprehensive details of using dual method
in the case of utility-only maximization, one can refer to the book by Karatzas and
Shreve [17].

However, under the general utility-risk setting, due to the presence of the expec-
tation E[X] in the deviation risk term, we cannot have the usual conjugate function of
the objective function as in (A.7) over finite finite dimensional space. Hence, we have
to use the convex analysis developed over the abstract infinite dimensional space. For
the detailed discussion on this dual approach on resolving general convex optimiza-
tion problem over abstract infinite dimensional space, one can consult the textbook
by Aubin and Ekeland [1]. As discussed in Chapter 4 in [1], a sufficient condition for
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the existence of an optimal solution for the primal problem is verifying the subdiffer-
entiability of the conjugate function of the original objective function at zero, which
demands that the dual function is well-defined in the neighborhood of zero.

More specifically, we reformulate our problem as follows:

inf
X∈X

J (X),(A.9)

where J (X) := U(X) + V(A(X)), U : L2 → R ∪ {∞} is defined by

U(X) :=

{
−E[U(X)] + γE[D(E(X)−X)], X ∈ X ;

∞, X /∈ X ;

and V : R → R ∪ {∞} is defined by

V(y) :=

{
0, if y = x0;

∞, otherwise;

and the continuous linear functional A : L2 → R is given by A(X) := E[Xξ]. Then,
the conjugate functions of U , V, and A are given by

U∗(Y ) := sup
X∈L2

{E[XY ]− U(X)} , for any Y ∈ L2;

V∗(p) := sup
y∈R

{py − V(y)} = px0, for any p ∈ R;

A∗(y) := yξ, for any y ∈ R.

Under the above formulation, Aubin and Ekeland [1] provided a sufficient condi-
tion for the existence of an optimal solution for the primal problem (A.9):

Theorem A.1 (Theorem 1a in Section 4.6, [1]). Assume that U and V are
lower-semicontinuous and convex. If

0 ∈ Int (A∗Dom (V∗) +Dom (U∗)) ,(A.10)

where Dom (V∗) := {p ∈ R | V∗(p) < ∞} and Dom (U∗) := {Y ∈ L2 | U∗(Y ) < ∞}.
Then there exists a solution X ∈ L2 to the problem (A.9).

In the proof of Theorem A.1, Condition (A.10) is essential to establish that Kα :=
{X ∈ X |J (X) ≤ α} is weakly bounded and thus weakly relatively compact for every
λ. Then, by the lower semicontinuity of J , the existence of any optimal solution of
the primal problem (A.9) can be warranted.

With Theorem A.1, the existence of an optimal solution of the primal problem
(A.9) is warranted if Condition (A.10) holds. It is obvious that A∗Dom (V∗) =
{yξ | y ∈ R} ⊂ L2, thus Condition (A.10) is equivalent to that there exists δ > 0 such
that, for any X ∈ L2 with

∥∥X∥∥
2
≤ δ, there exists y ∈ R such that X−yξ ∈ Dom (U∗).

However, such Condition (A.10) is still not so apparent in most concrete problems,
and we have to study case by case.

Now, we consider a specific example of power utility-semivariance optimization,

i.e. U(x) =

{
1

1−ρx
1−ρ, x ≥ 0

−∞, x < 0
, where ρ ∈ (0, 1), and D(x) = x2

+. For a fixed δ > 0

and y ∈ R, take X = δξ−1

∥ξ−1∥2
,

U∗
(

δξ−1

∥ξ−1∥2
− yξ

)
= sup

X∈L2

{
E
[(

δξ−1

∥ξ−1∥2
− yξ

)
X

]
+

1

1− ρ
E
[
X1−ρ

]
− γE

[
(E[X]−X)2+

]}
.
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Construct a sequence XN := NI{ξ < bN}, where bN is the smallest possible such that
P{ξ < bN} = 1

N . It is obvious that limN→∞ bN = 0. Hence, we have

U∗
(

δξ−1

∥ξ−1∥2
− yξ

)
≥ E

[(
δξ−1

∥ξ−1∥2
− yξ

)
XN

]
+

1

1− ρ
E
[
X1−ρ

N

]
− γE

[
(E[XN ]−XN )2+

]
≥ NE

[(
δξ−1

∥ξ−1∥2
− yξ

)
I{ξ < bN}

]
− γE

[
N2(P{ξ < bN} − I{ξ < bN})2+

]
≥ NE

[(
δ

∥ξ−1∥2
b−1
N − ybN

)
I{ξ < bN}

]
− γ

=

(
δ

∥ξ−1∥2
b−1
N − ybN

)
− γ → ∞, as N → ∞.

Thus, for any δ > 0, δξ−1

∥ξ−1∥2
− yξ /∈ Dom (U∗) for all y ∈ R, which means that 0 /∈

Int (A∗Dom (V∗) +Dom (U∗)). Because Condition (A.10) fails to hold, we cannot
apply Theorem A.1 in the present case of power utility-semivariance optimization.
Hence, Condition (A.10) is apparently too demanding that cannot be applied in our
present utility-risk problem.

A.3. Lagrangian Multiplier Approach. The convex analysis with the use
of conjugate functions can be alternatively integrated into Lagrangian multiplier ap-
proach in portfolio optimization; see Bielecki et al. [4] and Jin et al. [14]. Under the
Lagrangian multiplier approach, an equivalent unconstrained optimization problem
can be obtained through eliminating the budget constraint. In our framework, the
unconstrained problem becomes:

sup
X∈X

Ψ̃λ(X)(A.11)

where Ψ̃λ(X) := Ψ(X) − λE[ξX] and Ψ was defined in (2.3). There is a well-known
result that links the optimality of the original constrained optimization problem 2.4
with that of the unconstrained Lagrangian problem (A.11):

Theorem A.2 (Proposition 4.1 in [4]). Suppose that Problem 2.4 has a solution
X∗, then there exists a λ∗ ∈ R such that X∗ also solve problem (A.11) when λ = λ∗.
Conversely, if X∗ solves Problem (A.11) for some λ and X∗ satisfies x0 = E[ξX∗],
then it must also solves for Problem 2.4.

Deriving the optimality condition for the Lagrangian formulation (A.11), we can
obtain exactly the same Nonlinear Moment Problem in Theorem 3.2. Indeed, assume
that Condition 3.1 holds. Suppose X̂ ∈ X is optimal to Problem 2.4, by Theorem
A.2, there exists λ∗ such that X̂ is optimal to the unconstrained problem Ψ̃λ. The
first order optimality condition for Ψ̃λ gives a similar necessary optimality condition
as Proposition 3.3, i.e. it is necessary that

(A.12) E
[
X̃
(
Γ̂− λξ

)]
≤ 0 for any X̃ ∈ L∞ such that X̂λ + X̃ ∈ X ,

where Γ̂ := U ′(X̂) − γE
[
D′
(
E[X̂]− X̂

)]
+ γD′

(
E[X̂]− X̂

)
. Since X̃ is arbitrary,

the following algebraic structure is expected to be satisfied by the optimal solution
X̂:

(A.13)

Γ̂ = λξ a.s. on
{
X̂ > K

}
,

Γ̂ ≤ λξ a.s. on
{
X̂ = K

}
.
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Meanwhile, the Lagrangian multiplier, λ, is chosen such that the budget constraint,
E[X̂ξ] = x0, is satisfied. Then, we can obtain the same necessary result as Theorem
3.2: it is necessary that X̂ satisfies the same Nonlinear Moment Problem. To obtain
(A.13) from (A.12), a natural method is to pick a suitable perturbation X̃ so that the
validity of (A.13) is ensured, and one may consider X̃ = Γ̂−λξ so that (A.12) becomes

