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Abstract In the aftermath of the global financial crisis, much attention has been paid
to investigating the appropriateness of the current practice of default risk modeling in
banking, finance and insurance industries. A recent empirical study by Guo et al. (Rev
Deriv Res 11(3): 171–204, 2008) shows that the time difference between the economic
and recorded default dates has a significant impact on recovery rate estimates. Guo
et al. (http://arxiv.org/abs/1012.0843, 2011) develop a theoretical structural firm asset
value model for a firm default process that embeds the distinction of these two default
times. In this paper, we assume the market participants cannot observe the firm asset
value directly and we develop reduced-form models for characterizing the economic
and recorded default times. We derive the probability distributions of these two default
times. Numerical experiments with empirical data are given to demonstrate the pro-
posed models. Our approach helps researchers to gain a new perspective for economic
and recorded defaults and is more feasible in general practice compared with current
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method. Our results can also contribute to the understanding of the impacts of various
parameters on the economic and recorded default times.

Keywords Economic default time · Reduced-form model · Affine jump diffusion
model

1 Introduction

Modeling default risk has long been an important problem in both theory and practice
of banking and finance. Popular credit risk models currently used have their origins
in two major classes of models. The first class of models was pioneered by Black and
Scholes (1973) and Merton (1974) and is called the structural firm value model. The
basic idea of the model is to describe explicitly the relationship between the asset value
and the default of a firm. More specifically, the default of the firm is triggered by the
event that the asset value of the firm falls below a certain threshold level related to the
liabilities of the firm. The structural firm value model provides the theoretical basis for
the commercial KMV model which has been widely used for default risk model in the
financial industry. The second class of models was developed by Jarrow and Turnbull
(1995) and Madan and Unal (1998) and is called the reduced-form credit risk model.
The basic idea of the model is to consider defaults as exogenous events and to model
their occurrences by using Poisson processes and their variants. Other models such as
Hidden Markov Models (HMMs) have also been employed for modeling default data
Ching et al. (2009).

A recent empirical study by Guo et al. (2008) on the time-series behavior of market
debt prices around the recorded default date reveals the fact that the market anticipates
the default event well before default is recorded. Their statistical analysis shows that
the time span between the economic and recorded default dates has a significant impact
on recovery rate estimates. Guo et al. (2011) develop a theoretical structural firm asset
value model for a firm default process that embeds a distinction between an economic
and a recorded default time and study the probability distributions of the economic
and recorded default times.

In this paper, to be more consistent with the market practice, we assume that the
market participants cannot observe the firm asset value directly, instead, they are
aware of the firm’s operation state. For example, the firm may have two states: normal
and default (under stress). The firm’s state process is characterized by a continuous-
time Markov chain with stochastic transition rates. By this assumption, our proposed
model, different from the one proposed by Guo et al. (2011), is a “reduced-form”
model. Under this framework, the economic and recorded default time is defined in
a similar way as the one in Guo et al. (2011). We derive the probability law of the
economic and recorded default time. Numerical experiments with empirical data are
given to demonstrate the proposed models.

Our work contributes to the literature in two aspects. Firstly, we introduce the
reduced-form model to study the distribution of economic and recorded default times.
The current method is based on structural value model and requires full informa-
tion on the asset value of the firm, which is not consistent with the market practice.
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Our approach helps researchers to gain a new perspective for economic and recorded
defaults and is more realistic in general. Secondly, in addition to studying the distrib-
ution of economic and recorded default times, we also investigate the calibration and
implementation of our reduced-form model. Our results can contribute to the under-
standing of the impacts of various parameters on the economic and recorded default
times.

The rest of the paper is organized as follows. Section 2 provides a review on Guo et
al.’s structural firm asset value model Guo et al. (2011). Section 3 gives the construction
of our proposed reduced-form model. Section 4 presents the main results of this paper
concerning the distribution of economic and recorded default time. Section 5 provides
the numerical illustrations on the computation of economic and recorded default time
distribution. Section 6 then concludes the paper.

2 Literature Review

Guo et al. (2008) show that identifying the “economic” default date, as distinct from
the recorded default date, is crucial for obtaining unbiased recovery estimates. For
most debt issues, the economic default date occurs far in advance of the reported
default date. An implication is that the standard industry practice of using 30-day post
default prices to compute recovery rate yields biased estimates. This result, unfortu-
nately, reveals that the empirical studies investigating the economic characteristics of
industry based recovery rates are using biased data. Hence, the study of the economic
default date is essential.

To be more specific, Guo et al. (2008) proposed a recovery rate model which fits
the stressed bond prices well with an average pricing error of less than one basis point.
In their model, the “modified recovery rate” process is defined to price the stressed
bonds as follows:

Rt = δt e
− ∫ t

τe
rudu

, t > τe

where δt denotes the recovery rate process and τe is the economic default time. We
remark that Rt implicitly depends on the economic default time.