E
[(

Γ̂− λξ
)2]

≤ 0. However, whether both Γ̂ − λξ ∈ L∞ and X̂ + Γ̂ − λξ ∈ X are

satisfied or not is not apparent. Using the similar argument in Lemma 3.5, if we can
construct a random variable Z ∈ L∞ such that the following three items hold:Z > 0 a.s. on

{
X̂ > K

}
,

Z = 0 a.s. on
{
X̂ = K

}
,

Z
(
Γ̂− λξ

)
∈ L∞, and

X̂ + Z
(
Γ̂− λξ

)
∈ X ,

we can then obtain (A.13) from (A.12). In particular, the interior case in (A.13) is ob-

tained by setting the perturbation X̃ = Z
(
Γ̂− λξ

)
while the boundary case in (A.13)

is obtained by setting the perturbation X̃ = I{X̂ = K}. Therefore, the remaining
claim is to construct the random variable Z which satisfies the aforementioned three
items. To achieve this, we can construct Z as the following, similar to (3.13):

Z :=


0, if X̂ = K,

1, if X̂ > K and Γ̂ = λξ,

min

{
min{δU(X̂), 12 (X̂−K), δ2}

|Γ̂−λξ| , 1

}
, otherwise,

and δU was defined in Lemma 3.6. Finally, using the similar argument in Proposition

3.9, we can show that Z
(
Γ̂− λξ

)
∈ L∞ and X̂+Z

(
Γ̂− λξ

)
∈ X , then the establish-

ment of necessary result via Lagrangian multiplier approach accomplishes. Hence, we
can find that the similar argument in Lemma 3.5 and Proposition 3.9 could be used
for deriving (A.13). Therefore, the same technical derivation in Proof of Theorem 3.2
could be reused to derive the Nonlinear Moment Problem via Lagrangian multiplier
approach.

On the other hand, with Theorem A.2, we can solve the constrained optimization
problem 2.4 through the following steps:

1. For each λ, find the maximizer X̂λ for Ψ̃λ;
2. Find a suitable λ∗ such that the budget constraint is satisfied, i.e. E[X̂λ∗ξ] =

x0;
3. Conclude that the optimal solution for Problem 2.4 is X̂λ∗ .

Applying Lagrangian multiplier approach to the present utility-risk problem, the suf-
ficient condition of optimality coincides with that in Theorem 4.2: Given a solution
of NMP (X̂∗, Y ∗,M∗, R∗), the validations of (3.1), (3.3), and (3.4) means that X̂∗

is the maximizer of Ψ̃Y ∗ ; while the validation of (3.2) warrants that X̂∗ satisfies the
budget constraint. Thus, X̂∗ is optimal to Problem 2.4.

In particular, under the simple case of sole utility maximization, the maximizer
of Ψ̃λ is given by X̂ = (U ′)−1(λξ), while the Lagrangian multiplier λ is determined by
the budget constraint. We only have to solve an equation with an (real) unknown in
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this special case. Under the general case with the presence of deviation risk measure,
since the optimal terminal wealth of the unconstrained problem (A.11) has no explicit
form, the determination of the existence of the Lagrangian multiplier is no longer
immediate. In order to solve for our general utility-risk problem, we have to tackle
with the Nonlinear Moment Problem which can be converted into a problem of system
of three equations in three unknowns. Propositions 4.6 and 4.13 have been established
to solve for this system of equations, and to the best of our knowledge, the resolution
of the system, and so our original utility-risk portfolio problem, are highly non-trivial
and did not appear in the existing literature before our work.

Remark A.3. Using the primal approach, the L2-uniform integrability of {Xk} in
(A.2) is essential for a successful application of the Komlos theorem and guaranteeing
that the subsequential limit Z∗ is L2-uniformly integrable. If the objective function
admits coercivity in the sense that, for any sequence {Xn} in {X ∈ X |E[ξX] ≤ x0}
such that ∥Xn∥2 → ∞,

lim
n→∞

Ψ(Xn) = −∞,

the L2-norm of maximizing sequence in Section A.1 has to be bounded, thus the inte-
grability in (A.2) can be ensured9. However, under the budget constraint E[ξX] = x0,
in general, such coercivity for the constrained problem is not immediate to check with-
out the consideration of the conjugate function. Usually, we have to verify the coerciv-
ity case by case depending on a specific form of objective function. Nevertheless, even
the coercivity can be satisfied, the uniform integrability of {U(Zk)} is a substantial
issue in the primal approach.

A usual method is to convert a constrained problem into an unconstrained problem
via Lagrangian multiplier method. Hence, we use Theorem A.2 to eliminate the budget
constraint, and we turn to consider the coercivity of Ψ̃λ in the sense that, for any
sequence {Xn} in X such that ∥Xn∥2 → ∞,

lim
n→∞

Ψ̃λ(Xn) = −∞,

which is equivalent to the boundedness of {Ψ̃λ(X) ≥ k} under L2-norm for every k:
10

We now study the case of power-utility-semivariance optimization by setting

Ψ̃λ(X) :=
1

1− ρ
E[U(X)]− γE

[
(E[X]−X)+

]
− λE[ξX],

where U(x) =

{
1

1−ρx
1−ρ, x ≥ 0

−∞, x < 0
for some ρ ∈ (0, 1). Considering the sequence

XN := NI{ξ < bN}, where bN is the smallest possible such that pN := P{ξ < bN} =

9 It is clear that Ψ (0) > −∞. For if the maximizing sequence {Xn} in Section A.1 does not
satisfy (A.2), i.e. supn E[|Xn|2] = ∞, then, by the coercivity of Ψ, we have limn→∞ Ψ(Xn) = −∞,
which contradicts to the maximizing nature of {Xn}.

10If the boundedness of {Ψ̃λ(X) ≥ k} does not hold for some k, there exists a sequence {Xn}
in X such that limn→∞ ∥Xn∥2 = ∞ and Ψ̃λ(Xn) ≥ k for all n, which violates the coercivity of

Ψ̃λ. Conversely, if the coercivity of Ψ̃λ does not hold, there exists a sequence {Xn} in X such
that limn→∞ ∥Xn∥2 = ∞ and limn→∞ Ψ̃λ(Xn) = M > −∞. Then, we can find some k such that

Ψ̃λ(Xn) ≥ k for all n, which violates the boundedness of {Ψ̃λ(X) ≥ k}.
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1
N , by using similar calculation as in Section A.2, we have:

Ψ̃λ(XN ) ≥ 1

1− ρ
N1−ρpN − γN2p2N (1− pN )− λNE [ξI{ξ < bN}]

≥ 1

1− ρ
N−ρ − γ − λbN ,

which is bounded from below. Meanwhile, {Xn} is not bounded in L2-norm; indeed,
for any δ > 0,

E
[
X2

N

]
≥ N2pN = N → ∞ as N → ∞

which means that Ψ̃λ does not admit the usual coercivity in L2-norm topology for
every λ ∈ R.

Appendix B. Technical proofs in Section 3.
Proof of Lemma 3.4. Since U is concave and D is convex function, so f(θ) :=

U(X̂ + θX̃)− γD(E[X̂ + θX̃]− (X̂ + θX̃)) is concave in θ > 0. Thus, for any δ > 0,
by concavity of f , f(θ) ≥ δ

θ+δf(0) +
θ

θ+δf(θ + δ), so

f(θ)− f(0)

θ
≥ f(θ + δ)− f(0)

θ + δ
.

Hence, 1
θ

(
U(X̂ + θX̃)− γD

(
E
[
X̂ + θX̃

]
− (X̂ + θX̃)

)
−
(
U(X̂)− γD

(
E
[
X̂
]
− X̂

)))
is increasing as θ decreases to 0. Since X̂ and X̂ + X̃ are admissible terminal wealth,

thus U
(
X̂ + X̃

)
− γD

(
E
[
X̂ + X̃

]
− (X̂ + X̃)

)
and U(X̂) − γD

(
E
[
X̂
]
− X̂

)
are

both L1-integrable because X̂ + X̃, X̂ ∈ X . Hence, this lemma follows from the
Monotone Convergence Theorem.

Proof of Lemma 3.6
By the Mean Value Theorem, for any x, x0 ∈ D,

|U(x)− U(x0)| ≤ |x− x0||U ′(θ)|, for some θ ∈ (x0 − |x− x0|, x0 + |x− x0|).

As U ′ is positive and decreasing, |U ′(θ)| ≤ |U ′(x0 − |x − x0|)| for θ ∈ (x0 − |x −
x0|, x0 + |x− x0|). Finally, our result follows by choosing

δU (x) := min

{
1

U∗(x)
,
x−K

2
, 1

}
, where U∗(x) :=

{
U ′(x− 1), if x− 2 ∈ D,

U ′(x+K
2 ), if x− 2 /∈ D.

Before we prove Lemma 3.8, we require to show the claim that Γ̂ > 0:
Lemma B.1. Given X̂ is optimal for Problem 2.4 satisfying Conditions 3.1 (i)

and (ii), it is necessary that Γ̂ > 0 almost surely.
Proof. We consider two cases: (i) K > −∞ and (ii) K = −∞, respectively.
We consider case (i) K > −∞. With the optimal solution X̂ of Problem 2.4 , we

define h(x) := Γ
(
X̂, x

)
, which is a decreasing continuous function. Since U ′ > 0 on

{X̂ > K} and U ′ is decreasing because of concavity of U , so we have limx↓K U ′(x) > 0.
Hence,

lim
x↓K

h (x) > −γE
[
D′
(
E
[
X̂
]
− X̂

)]
+ γD′

(
E
[
X̂
]
−K

)
.
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By definition, X̂ ≥ K uniformly, and D′ is increasing, thus D′
(
E
[
X̂
]
−K

)
≥

E
[
D′
(
E
[
X̂
]
− X̂

)]
. So limx→K h (x) > 0. Then, there exists k0 := inf {x > K |h(x) ≤ 0} ∈

(K,∞], i.e., Γ̂ ≤ 0 implies X̂ ≥ k0. If k0 = ∞, it is immediate that Γ̂ > 0 almost

surely, so we consider the case that k0 < ∞. Assume the contrary, that P
[
Γ̂ ≤ 0

]
> 0.

Consider

X̃ :=

−k0−K
2 , if Γ̂ ≤ 0,

k0−K
2

E[I{Γ̂≤0}ξ]
E[I{Γ̂>0}ξ] , if Γ̂ > 0.

(B.1)

We have X̂ + X̃ > K and X̃ ∈ L∞. Since U is concave,

U(X̂) + X̃U ′(X̂ + X̃) ≤ U(X̂ + X̃) ≤ U(X̂) + X̃U ′(X̂).

Furthermore, when Γ̂ ≤ 0, we have X̃ < 0 and X̂ ≥ k0, then

X̃U ′
(
X̂ + X̃

)
≥ X̃U ′

(
k0 −

k0 −K

2

)
;

while Γ̂ > 0, we have X̃ > 0 and X̂(T ) ≤ k0, then

X̃U ′
(
X̂ + X̃

)
≥ X̃U ′

k0 +
k0 −K

2

E
[
I
{
Γ̂ ≤ 0

}
ξ
]

E
[
I
{
Γ̂ > 0

}
ξ
]
 .

Thus, U(X̂ + X̃) ∈ L1. On the other hand, since D is convex,

0 ≤ D
(
E
[
X̂ + X̃

]
−
(
X̂ + X̃

))
≤ D

(
E
[
X̂
]
− X̂

)
+
(
E
[
X̃
]
− X̃

)
D′
(
E
[
X̂ + X̃

]
−
(
X̂ + X̃

))
.

Similar to showing X̃U ′(X̂ + X̃) being bounded from below, we can show that(
E
[
X̃
]
− X̃

)
D′
(
E
[
X̂ + X̃

]
−
(
X̂ + X̃

))
is bounded from above, thusD

(
E
[
X̂ + X̃

]
−
(
X̂ + X̃

))
∈

L1. Hence, X̂+X̃ ∈ X . Also, E
[
X̃ξ
]
= 0, but E

[
X̃Γ̂
]
> 0, which altogether violates

Proposition 3.3. So P
[
Γ̂ ≤ 0

]
= 0.

Now, consider the case (ii) D = R; the approach is similar as in the case (i).
Firstly, there exists k0 := inf {x > −∞|h(x) ≤ 0} ∈ (−∞,∞]. If k0 < ∞, we assume

the contrary, that P
[
Γ̂ ≤ 0

]
> 0, and then as in case (i), we can show that Proposition

3.3 is violated by setting X̃ as follows:

X̃ :=

−1, if Γ̂ ≤ 0,
E[I{Γ̂≤0}ξ]
E[I{Γ̂>0}ξ] , if Γ̂ > 0.

Proof of Lemma 3.8. For any y ∈ (0,∞), by (3.13), we have∣∣yξ2Zy − ξΓ̂Zy

∣∣ = ∣∣yξ − Γ̂
∣∣ · |Zy|ξ ≤ δξ.(B.2)
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By the Dominated Convergence Theorem, f is continuous on (0,∞). Since Γ̂ > 0
almost surely by Lemma B.1,

lim
y↓0

Zy = min

min
{
δU
(
X̂
)
, 1
2

(
X̂ −K

)
, δ
2

}
Γ̂

, 1

 > 0

almost surely on
{
X̂ > K

}
. Since P

[
X̂ > K

]
> 0, we have, by the Dominated

Convergence Theorem,

lim
y→0

f(y) = E
[
lim
y→0

(
yξ2Zy − ξΓ̂Zy

)]
= −E

[
ξΓ̂ lim

y↓0
Zy

]
< 0.

Note that

lim
y→∞

yξ2Zy = ξmin

{
δU
(
X̂
)
,
1

2

(
X̂ −K

)
,
δ

2

}
> 0 a.s. on

{
X̂ > K

}
and

lim
y→∞

ξΓ̂Zy = ξΓ̂ lim
y→∞

min

min
{
δU
(
X̂
)
, 1
2

(
X̂ −K

)
, δ
2

}
|Γ̂− yξ|

, 1

 = 0.

By applying the Dominated Convergence Theorem and the fact that P
[
X̂ > K

]
>

0 under Assumption 2.3, we have:

lim
y→∞

f(y) = E
[
lim
y→∞

(
yξ2Zy − ξΓ̂Zy

)]
= E

[
lim
y→∞

yξ2Zy

]
> 0,

Our claim follows by intermediate value theorem.