In Guo et al.’s model (Guo et al. 2011), for a given a filtered probability space
(Ω,F ,Ft , P) that satisfies the usual conditions, the value of the firm S = (St )t≥0
follows a geometric Lévy process together with its natural filtration Ft . The firm
needs to make debt repayments at a predetermined (deterministic) set of discrete
times, denoted by N1, N2, . . . ,. For simplicity, let Nk = k N for a fixed N > 0, at
time Nk , the amount of debt in the firm is Dk . For simplicity, we assume that Dk = D
is constant over time. To be consistent with a structural model, the recorded default
time τr is the first time that the firm is unable to make a debt repayment, i.e.,

τr = inf{Nk : Sk ≤ D}

while economic default time to be the last time, before the onset of recorded default,
when the firm is able to make a debt repayment, i.e.,
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τe = sup{t ∈ [τr − N , τr ] : St ≥ D}.

The following proposition characterizes the distribution of the important quantity
(τr − τe), the time lap between the recorded default time and the economic default
time.

Proposition 1 (Guo et al. (2011)) Assume that S = (St , t ≥ 0) is a geometric spec-
trally positive Lévy process, then

Px (τr − τe ∈ ds) =
∫ ∞

D

∞∑

n=1

ψ(u, s)un(x)Px (S(n−1)N ∈ du | τr = nN )

where un(x) = Px (τr = nN ) and

ψ(x, s) =
∫ N

0
P(u,D)(τr − τe ∈ ds | τr = N )Px (HD ∈ du)

where HD = inf{t : St ≤ D} and P(u,D) denotes the distribution of S starting from
D at time t = u.

Suppose (St , t ≥ 0) is a geometric Brownian motion with zero drift, i.e.,

St = exp

(

μWt − μ2t

2

)

where μ is the constant volatility. In this case, St is an exponential martingale. Under
the risk neutral measure with Wt being a standard Brownian motion, then we have

P(u,D)(τr − τe ∈ ds | τr = N ) = ds

π
√

s(N − u − s)
φ
(μ

2

√
N − u − s

)
,

with

φ(a) =
∫ ∞

0
dte−t cosh(a

√
2t).

Therefore, the distribution of (τr −τe) is a mixture of Arcsine law. The empirical study
in Guo et al. (2008), shows that the density of time difference between the economic
and the recorded default has a “U -shape” in the time interval [0, N ], while this feature
can be well captured by the Arcsine law.

3 The Reduced-Form Models

We present our proposed reduced-form model in this section. The distinction of the
economic and recorded default time is also embeded. We begin with a complete prob-
ability space (Ω,F ,Ft , P). Under this probability space, we are given a stochastic
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process (Xt )t≥0, right-continuous with left limits, representing the macroeconomic
environment common factor. We consider a firm with K states, i.e., 1, 2, . . . , K , where
state K represents the default state. Let stochastic process (St )t≥0 denotes the state
process of the given firm and we assume that (St )t≥0 is a continuous-time Markov
chain with stochastic transition rates, i.e., λi, j (Xs), where each λi, j is a bounded
continuous function defined on R. Heuristically, one can think of, λi, j (Xs)Δt as the
probability that a firm in state i will jump to state j within the (small) time interval
Δt . With these notations, the transition rate depends on the stochastic process (Xs)s≥0
characterizing the common factor. Let

λi (Xs) =
∑

k �=i

λi,k(Xs), i = 1, 2, . . . , K .

Here λi (Xs)Δt is the probability that a firm in state i will jump to different states
within the (small) time interval Δt .

We redefine the economic and recored default time under the given framework.
First, we assume that the firm has to make certain required payment at some fixed
time, i.e., 0 = N0, N1, . . . , Ni , . . .. For simplicity, we assume that the Ni = i N . If
the firm is in the “default” state at the payment date, its payment will be missed. The
recorded default time τr is defined to be τr = inf{Ni : SNi = K } while the economic
default time is defined to be τe = sup{t ≤ τr : St �= K }. The information set available
to the market participants up to time t is then given by Ft = σ(Xs, Ss, 0 ≤ s ≤ t).
For the ease of discussion, we also define Gt = σ(Xs : 0 ≤ s ≤ t).

4 The Distribution of the Economic Default Time τe

In this section, we focus on finding the distributions of τr and τe. There are two cases
to be discussed: constant transition rates and stochastic transition rates. We begin
with the following proposition which gives the probability law of the two random
variables.