Appendix C. Technical proofs in Section 4.

C.1. Proof of Proposition 4.5. Fix (m, y) ∈ R × (0,∞). Since U is strictly
concave and D is convex, U ′(z)+ γD′ (m− z)− y is strictly decreasing in z. Since U ′

and D′ is continuous, U ′(z)+γD′ (m− z)− y is continuous in z. Under Assumptions
(4.7), we can also easily show that U ′(z) + γD′ (m− z) − y is coercive in the sense
that

lim
z→0

U ′(z) + γD′ (m− z)− y = ∞, lim
z→∞

U ′(z) + γD′ (m− z)− y = −y < 0.

Thus, by the intermediate value theorem and strict monotonicity, for any (m, y) ∈
R× (0,∞), there exists a unique I(m, y) ∈ (0,∞) such that

U ′(I(m, y)) + γD′(m− I(m, y))− y = 0.

(a) (i) For fixed (m, y), U ′(z) + γD′ (m− z) − y is strictly decreasing in z.
When (z,m) is fixed, U ′(z)+ γD′ (m− z)− y is strictly decreasing in y,
so I(m, y) is strictly decreasing in y.
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(ii) We first claim that m ≥ I(m, y) when y ≥ U ′(m). Assume the con-
trary, that m < I(m, y). We have D′(m − I(m, y)) = 0, and then
y = U ′(I(m, y)) ≥ U ′(m), which contradicts to m < I(m, y) as U ′ is
decreasing. Next, we assume another contrary, that there exists m0, y0
with y0 ≤ U ′(m0) and δ > 0 such that I(m0 + δ, y0) ≤ I(m0, y0). Then
we have m0 + δ − I(m0 + δ, y0) > m0 − I(m0, y0) ≥ 0, thus

U ′(I(m0+δ, y0))+γD′(m0+δ−I(m0+δ, y0)) > U ′(I(m0, y0))+γD′(m0−I(m0, y0)),

which contradicts (4.8).
For the second assertion, y ≤ U ′(m) implies that m ≤ (U ′)−1(y), thus
I(m, y) = (U ′)−1(y) satisfies (4.8), and it is the unique solution by the
main result in this proposition.

(b) Fix (M0, Y0) ∈ R× (0,∞). By part (a), for any small enough ϵ > 0,

I(M0 − ϵ, Y0 + ϵ) ≤ I(m, y) ≤ I(M0 + ϵ, Y0 − ϵ)(C.1)

for any |(m, y)− (M0, Y0)| < ϵ.
It is straightforward to show that limϵ↓0 I(M0+ϵ, Y0−ϵ) and I(M0, Y0) satisfy
the same equation in (4.8), so we have limϵ↓0 I(M0 + ϵ, Y0 − ϵ) = I(M0, Y0).
Similarly, we have limϵ↓0 I(M0−ϵ, Y0+ϵ) = I(M0, Y0). Applying the sandwich
theorem to (C.1), we can conclude that

lim
(m,y)→(M0,Y0)

I(m, y) = I(M0, Y0).

C.2. Proof of Lemma 4.7. In this lemma, we prove the followings in order:
(a) E[D′ (M − I (M,γR+ Y ξ))−R] is strictly decreasing in R,
(b) E[D′ (M − I (M,γR+ Y ξ))] is continuous in R,
(c1) limR→0 E[D′ (M − I (M,γR+ Y ξ))−R] > 0,
(c2) limR→D′(M) E [D′ (M − I (M,γR+ Y ξ))−R] < 0.

In light of (b), (c1) and (c2), then by the intermediate value theorem, there exists
R = RY,M satisfying (4.12) while the uniqueness of RY,M is guaranteed by (a). Finally,
we show that

(d1) RY,M is strictly increasing in M for fixed Y ,
(d2) RY,M is strictly increasing in Y for fixed M .
For each of the above items:
(a) By Proposition 4.5 (a)(i), U ′ (I (M,γR+ Y ξ)) is strictly increasing in R al-

most surely. By (4.8),D′ (M − I (M,γR+ Y ξ))−R = 1
γ (Y ξ − U ′ (I (M,γR+ Y ξ)))

is therefore strictly decreasing inR almost surely. Thus, E [D′ (M − I (M,γR+ Y ξ))−R]
is strictly decreasing in R.

(b) Since D′ and I are both continuous, so D′ (M − I (M,γR+ Y ξ)) is contin-
uous in R. Hence, the claim follows by an application of the Dominated
Convergence Theorem.

(c1) When Y ξ > U ′(M), we have M > I (M,Y ξ), thus

D′ (M − I (M,Y ξ)) > 0, a.s. on {Y ξ > U ′(M)} .

Since U ′(M)
Y ∈ (0,∞), by the definition of ξ, we have

P[D′(M − I(M,Y ξ)) > 0] ≥ P
[
ξ >

U ′(M)

Y

]
> 0.
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By the Dominated Convergence Theorem,

lim
R→0

E [D′ (M − I (M,γR+ Y ξ))−R] = E
[
lim
R→0

D′ (M − I (M,γR+ Y ξ))
]

= E [D′ (M − I (M,Y ξ))] > 0.

(c2) By (4.8), we have limR→D′(M) I (M,γR+ Y ξ) > 0 almost surely, so

lim
R→D′(M)

D′(M − I (M,γR+ Y ξ)) < D′(M), a.s. .

By the Monotone Convergence Theorem, limR→D′(M) E [D′(M − I (M,γR+ Y ξ))] <
D′(M), thus this part follows.

(d1) Assume the contrary, that there exists a M0 ∈ (0,∞) and a δ > 0 such that
RY,M0 ≥ RY,M0+δ.
By Proposition 4.5 (a)(ii), when γR+Y ξ ≥ U ′(M), I (M,γR+ Y ξ) is strictly
increasing in M , thus D′(M − I (M,γR+ Y ξ)) − R is strictly increasing in
M on {γR+ Y ξ ≥ U ′(M)} by (4.8). When γR + Y ξ ≤ U ′(M), D′(M −
I (M,γR+ Y ξ))− R = −R. So given Y and R, D′(M − I (M,γR+ Y ξ)) is
increasing in M and is strictly increasing on {γR+ Y ξ ≥ U ′(M)}. Thus we
have E [D′(M − I (M,γR+ Y ξ))−R] is strictly increasing in M .
On the other hand, in (a), D′(M − I (M,γR+ Y ξ))−R is strictly decreasing
in R almost surely. Now,

0 = E [D′ (M0 + δ − I (M0 + δ, γRY,M0+δ + Y ξ))−RY,M0+δ]

≥ E [D′ (M0 + δ − I (M0 + δ, γRY,M0 + Y ξ))−RY,M0 ]

> E [D′ (M0 − I (M0, γRY,M0
+ Y ξ))−RY,M0

] = 0,

a contradiction.
(d2) In Proposition 4.5 (a)(i), we have I (M,γR+ Y ξ) strictly decreasing in Y

given a fixed point of M and R, thus E [D′(M − I (M,γR+ Y ξ))−R] is also
strictly increasing in Y almost surely given (M,R). Thus, this part can be
verified as in (d1).