Proposition 2 For a non-negative integer i , we have

P(τe ∈ (Ni , Ni + t] | G∞)

=
⎛

⎝
i−1∏

j=0

P∗∗
X (N j , N j+1) · P∗

X (Ni , Ni + t)

⎞

⎠

S0,K

exp

{

−
∫ Ni+1

Ni +t
λK (Xu)du

}

(1)

and

P(τr = Ni+1 | G∞) =
⎛

⎝
i−1∏

j=0

P∗∗
X (N j , N j+1) · P∗

X (Ni , Ni+1)

⎞

⎠

S0,K

(2)
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and

P(τr − τe > t | G∞)

=
∞∑

i=0

⎛

⎝
i−1∏

j=0

P∗∗
X (N j , N j+1) · P∗

X (Ni , Ni+1 − t)

⎞

⎠

S0,K

exp

{

−
∫ Ni+1

Ni+1−t
λK (Xu)du

}

(3)

where conditioning on the underlying process (Xt )t≥0, PX (s, t) denotes the transition
probability matrix of the state process (St )t≥0, i.e., the (i, j) entry of PX (s, t) denotes
the probability that the firm stays in state j at time t given that the firm stays in state
i at time s. P∗

X (s, t) is the (K − 1)× K matrix that results from deleting the K th row
of PX (s, t) and P∗∗

X (s, t) is the (K − 1)× (K − 1) matrix that results from deleting
the K th column and K th row of PX (s, t).

Proof See Appendix 1. 	


From Proposition 1, one can see that the probability law of τr and τe depends on
the transition matrix PX (s, t). In the following, we discuss the issue of calculating
PX (s, t) in different cases: constant rate model and stochastic rate model.

4.1 Constant Transition Rates

In this subsection, we assume that the underlying stochastic process is degenerate,
which means that Xu = c, u ≥ 0 for some constant c. Let λi, j (c) = λi, j and λi (c) =
λi for all i, j and PX (s, t) = P(s, t). Let

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−λ1 λ1,2 λ1,3 . . . . . . λ1,K
λ2,1 −λ2 λ2,3 . . . . . . λ2,K
λ3,1 λ3,2 −λ3 . . . . . . λ3,K
...

...
. . .

. . .
...

...

λK−1,1 λK−1,2 . . . . . . −λK−1 λK−1,K
λK ,1 λK ,2 . . . . . . λK ,K−1 −λK

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

then by Kolmogorov’s backward equations, one can obtain

∂P(s, t)

∂s
= −AP(s, t). (4)

Solving these equations, we obtain

P(s, t) = exp (A(t − s)) .
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In the following, we give an example of two states to demonstrate the model.

Example 1 In this example, we assume that the firm’s state process follows a two-
state continuous-time Markov chain with normal state “1” and default state “2”. The
transition rates are given, respectively, by λ1 and λ2. Therefore we have

A =
(−λ1 λ1
λ2 −λ2

)

and

P(s, t) =
( λ1

λ1+λ2
e−(λ1+λ2)(t−s) + λ2

λ1+λ2
− λ1
λ1+λ2

e−(λ1+λ2)(t−s) + λ1
λ1+λ2

− λ2
λ1+λ2

e−(λ1+λ2)(t−s) + λ2
λ1+λ2

λ2
λ1+λ2

e−(λ1+λ2)(t−s) + λ1
λ1+λ2

)

.

By Proposition 1, one obtains

P(τe ∈ (Ni , Ni + t]) =
(

λ1

λ1 + λ2
e−(λ1+λ2)N + λ2

λ1 + λ2

)i

×
(

λ1

λ1 + λ2
− λ1

λ1 + λ2
e−(λ1+λ2)t

)

e−λ2(N−t) (5)

and

P(τr = Ni+1) =
(

λ1

λ1 + λ2
e−(λ1+λ2)N + λ2

λ1 + λ2

)i

×
(

− λ1

λ1 + λ2
e−(λ1+λ2)N + λ1

λ1 + λ2

)

(6)

and

P(τr − τe > t) = e−λ2t − e−(λ1+λ2)N eλ1t

1 − e−(λ1+λ2)N
. (7)

4.2 Stochastic Transition Rates

We define the following matrix

AX (s) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−λ1(Xs) λ1,2(Xs) λ1,3(Xs) . . . . . . λ1,K (Xs)

λ2,1(Xs) −λ2(Xs) λ2,3(Xs) . . . . . . λ2,K (Xs)

λ3,1(Xs) λ3,2(Xs) −λ3(Xs) . . . . . . λ3,K (Xs)
...

...
. . .

. . .
...

...