C.3. Proof of Lemma 4.8. In this lemma, we prove the following in order:
(a) E[I (M,γRY,M + Y ξ)]−M is strictly decreasing in M ,
(b) E[I (M,γRY,M + Y ξ)] is continuous in M ,
(c1) limM→0 E[I (M,γRY,M + Y ξ)−M ] > 0,
(c2) limM→∞ E [M − I (M,γRY,M + Y ξ)] = ∞.
By using (b), (c1) and (c2), in accordance with the intermediate value theorem

and part (a), there exists a unique M = MY satisfying (4.14). Finally, we show that
(d) MY is strictly decreasing in Y .

For each of the above items:
(a) By Proposition 4.5 (a)(ii) ,D′ (M − I (M,γR+ Y ξ))−R = 1

γ (Y ξ − U ′ (I (M,γR+ Y ξ)))

is strictly increasing in M when γR + Y ξ ≥ U ′(M). Thus, because D′

is strictly increasing for positive M − I (M,γR+ Y ξ), I (M,γR+ Y ξ) −M
is strictly decreasing in M on {γR+ Y ξ ≥ U ′(M)}. On the other hand, on
{γR+ Y ξ ≤ U ′(M)}, I (M,γR+ Y ξ)−M = (U ′)−1(γR+Y ξ)−M is strictly
decreasing in M .
By Proposition 4.5 (a)(i), I (M,γR+ Y ξ) − M is strictly decreasing in R.
By Lemma 4.7, RY,M is strictly increasing in M . Thus, for any δ > 0, it is
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almost surely that:

I (M,γRY,M + Y ξ)−M > I (M,γRY,M+δ + Y ξ)−M

> I (M + δ, γRY,M+δ + Y ξ)− (M + δ)

Thus, E [I (M,γRY,M + Y ξ)]−M is strictly decreasing in M .
(b) Fix M0 ∈ (0,∞). By the continuity of D′ and I, it is almost surely that:

lim
M↓M0

(D′ (M − I (M,γRY,M + Y ξ))−RY,M )

= D′
(
M0 − I

(
M0, γ lim

M↓M0

RY,M + Y ξ

))
− lim

M↓M0

RY,M(C.2)

By (4.12), (C.2) and the Dominated Convergence Theorem, we have

E
[
D′
(
M0 − I

(
M0, γ lim

M↓M0

RY,M + Y ξ

))]
− lim

M↓M0

RY,M

= lim
M↓M0

(E [D′ (M − I (M,γRY,M + Y ξ))]−RY,M ) = 0.

By the uniqueness result in Lemma 4.7, we conclude that limM↓M0 RY,M =
RY,M0 . Similarly, we have limM↑M0 RY,M = RY,M0 . By continuity of I,

lim
M↓M0

I (M,γRY,M + Y ξ) = I (M0, γRY,M0 + Y ξ) .

Similarly, the equality of limits from the opposite side can also be deduced,
so

lim
M→M0

I (M,γRY,M + Y ξ) = I (M0, γRY,M0 + Y ξ) .

Finally, our claim follows by the Dominated Convergence Theorem.
(c1) Since I (M,γRY,M + Y ξ)−M is decreasing in M by (a), thus

lim
M→0

I (M,γRY,M + Y ξ) = lim
M→0

(I (M,γRY,M + Y ξ)−M) .

We claim that limM→0 I (M,γRY,M + Y ξ) > 0 almost surely. Assume the
contrary, that there exists a sample value of ξ0 such that limM→0 I (M,γRY,M + Y ξ0) =
0. Then, we have limM→0 D

′ (M − I (M,γRY,M + Y ξ0)) = D′(0) and limM→0 U
′ (I (M,γRY,M + Y ξ0)) =

∞. But by (4.8), we again have:

lim
M→0

U ′ (I (M,γRY,M + Y ξ0))

= ξ0Y + γ lim
M→0

(RY,M −D′ (M − I (M,γRY,M + Y ξ0)))

≤ ξ0Y + γ lim
M→0

(D′(M)−D′ (M − I (M,γRY,M + Y ξ0)))

≤ ξ0Y + γ (D′(0)−D′ (0)) < ∞,

which leads to a contradiction. Hence, limM→0 I (M,γRY,M + Y ξ) > 0 al-
most surely. Since I (M,γRY,M + Y ξ)−M is decreasing in M , by the Mono-
tone Convergence Theorem,

lim
M→0

E [I (M,γRY,M + Y ξ)−M ] > 0.
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(c2) By (4.8), we either have limM→∞ I (M,γRY,M + Y ξ) = ∞ almost surely or
limM→∞ RY,M = ∞.
Assume that limM→∞ RY,M < ∞, thus limM→∞ I (M,γRY,M + Y ξ) = ∞
almost surely, then by continuity of U ′,

lim
M→∞

U ′ (I (M,γRY,M + Y ξ)) = 0 a.s.(C.3)

Then, by the Dominated Convergence Theorem and (C.3),

lim
M→∞

E [U ′(I (M,γRY,M + Y ξ))] = E
[
lim

M→∞
U ′(I (M,γRY,M + Y ξ))

]
= 0.

Hence, we have limM→∞ E[U ′(I (M,γRY,M + Y ξ))− ξY ] = −E[ξ]Y < 0, this
contradicts (4.13) in Lemma 4.7, so we must have limM→∞ RY,M = ∞.
Given a sample ξ0, assume the contrary, that limM→∞ M−I (M,γRY,M + Y ξ0) <
∞, then limM→∞ D′ (M − I (M,γRY,M + Y ξ0)) < ∞. By (4.8) and limM→∞ RY,M =
∞, we have limM→∞ U ′ (I (M,γRY,M + Y ξ0)) = ∞, thus limM→∞ I (M,γRY,M + Y ξ0) =
0 and then it results in: limM→∞ (M − I (M,γRY,M + Y ξ0)) = ∞, a contra-
diction.
Now, we have limM→∞ M − I (M,γRY,M + Y ξ) = ∞ almost surely. By the
Monotone Convergence Theorem,

lim
M→∞

E [M − I (M,γRY,M + Y ξ)] = ∞ > 0.

(d) In part (a), we have shown that E [I (M,γRY,M + Y ξ)] − M is strictly de-
creasing in M for a fixed Y . On the other hand, in Proposition 4.5 (a)(i)
and Lemma 4.7 (d1), we can show that E [I (M,γRY,M + Y ξ)]−M is strictly
decreasing in Y for a fixed M . By (4.14), E [I (MY , γRY,MY

+ Y ξ)]−MY = 0
for all values of Y , thus, MY is strictly decreasing in Y .

C.4. Proof of Lemma 4.9. In this lemma, we prove the following in order:
(a) E [ξI (MY , γRY,MY

+ Y ξ)] is continuous in Y ,
(b1) limY→0 E [ξI (MY , γRY,MY + Y ξ)] = ∞,
(b2) limY→∞ E [ξI (MY , γRY,MY

+ Y ξ)] = 0.
Then by the intermediate value theorem with (a), (b1) and (b2), there exists Y
satisfying (4.15).

For each of the above items:
(a) Fix Y0 ∈ (0,∞). For any ϵ > 0, by Lemmas 4.7 and 4.8, we have

RY0−ϵ,MY0+ϵ < RY,MY < RY0+ϵ,MY0−ϵ for any Y0 − ϵ < Y < Y0 + ϵ,(C.4)

and RY0+ϵ,MY0−ϵ is increasing in ϵ, we therefore have both the finite existence
of limϵ↓0 RY0+ϵ,MY0−ϵ

and limϵ↓0 RY0−ϵ,MY0+ϵ
. By Proposition 4.5 (b), I is

jointly continuous,

lim
ϵ↓0

I
(
MY0−ϵ, (Y0 + ϵ) ξ + γRY0+ϵ,MY0−ϵ

)
= I

(
lim
ϵ↓0

MY0−ϵ, Y0ξ + γ lim
ϵ↓0

RY0+ϵ,MY0−ϵ

)
.

Hence,

lim
ϵ↓0

(
D′ (MY0−ϵ − I

(
MY0−ϵ, (Y0 + ϵ) ξ + γRY0+ϵ,MY0−ϵ

))
−RY0+ϵ,MY0−ϵ

)
= D′

(
lim
ϵ↓0

MY0−ϵ − I

(
lim
ϵ↓0

MY0−ϵ, Y0ξ + γ lim
ϵ↓0

RY0+ϵ,MY0−ϵ

))
− lim

ϵ↓0
RY0+ϵ,MY0−ϵ

.



14 WONG, YAM AND ZHENG

By standard application of the Dominated Convergence Theorem,

E
[
D′
(
lim
ϵ↓0

MY0−ϵ − I

(
lim
ϵ↓0

MY0−ϵ, Y0ξ + γ lim
ϵ↓0

RY0+ϵ,MY0−ϵ

))
− lim

ϵ↓0
RY0+ϵ,MY0−ϵ

]
= lim

ϵ↓0
E
[
D′ (MY0−ϵ − I

(
MY0−ϵ, (Y0 + ϵ) ξ + γRY0+ϵ,MY0−ϵ

))
−RY0+ϵ,MY0−ϵ

]
= 0.

Since R in Lemma 4.7 is uniquely defined in (4.12), thus RY0,limϵ↓0 MY0−ϵ
=

limϵ↓0 RY0+ϵ,MY0−ϵ . Similarly, we have RY0,limϵ↓0 MY0+ϵ = limϵ↓0 RY0−ϵ,MY0+ϵ .
By the Dominated Convergence Theorem and (4.14),

E
[
I

(
lim
ϵ↓0

MY0−ϵ, Y0ξ + γRY0,limϵ↓0 MY0−ϵ

)
− lim

ϵ↓0
MY0−ϵ

]
= E

[
I

(
lim
ϵ↓0

MY0−ϵ, Y0ξ + γ lim
ϵ↓0

RY0+ϵ,MY0−ϵ

)
− lim

ϵ↓0
MY0−ϵ

]
= E

[
lim
ϵ↓0

(
I
(
MY0−ϵ, (Y0 + ϵ) ξ + γRY0+ϵ,MY0−ϵ

)
−MY0−ϵ

)]
= 0.

SinceM in Lemma 4.8 is uniquely defined in (4.14), thus limϵ↓0 MY0−ϵ = MY0
.

Similarly, we have limϵ↑0 MY0−ϵ = MY0 and limY→Y0 MY = MY0 . Hence,

lim
ϵ↓0

RY0+ϵ,MY0−ϵ
= RY0,limϵ↓0 MY0−ϵ

= RY0,MY0
= RY0,limϵ↓0 MY0+ϵ

= lim
ϵ↓0

RY0−ϵ,MY0+ϵ
.

By (C.4), we have limY→Y0
RY,MY

= RY0,MY0
. Then we have

lim
Y→Y0

I (MY , Y ξ + γRY,MY ) = I

(
lim

Y→Y0

MY , Y0ξ + γ lim
Y→Y0

RY,MY

)
= I

(
MY0 , Y0ξ + γRY0,MY0

)
.

Finally, our claim follows from another application of the Dominated Con-
vergence Theorem.

(b1) For an arbitrary a sample value ξ0 ∈ (0,∞). Assume the contrary that

lim inf
Y→0

I (MY , Y ξ0 + γRY,MY
) < ∞,

then there exists a sequence {yn} with yn → 0 such that

lim inf
Y→0

I (MY , Y ξ0 + γRY,MY
) = lim

n→∞
I
(
Myn , ynξ0 + γRyn,Myn

)
< ∞.

Clearly, limn→∞ U ′ (I (Myn , ynξ0 + γRyn,Myn

))
> 0. Furthermore, since U ′(I(m, ·))

is increasing, thus for any ξ > ξ0,

lim inf
n→∞

U ′ (I (Myn , ynξ + γRyn,Myn

))
≥ lim

n→∞
U ′ (I (Myn , ynξ0 + γRyn,Myn

))
> 0.

By Fatou’s Lemma and (4.13),

lim inf
n→∞

ynE[ξ] = lim inf
n→∞

E
[
U ′ (I (Myn , ynξ + γRyn,Myn

))]
≥ E

[
lim inf
n→∞

U ′ (I (Myn , ynξ + γRyn,Myn

))]
≥ lim

n→∞
U ′ (I (Myn , ynξ0 + γRyn,Myn

))
P [ξ > ξ0] > 0,
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which contradict lim infn→∞ ynE[ξ] = 0. So lim infY→0 I (MY , Y ξ0 + γRY,MY ) =
∞, for any ξ0 ∈ (0,∞). Hence, lim infY→0 ξI (MY , Y ξ + γRY,MY

) = ∞ al-
most surely. By Fatou’s Lemma,

lim inf
Y→0

E [ξI (MY , γRY,MY + Y ξ)] ≥ E
[
lim inf
Y→0

ξI (MY , γRY,MY + Y ξ)
]
= ∞.

(b2) Since MY is decreasing in Y as shown in Lemma 4.8, thus limY→∞ MY exists
and is finite.
For any N ∈ (0,∞), it is clear from its definition that limY→∞ RN,MY ≥ 0.
Therefore, limY→∞ I (MY , Nξ + γRN,MY

) = I (limY→∞ MY , Nξ + γ limY→∞ RN,MY
)

is finite almost surely for anyN ∈ (0,∞). Since I (limY→∞ MY , Nξ + γ limY→∞ RN,MY )
is decreasing inN , then limN→∞ I (limY→∞ MY , Nξ + γ limY→∞ RN,MY

) ex-
ists and is finite since I is always non-negative.
For if there exists a sample ξ0 ∈ (0,∞) such that

lim
N→∞

I
(

lim
Y→∞

MY , Nξ0 + γ lim
Y→∞

RN,MY

)
> 0,(C.5)

then limN→∞ D′ (limY→∞ MY − I (limY→∞ MY , Nξ0 + γ limY→∞ RN,MY )) <
∞ and limN→∞ U ′ (I (limY→∞ MY , Nξ0 + γ limY→∞ RN,MY

)) < ∞ if (C.5)
holds. By (4.8),

Nξ0 + γ lim
Y→∞

RN,MY
= U ′

(
I
(

lim
Y→∞

MY , Nξ0 + γ lim
Y→∞

RN,MY

))
+D′

(
lim

Y→∞
MY − I

(
lim

Y→∞
MY , Nξ0 + γ lim

Y→∞
RN,MY

))
.