λK−1,1(Xs) λK−1,2(Xs) . . . . . . −λK−1(Xs) λK−1,K (Xs)

λK ,1(Xs) λK ,2(Xs) . . . . . . λK ,K−1(Xs) −λK (Xs)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and we obtain
∂PX (s, t)

∂s
= −AX (s)PX (s, t). (8)
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As shown in Lando (1998), in general, we have

PX (s, t) �= exp

[∫ t

s
AX (u)du

]

.

Hence we adopt the special structure of AX (s) in Lando (1998) by assuming that

AX (s) = Bμ(Xs)B
−1,

where μ(Xs) denotes the K × K diagonal matrix : diag(μ1(Xs), . . . , μK−1(Xs),

μK (Xs)) with μK (Xs) = 0, and B is the K × K matrix whose columns consist of K
eigenvectors of AX (s). Let

EX (s, t)

= diag

(

exp

[∫ t

s
μ1(Xu)du

]

, . . . , exp

[∫ t

s
μK−1(Xu)du

]

, exp

[∫ t

s
μK (Xu)du

])

.

Then one can obtain the following lemma.

Lemma 1 We have

PX (s, t) = B EX (s, t)B−1

satisfying Eq. (8) and is the desired transition probability matrix.

Proof By using the similar argument in Lando (1998). 	


4.2.1 An Affine Jump Diffusion Model for (Xs)s≥0

In this subsection, we adopt an affine jump diffusion process to characterize the dynam-
ics of (Xs)s≥0. As we know, the basic affine process is attractive in modeling credit
risk for its tractability, see for instance Duffie and Kan (1996) and Duffie and Garleanu
(2001) and Wu and Yang (2013). We assume that

d Xt = κ(θ − Xt )dt + σ
√

Xt d Bt + d Jt (9)

where Bt is a standard Brownian motion and

Jt =
N (t)∑

i=1

Zi

with N (t) being counting jumps in Poisson with intensity λ and {Zi }∞i=1 a sequence
of i.i.d. exponentials with mean γ . Then the expectation

E
[
e
∫ T

t R Xudu+wXT

∣
∣
∣Gt

]
= eα(T −t;R,w)+β(T −t;R,w)Xt , (10)
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where R, w are constants and α, β are coefficient functions satisfying the ODEs

⎧
⎪⎨

⎪⎩

dα(s; R, w)

ds
= κθβ(s; R, w)+ λγβ(s; R, w)

1 − γβ(s; R, w)
dβ(s; R, w)

ds
= −κβ(s; R, w)+ 1

2
σ 2β(s; R, w)2(s)+ R

with α(0; R, w) = 0 and β(0; R, w) = w. The explicit form of α(s; R, w) and
β(s; R, w) can be found in Duffie and Garleanu (2001). The solution to β(s; R, w) is
given by

β(s; R, w) = 1 + aebs

c + debs

where the coefficients depend on R and w,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = (d + c)w − 1

b = d(−κ + 2Rc)+ a(−κc + σ 2)

ac − d

c = κ + √
κ2 − 2Rσ 2

2R

d = (1 − cw)
−κ + σ 2w +√

(−κ + σ 2w)2 − σ 2

−2κw + σ 2w2 + 2R

and α(s; R, w) follows from solving the ODE by substituting β(s; R, w).
In what follows, we implement the calculation of the distributions of τe and τr given

the dynamics of (Xs)s≥0 in Eq. (9). We assume that μi (Xs) = μi Xs with μi being a
constant for i = 1, 2, . . . , K − 1, and μK = 0. Although the computational method
works in multi-state case, here for simplicity of discussion, we assume that K = 2,
i.e., the operation state of a firm is either “normal” or “default”. Before we state the
main result, we have the following observations:

P∗∗
X (s, t) = B∗EX (s, t)B−1∗ and P∗

X (s, t) = B∗EX (s, t)B−1

where B∗ denotes the (K − 1)× K matrix that results from deleting the K th row of
B, B−1∗ denotes the K × (K − 1)matrix that results from deleting the K th column of
B−1. When K = 2,

P∗∗
X (s, t) = m1 exp

[∫ t

s
μ1(Xu)du

]

+ m2 exp

[∫ t

s
μ2(Xu)du

]

where m1 = b11b(−1)
11 and m2 = b12b(−1)

21 with bi, j = Bi, j and b(−1)
i j = B−1

i, j . We
have
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P∗
X (s, t)

=
(

m1 exp

[∫ t

s
μ1(Xu)du

]

+ m2 exp

[∫ t

s
μ2(Xu)du

]

, n1 exp

[∫ t

s
μ1(Xu)du

]

+ n2 exp[
∫ t

s
μ2(Xu)du]

)

where n1 = b11b(−1)
12 and n2 = b12b(−1)

22 . And

λ2(Xs) = −p1μ1(Xu)− p2μ2(Xu)

where p1 = b21b(−1)
12 and p2 = b22b(−1)

22 . Let

Êi := {e = (e0, e1, . . . , ei ) : ek ∈ {1, 2}}

and for each e ∈ Êi , we let

m̂(e) = nei

i−1∏

j=0

me j

and

μ̂(e, s) = 1{s∈[Ni +t,Ni+1)}[p1μ1(Xs)+ p2μ2(Xs)] + 1{s∈[Ni ,Ni +t)}μei (Xs)

+
i−1∑

j=0

1{s∈[N j ,N j+1)}μe j (Xs).

Proposition 3 If K = 2, μi (Xs) = μi Xs with μ1 being a constant, μ2 = 0, the
distribution of τe is given by

P(τe ∈ (Ni , Ni + t]) =
∑

e∈Êi

m̂(e)

⎛

⎝
i+1∏

j=0

v j (e)

⎞

⎠ exp[β(N ; R0(e), w0(e))X0] (11)

where R j , w j , v j are defined in Appendix 2.1. The distributions of τr and the difference
τr − τe are given by,

P(τr = Ni+1) = P(τe ∈ (Ni , Ni+1]) (12)

and

P(τr − τe > t) =
∞∑

i=0

P(τe ∈ (Ni , Ni+1 − t]). (13)

Proof See Appendix 2.1. 	
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We remark that in conducting our numerical experiments, we have to apply Eq.
(13) to approximate P(τr − τe > t), where the error is given by

∣
∣
∣
∣
∣
P(τr − τe > t)−

k∑

i=0

P(τe ∈ (Ni , Ni+1 − t])
∣
∣
∣
∣
∣
< P(τr > Nk+1) → 0

as k → ∞. For the ease of computing the probability P(τe ∈ (Ni , Ni + t]), we
establish the following.

Proposition 4 Under the assumptions of Proposition 3, the distribution of the eco-
nomic default time τe is given by

P(τe ∈ (Ni , Ni + t]) =
2i+1
∑

j=1

ai, j exp(bi, j X0), (14)

where

ai+1, j =
{

m1ai, j exp(α(N , μ1, bi, j )), j = 1, 2, . . . , 2i+1

m2ai, j−2i+1 exp(α(N , μ2, bi, j−2i+1)), j = 2i+1 + 1, 2i+1 + 2, . . . , 2i+2

bi+1, j =
{
β(N , μ1, bi, j ), j = 1, 2, . . . , 2i+1

β(N , μ2, bi, j−2i+1), j = 2i+1 + 1, 2i+1 + 2, . . . , 2i+2

and

⎧
⎪⎪⎨

⎪⎪⎩

a0,1 = n1 exp[α(N − t, p1μ1 + p2μ2, 0)α(t, μ1, β(N − t, p1μ1 + p2μ2, 0))]
a0,2 = n2 exp[α(N − t, p1μ1 + p2μ2, 0)α(t, μ2, β(N − t, p1μ1 + p2μ2, 0))]
b0,1 = β(t, μ1, β(N − t, p1μ1 + p2μ2, 0))
b0,2 = β(t, μ2, β(N − t, p1μ1 + p2μ2, 0)).

Proof See Appendix 2.2. 	


5 Numerical Experiments and Discussions

In this section, we first discuss the constant intensity rate model. The model parameters
can be solved by employing the maximum likelihood approach. We state the sufficient
conditions for the density function to have the “U -shape” property. Numerical results
are then given to demonstrate the model. We also present the numerical results for the
stochastic intensity model. It is found by varying the parameters κ, γ and σ , differ-
ent “U -shape” density functions can be obtained. Thus it is clear that the stochastic
intensity rate model can better fit the real data as it includes the constant rate intensity
model as its particular case.

In the stochastic intensity rate model, we note that if the mean-reverting rate κ is
getting large, the effect of stochastic part will be diminished. Eventually the process

123



J.-W. Gu et al.

will be dominated by deterministic part d Xt = κ(θ − Xt )dt . The parameter κ char-
acterized the internal factor of the firm default process. One expects that when κ
increases, the distribution seems to converge to certain “U -shape” function and this is
consistent with the results in Fig. 2.

The parameter γ , the mean jump size of the jump process Jt , is a positive quantity
and can be regarded as the severity of an external event causing the stress. We remark
that the sign of the jump is always positive. The larger the value is, the more likely
that the time lap between the economic default time and the recorded time is short.
Thus we expect that when γ increases, the distribution will have a flatter and flatter
tail and this is consistent with the results in Fig. 3.