Then taking N → ∞ into the both sides, the limit in the left hand side tends
to infinity as limY→∞ RN,MY ≥ 0 > −∞ for any finite fixed N , while the
limit in the right hand side is finite, a contradiction. So

lim
N→∞

I
(

lim
Y→∞

MY , Nξ + γ lim
Y→∞

RN,MY

)
= 0, a.s.(C.6)

On the other hand, since I (MY , Y ξ + γRY,MY
) ≤ I (MY , Nξ + γRN,MY

) for
all N ≤ Y < ∞ and limY→∞ I (MY , Nξ + γRN,MY ) exists, we have almost
surely, for any N ,

lim sup
Y→∞

I (MY , Y ξ + γRY,MY
) ≤ lim

Y→∞
I (MY , Nξ + γRN,MY

)

= I
(

lim
Y→∞

MY , Nξ + γ lim
Y→∞

RN,MY

)
.

By (C.6), lim supY→∞ I (MY , Y ξ + γRY,MY
) = 0 almost surely. Finally,

by reverse Fatou’s lemma, since I (MY , Y ξ + γRY,MY ) ≤ I (Mk0 , k0ξ) ≤
I (Mk0 , U

′(Mk0)) + (U ′)−1(k0ξ) ∈ L2 for Y ≥ k0, where k0 is given in As-
sumption 4.4, we have

lim sup
Y→∞

E [ξI (MY , Y ξ + γRY,MY
)]

≤ E
[
lim sup
Y→∞

ξI (MY , Y ξ + γRY,MY
)

]
= 0.(C.7)

C.5. Proof of Proposition 4.12. The proof is essentially the same as the
proof of Proposition 4.5 except that limZ→∞ U ′(Z)+ γD′ (m− Z)− y = −∞ for any
(m, y) ∈ R2.
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C.6. Proof of Proposition 4.13.
(i) Since R can take values in (−∞, D′(M)) instead. We have to prove the

following in place of that in (c1) in Appendix C.2:

lim
R→−∞

E[D′ (M − I (M,γR+ Y ξ))−R] > 0.

By (4.16), we have limR→−∞ I (M,γR+ Y ξ) = ∞ almost surely. Since U ′

is continuous, so we have limR→−∞ Y ξ − U ′(I (M,γR+ Y ξ)) = Y ξ almost
surely by the Inada condition. Since Y ξ − U ′ (I (M,γR+ Y ξ)) is strictly
increasing as R → −∞ and Y ξ − U ′ (I (M,γR+ Y ξ)) ≥ D′ (M − I (M, 0))
for R < 0 by (4.16), then by the Monotone Convergence Theorem,

lim
R→−∞

E [D′ (M − I (M,γR+ Y ξ))−R] = lim
R→−∞

E
[
1

γ
(Y ξ − U ′(I (M,γR+ Y ξ)))

]
=

1

γ
Y E [ξ] > 0.

(ii) In part (d1) in Appendix C.2 , by Proposition 4.12 (a), I (M,γR+ Y ξ) is
strictly increasing in M , so D′(M−I (M,γR+ Y ξ))−R is strictly increasing
in M .

(iii) In part (a) in Appendix C.3, by (4.8), D′(M−I (M,γR+ Y ξ))−R is strictly
increasing inM almost surely. SinceD′ is strictly increasing, I (M,γR+ Y ξ)−
M is strictly decreasing in M for fixed Y,R.

(iv) In part (b2) in Appendix C.4, since R can be negative, we no longer have
limY→∞ RN,MY

≥ 0. Instead, we claim that for anyN ∈ (0,∞), limY→∞ RN,MY
>

−∞. Assume the contrary, that there exists N such that limY→∞ RN,MY =
−∞. Then

lim
Y→∞

(ξN + γRN,MY
) = −∞ for all ξ ∈ (0,∞).(C.8)

Fix a sample ξ0 ∈ (0,∞). Let {yn} be a sequence with yn → ∞ such that

lim
n→∞

I
(
Myn , Nξ0 + γRN,Myn

)
= lim inf

Y→∞
I (MY , Nξ0 + γRN,MY ) .

If limn→∞ I
(
Myn , Nξ0 + γRN,Myn

)
< ∞, then limn→∞ U ′ (I (Myn , Nξ0 + γRN,Myn

))
>

0 and limn→∞ D′ (Myn − I
(
Myn , Nξ0 + γRN,Myn

))
> −∞. With (4.16),

they contradict to (C.8). So

lim inf
Y→∞

I (MY , Nξ0 + γRN,MY ) = lim
n→∞

I
(
Myn , Nξ0 + γRN,Myn

)
= ∞.

Thus, we have lim infY→∞ I (MY , Nξ + γRN,MY
) = ∞ almost surely. Then,

lim
Y→∞

U ′ (I (MY , Nξ + γRN,MY
)) = U ′

(
lim

Y→∞
I (MY , Nξ + γRN,MY

)
)
= 0.

Since U ′ (I (MY , Nξ + γRN,MY )) ≤ Nξ + γRN,MN −D′(−I(0, γRN,MN )) for
Y > N , then by the reverse Fatou lemma, we have

0 = E
[
lim sup
Y→∞

U ′ (I (MY , Nξ + γRN,MY ))

]
≥ lim sup

Y→∞
E [U ′ (I (MY , Nξ + γRN,MY ))]

= NE [ξ] > 0,
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which is a contradiction; thus for any N ∈ (0,∞), limY→∞ RN,MY > −∞.
From here on the rest of the proof is the same as that for part (b2) in Proof for
Lemma 4.9 until the last line, I (MY , Y ξ + γRY,MY ) ≤ I (M1, γ limY→∞ R1,MY ) <
∞, which is independent of ξ. Hence, the reverse Fatou Lemma still works in
(C.7).

C.7. Proof of Proposition 4.21. Firstly, we know that given x, y > 0, if
0 < x + y ≤ 1, then | ln(x + y)| ≤ | lnx|; on the other hand, if x + y > 1, then

0 < ln(x+y) < lnx+ y
x . Combining, | ln(x+y)| ≤ | ln(x)|+

∣∣ y
x

∣∣. For fixed R ∈
[
1
γ ,∞

)
,

E

[∣∣∣∣ ln( ξ

γE[ξ]
+R− 1

γ

) ∣∣∣∣2
]
≤ E

[(∣∣∣∣ ln( ξ

γE[ξ]

) ∣∣∣∣+ ∣∣∣∣E[ξ]γR− 1

ξ

∣∣∣∣)2
]

≤ E
[(
| ln ξ|+ | ln(γE[ξ])|+ (γR− 1)E[ξ]ξ−1

)2]
≤ 3

(
E
[
| ln ξ|2

]
+ ln(γE[ξ])2 + (γR− 1)2E[ξ]2E

[
ξ−2
])

.(C.9)

Clearly, by a simple calculation,

E
[
| ln ξ|2

]
≤ E

[
2T

∫ T

0

∣∣∣∣r(s) + 1

2
α(s)t

(
σ(s)σ(s)t

)−1
α(s)

∣∣∣∣2ds+ 2

∫ T

0

α(s)t
(
σ(s)σ(s)t

)−1
α(s)ds

]

≤ 2T 2

(
r +

C

2

)2

+ 2CT,

where C is a constant. With this last result and the boundedness of E[ξ−2], we can

show that (C.9) is bounded, and hence ln
(

ξ
γE[ξ] +R− 1

γ

)
∈ L2 for any R ∈ [ 1γ ,∞).

Now, we consider three different cases: (i) γ > exp
(
E
[
ln
(

ξ
E[ξ]

)])
, (ii) γ =

exp
(
E
[
ln
(

ξ
E[ξ]

)])
, and (iii) γ < exp

(
E
[
ln
(

ξ
E[ξ]

)])
.

(i) Obviously, E
[
ln
(

ξ
γE[ξ] +R− 1

γ

)]
is strictly increasing and continuous in R ∈(

1
γ ,∞

)
. By the Monotone Convergence Theorem, limR→∞ E

[
ln
(

ξ
γE[ξ] +R− 1

γ

)]
=

∞. On the other hand, limR→ 1
γ
E
[
ln
(

ξ
γE[ξ] +R− 1

γ

)]
= E

[
ln
(

ξ
γE[ξ]

)]
< 0.

Hence, by intermediate value theorem, there exist an unique R satisfying
(4.22) and (4.23).

(ii) R = 1
γ is the unique solution satisfying (4.22) and (4.23).

(iii) Assume the contrary that there exists an admissible solution X̂ being an
optimal terminal wealth for this mean-exponential-risk problem. Since D =
D′, so X̂ satisfies Condition 3.1 (i). It is clear that X̂ satisfies Condition 3.1
(ii). Hence, by Theorem 3.2, it is necessary that there exist numbers Y,M,R
such that (X̂, Y,M,R) solves the Nonlinear Moment Problem (4.18)-(4.21).
By (4.18) and (4.21), we first have

X̂ = M − ln

(
R+

ξY

γ
− 1

γ

)
, Y =

1

E[ξ]
.(C.10)

Given that γ < exp
(
E
[
ln
(

ξ
E[ξ]

)])
, we have ln

(
ξ

γE[ξ]

)
> ln[ξ] − E[ln[ξ]].

Taking expectation on both sides of X̂ in (C.10), for any R ∈
[
1
γ ,∞

)
, we
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have

E
[
X̂
]
= M − E

[
ln

(
R+

ξY

γ
− 1

γ

)]
≥ M − E

[
ln

(
ξY

γ

)]
> M − E [ln [ξ]− E [ln [ξ]]] = M,

which contradicts with (4.20). Therefore, there is no solution for the Nonlin-
ear Moment Problem, and hence, this mean-exponential risk problem has no
optimal solution.

Appendix D. On the Boundedness of Optimal Wealth.
In the proof of Theorem 4.10, it seems not immediate that the optimal terminal

wealth is uniformly bounded even if the risk measure is a downside one. By Theorems
2.5 and 3.2, there exist numbers Y,M and R so that any optimal terminal wealth X̂
(satisfying Conditions 3.1 (i) and (ii)) satisfies:

(D.1)

{
Y ξ = fM,R(X̂), a.s. on {X̂ > 0},
Y ξ ≤ fM,R(X̂), a.s. on {X̂ = 0},

where fM,R(x) := U ′(x) − γR + γD′ (M − x). By taking expectation on both sides
of (D.1) with some terms being eliminated in accordance with (3.4), we have Y ≥
E[U ′(X̂)]/E[ξ] > 0. By the definition of I in Proposition 4.5 and the fact that fM,R

is decreasing, fM,R(x) ≤ 0 whenever x ≥ I (M,γR) > 0, together with the facts that

Y ξ > 0 and X̂ has to satisfy (D.1) a.s., there is no possibility that X̂ takes value
greater than I (M,γR). In other words, X̂ has to be bounded above by the finite
deterministic number I (M,γR). Note that the optimal terminal wealth is bounded
when the risk function is strictly convex. In particular, the optimal terminal payoff in
our utility-risk problem in Theorem 4.10 is countermonotonic with the pricing kernel,
which is a commonly found property in the portfolio selection literature.

To motivate the claim of the boundedness of the optimal payoff from a financial
perspective, we consider a simple single period example. Based on the previous obser-
vation, it is justifiable to simply take the optimal terminal payoff under this example
to be also countermonotonic with the pricing kernel.

We suppose that the payoff is a random variable Z with two possible outcomes,
0 and a number z > 1, and their respective probabilities are p0 := 1− pz and pz. Our
objective function is

(D.2) J(Z) := E[U(Z)]− E[D(E[Z]− Z)] := E[Zθ]− E[(E[Z]− Z)ρ+],

where θ < 1 and ρ > 1. There is a budget constraint on the payoff, namely

(D.3) E[ξZ] = qzz = 1,

where qz := E[ξI{Z = z}]. Note that, if a single-period risk-free simple rate is given to
be r, (1+r)qz becomes the risk neutral probability of Z = z. We look for the optimal z
so that the corresponding payoff Z maximizes (D.2). Since we assume that the payoff
Z and the pricing kernel ξ are countermonotonic, there exist a ξ0(z) ∈ (0,∞) such that

{Z = z} = {ξ < ξ0(z)}, thus qz =
∫ ξ0(z)

0
ξP[dξ]. Then, in order to maintain the budget

constraint at the same level, increasing z has to be balanced off with a smaller risk

neutral probability qz, thus ξ0(z) decreases in z. Therefore, pz =
∫ ξ0(z)

0
P[dξ] decreases

in z. Define h(z) := qz
pz

=
∫ ξ0(z)
0 ξP[dξ]∫ ξ0(z)
0 P[dξ]

, simple calculus concludes that h′(z) < 0, and
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therefore h(z) decreases in z. By (D.3), pz = h(z)−1

z and E[Z] = h(z)−1. Then, we
have

(i) E[U(Z)] = E[Zθ] =
h(z)−1

z1−θ
and

(ii) E[D(E[Z]− Z)] = E[(E[Z]− Z)ρ+] = (E[Z])ρ(1− pz) ≥ δ0(h(z)
−1)ρ,

for some δ0 > 0. Next, we consider two cases: (i) limz→∞ h(z)−1 < ∞ or (ii)
limz→∞ h(z)−1 = ∞.

(i) We have limz→∞ E[U(Z)] = limz→∞
h(z)−1

z1−θ = 0, i.e. a bounded Z is optimal
even in the ordinary utility maximization.

(ii) We have

lim
z→∞

E[D(E[Z]− Z)]

E[U(Z)]
≥ lim

z→∞

δ0(h(z)
−1)ρ

h(z)−1

z1−θ

≥ lim
z→∞

δ0(h(z)
−1)ρ−1 = ∞,

which means that E[D(E[Z] − Z)] grows with z faster than E[U(Z)] due to
the diminishing marginal value of utility U and the increasing marginal value
of deviation risk D(E[Z] − Z). As a result, taking an arbitrarily large value
in z actually causes a negative effect on the objective value.

In the case that the risk measure penalizes both upside and downside deviation
risks, the investor resist to put more proportion of wealth into more risky asset to
avoid double penalties due to increased upside and downside deviation risks. Under
a downside risk measure, there is no double penalties on deviation risk, so it is intu-
itively expected that investing in more risky asset is comparatively more encouraging.
Nevertheless, our general results and the simple example show that it is not the case.
Investing in more risky asset can increase both return and downside deviation risk.
On the one hand, since the utility has a diminishing marginal value, any additional
gain in a large return can only give a reducing increment on the investor’s satisfac-
tion. On the other hand, the additional gain in a large return makes that the convex
downside risk measure enlarges the the investor’s dissatisfaction on downside devia-
tion risk. As a result, such additional dissatisfaction on risk compensates the very
marginal increment in the satisfaction on return. Hence, this intuition motivates the
uniform boundedness of optimal payoff.