Finally, the non-negative parameter σ controls the effect of the stochastic part of
a Brownian motion σdW which can be positive or negative and it represents the
external market risk. We expect that when σ increases, the better capital-structured
companies have larger time gap between the economic and the recorded default while
worse capital-structured companies have shorter time gap between those. The impact
of increasing σ on both type of companies reveals in the time difference of the two
default times as in Fig. 4.

In a more economic sense, the parameter σ can be interpreted as a measure of
degree the macroeconomic fluctuation or market condition. The larger σ is, the more
firms are to default given their original status. As shown by Jacobson et al. (2011),
strong evidence for a substantial and stable impact from aggregate fluctuations and
business defaults are found in large banking crisis. Moreover, default frequencies tend
to increase significantly when the economy fluctuates more. Intuitively speaking, when
market conditions or macroeconomy becomes more uncertain or worse, bank or other
lenders tend to be less confident and retract their lending to firms, making firms more
easily to default. Another interesting facts about our model is that there is a “shift” in
the distribution of firms’ “default gap classes”. Comparing the first and the third graph
in Fig. 4, it is not hard to see that the distribution of firms’ default gap tends to shift
along the parabola rightwards, lifting the right tail up while pressing the left tail down.
Moreover, it is obvious that the shifts from the classes with larger default gap are bigger
than those from the class with smaller default gap. This interesting phenomenon can be
interpreted in a very reasonable way. It is known to all that firms’ capital structure and
governance manner etc. are very important measure of firms’ strength. In particular,
these properties tend to be more variable or of larger variance in start-up firms or less
matured firms. Baeka et al. (2004) and Ivashina and Scharfstein (2008) Ivashina and
Scharfstein (2010) found that firms with better governance manner and capital structure
are more likely to survive from defaults during crisis. Start-up firms or less-developed
firms (lower class firms) systematically have larger default gaps than those larger and
matured firms (higher class firms). Good candidates in the lower class, namely those
firms less-matured, but with relatively better governance manner or reasonable capital
structures, will have better access to funding or lending during crisis compared with
their peers in the same class. We expect the good candidates in each classes that are
making the shift. And the shift magnitudes are larger in the lower classes because
the variance of capital structure and governance manner are larger in these lower
classes.
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Table 1 Time lag between the economic and recorded default dates

Day (0, 18] (18, 36] (36, 54] (54, 72] (72, 90]
Number of Firms 24 13 6 5 3

Day (90, 108] (108, 126] (126, 144] (144, 162] (162, 180]
Number of Firms 1 4 4 2 11

5.1 Constant Intensity

In this section, we first present some estimation method for solving the model parame-
ters. We then compare our proposed model with the real data extracted from Guo et al.
(2008). For the real data, Table 1 reports the time difference between the economic and
recorded default date with N = 180 days, extracted from Guo et al. (2008). From the
table, one can easily observe that the density function of the time difference between
the economic and the recorded default time has the “U -shape”property.

Regarding our model, we assume the state process follows the two-state continuous
time Markov chain as in Example 1. Indeed, from Eq. (7), we observe that the density
function of the time difference between the economic and recorded default time is
always convex. In fact, it can be shown easily that

Lemma 2 The density function has the “U-shape” property as long as the following
conditions are satisfied:

(i) 0 ≤ λ2 − e−(λ1+λ2)N/2λ1
(ii) 0 ≤ λ1 − λ2.

We remark that if N is large, then e−(λ1+λ2)N/2 ≈ 0 and therefore essentially the
sufficient condition in the above lemma will become λ2 ≤ λ1. To estimate the model
parameters, we adopt the Maximum Log-likelihood method to estimate the desired
parameter λ1 and λ2 (see Appendix 3), from which we obtain the estimate of the two
parameters: λ1 = 0.3631 and λ2 = 0.0238. We also present the density function of the
time difference between the economic and recorded default time with comparison of
the proposed model (Fig. 1) and the real data. We note that the two-state constant rate
model has the “U -shape property”. However, the restriction in the number of states
and the lack of dynamics in the intensity result in a thinner tail. We investigate the
stochastic intensity in the next subsection.

5.2 Stochastic Intensity

In this example, we assume that the state process of the firm (St )t≥0 follows a two-
state continuous-time Markov chain with stochastic transition rates depending on the
underlying process (Xt )t≥0 as described in previous section. We set the parameters as
follow:

μ1 = −0.52, μ2 = 0, θ = 1, λ = 0.2, X0 = 1, N = 180
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Fig. 1 A comparison of the two-state constant rate model and the real data

and

B =
(

−0.9992 −0.7071

0.0400 −0.7071

)

We then vary the value of parameters κ, γ and σ , and compute the density function of
the time between the recorded and the economic default in Figs. 2, 3 and 4. By setting
parameters as above, the initial state is AX is given by

AX (0) =
(

−0.5000 0.5000

0.0200 −0.0200

)

.

Figure 3 shows that as the jump size increase, which means that the common factor
suffers from a larger jump, the difference of the two default time tends to decrease.
We demonstrate in Fig. 4 that, as the volatility of the common factor decrease, the
difference of the default times increases.

For the two-state stochastic transition rate model, again we present the distribution
of time difference between economic and recorded default in Fig. 5. We assume the
parameters are given by

μ1 = −0.5120, μ2 = 0, θ = 1, λ = 0.2, κ = 1, σ = 9, γ = 3.6, X0 = 1, N = 180
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Fig. 2 Distribution of time lag between economic and recorded default with σ = 5, γ = 0.1 and different κ
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Fig. 3 Distributions of time lag between economic and recorded default with κ = 1, σ = 5 and different γ

and

B =
(−0.9997 −0.7071

0.0246 −0.7071

)

,
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Fig. 4 Distributions of time lag between economic and recorded default with κ = 1, γ = 0.1 and
different σ
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Fig. 5 A comparison of the two-state stochastic rate model and the real data

where the initial state of AX is given by

AX (0) =
(−0.5000 0.5000

0.0120 −0.0120

)

.
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The above set of parameters are obtained by performing a grid search on κ, σ and
γ with the object of minimizing the mean squares of errors. Therefore the two-state
stochastic rate model fits the real data quite well.

6 Concluding Remarks

In this paper, we develop two reduced-form models, constant rate model and stochastic
rate model, for characterizing the economic default time and the recorded default
time. For the two-state constant rate model, maximum likelihood approach can be
employed to estimate the model parameters easily. It can also capture the “U -shape”
property and we have demonstrated this by some real data set. For the stochastic
rate model, we assume the state process follows a continuous-time Markov chain
with stochastic transition rates depending on the macroeconomic common factor. We
derive the probability law of τe and τr which depend on the stochastic transition matrix
PX (s, t). We also present the evaluation of PX (s, t) in different cases. The stochastic
rate model is a generalization of the constant rate model and therefore it can better
fit the real data set. We investigate the probability distribution of the economic and
recorded default time with constant transition rates and also with underlying common
factor following basic affine jump diffusion. Numerical experiments show that our
proposed model can capture the features of empirical data. For our future research,
for the constant rate model, we shall consider a multi-state constant rate model. We
expect the introduction of extra states can help to improve the model and hence better
fit the real data. Regarding two-state stochastic rate model, we applied grid search
method to obtain the model parameters. We shall develop estimation method for the
model parameters in our future research.
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Appendix

Appendix 1: Proof of Proposition 2

We note that Eq. (2) follows from Eq. (1) by using

P(τr = Ni+1 | G∞) = P(τe ∈ (Ni , Ni+1] | G∞).

Eq. (3) follows from Eq. (1) by using

P(τr − τe > t | G∞) =
∞∑

i=0

P(τe ∈ (Ni , Ni+1 − t] | G∞).
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And Eq. (1) follows by

P(τe ∈ (Ni , Ni + t] | G∞)

=
K−1∑

ni =1

P(SN1 �= K , . . . , SNi−1 �= K , SNi = ni | G∞)

×P(τe ∈ (Ni , Ni + t] | SNi = ni ,G∞)

=
K−1∑

ni =1

K−1∑

ni−1=1

. . .

K−1∑

n1=1

P(SN1 = n1, . . . , SNi−1 = ni−1, SNi = ni | G∞)

×PX (Ni , Ni + t)ni ,K exp
{
− ∫ Ni+1

Ni +t λK (Xu)du
}

=
K−1∑

ni=1

K−1∑

ni−1=1

. . .

K−1∑

n1=1

PX (N0, N1)S0,n1 . . . PX (Ni−1, Ni )ni−1,ni PX (Ni , Ni +t)ni ,K

× exp
{
− ∫ Ni+1

Ni +t λK (Xu)du
}

=
⎛

⎝
i−1∏

j=0

P∗∗
X (N j , N j+1) · P∗

X (Ni , Ni + t)

⎞

⎠

S0,K

exp
{
− ∫ Ni+1

Ni +t λK (Xu)du
}
.

Appendix 2.1: Proof of Proposition 3

Proof Eq.s (12) and (13) are obvious and it suffices to show Eq. (11). Now we have

P(τe ∈ (Ni , Ni + t] | G∞)

=
i−1∏

j=0

(

m1 exp

[∫ N j+1

N j

μ1(Xu)du

]

+ m2 exp

[∫ N j+1

N j

μ2(Xu)du

])

×
(

n1 exp

[∫ Ni +t

Ni

μ1(Xu)du

]

+ n2 exp

[∫ Ni +t

Ni

μ2(Xu)du

])

× exp

[∫ Ni+1

Ni +t
p1μ1(Xu)+ p2μ2(Xu)du

]

=
∑

e∈Êi

m̂(e) exp

[∫ Ni+1

N0

μ̂(e, u)du

]

.

Hence

P(τe ∈ (Ni , Ni + t]) =
∑

e∈Êi

m̂(e)E
(

exp

[∫ Ni+1

N0

μ̂(e, u)du

])

. (15)
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For a fixed e ∈ Êi , let

Ri+1(e) = p1μ1 + p2μ2
R j (e) = μe j , j = 0, 1, . . . , i
wi+1(e) = 0
wi (e) = β(N − t; Ri+1(e), wi+1(e))
wi−1(e) = β(t; Ri (e), wi (e))
w j (e) = β(N ; R j+1(e), w j+1(e)), j = 0, 1, . . . , i − 2
vi+1(e) = exp[α(N − t; Ri+1(e), wi+1(e))]
vi (e) = exp[α(t; Ri (e), wi (e))]
v j (e) = exp[α(N ; R j (e), w j (e))], j = 0, 1, . . . , i − 1.

Then we can rewrite μ̂(e, s) as

μ̂(e, s) = 1{s∈[Ni +t,Ni+1)}(Ri+1(e)Xs)+ 1{s∈[Ni ,Ni +t)}(Ri (e)Xs)

+
i−1∑

j=0

1{s∈[N j ,N j+1)}(R j (e)Xs).

Using the iterated expectation and Eq. (10) we obtain

E
(

exp[∫ Ni+1
N0

μ̂(e, u)du]
)

= E
(

exp[∫ Ni +t
N0

μ̂(e, u)du]E(exp[∫ Ni+1
Ni +t Ri+1(e)Xudu] | GNi +t )

)

= vi+1(e)E
(

exp[∫ Ni +t
N0

μ̂(e, u)du] exp[wi (e)X Ni +t ]
)

= vi+1(e)E
(

exp[∫ Ni
N0
μ̂(e, u)du]E(exp[∫ Ni +t

Ni
Ri (e)Xudu + wi (e)X Ni +t ] | GNi )

)

= vi+1(e)vi (e)E
(

exp[∫ Ni
N0
μ̂(e, u)du] exp[wi−1(e)X Ni ]

)

= vi+1(e)vi (e)E
(

exp[∫ Ni−1
N0

μ̂(e, u)du]E(exp[∫ Ni
Ni−1

Ri−1(e)Xudu+wi−1(e)

X Ni ] | GNi−1)
)

= vi+1(e)vi (e)vi−1(e)E
(

exp[∫ Ni−1
N0

μ̂(e, u)du] exp[wi−2(e)X Ni−1 ]
)

=
(∏i+1

j=0 v j (e)
)

exp[β(N ; R0(e), w0(e))X0] (by iteration)

Hence Eq. (11) follows. 	


Appendix 2.2: Proof of Proposition 4

Proof We let

Hi (X0, t) := P(τe ∈ (Ni , Ni + t])
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then by the proof of Proposition 3, for i ≥ 1,

P(τe ∈ (Ni , Ni + t] | FN1) =
(

m1 exp

[∫ N1

N0

μ1(Xu)du

]

+ m2 exp

[∫ N1

N0

μ2(Xu)du

])

Hi−1(X N1 , t)

Hi (X0, t) = E

[(

m1 exp

[∫ N1

N0

μ1(Xu)du

]

+ m2 exp

[∫ N1

N0

μ2(Xu)du

])

Hi−1(X N1 , t)

]

(16)

By Proposition 3, we obtain that

H0(x, t) = a0,1 exp(b0,1x)+ a0,2 exp(b0,2x).

Combining Eqs. (16) and (10), Proposition 4 follows. 	


Appendix 3

Let δ = 18 days, ti = δi, i = 0, 1, . . . , 10. Let Ni denote the number of firms whose
time difference of economic and recorded default date is inside the interval (ti−1, ti ].
Then the log-likelihood function is given by

L(λ1, λ2) =
10∑

i=1

Ni

(
ln
[
(e−λ2ti−1 − e−λ2ti )− e−(λ1+λ2)N (eλ1ti−1 − eλ1ti )

]

− ln
[
1 − e−(λ1+λ2)N

])

By setting

⎧
⎪⎨

⎪⎩

∂L(λ1, λ2)

∂λ1
= 0

∂L(λ1, λ2)

∂λ2
= 0,

we have two nonlinear equations for λ1 and λ2. Solving these equations numerically
yields λ1 = 0.3631 and λ2 = 0.0238.
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