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Abstract

In this paper we discuss the dynamic equilibrium of market marking with price competition and

incomplete information. The arrival of market sell/buy orders follows a pure jump process with

intensity depending on bid/ask spreads among market makers and having a looping countermono-

tonic structure. We solve the problem with the non-zero-sum stochastic differential game approach

and characterize the equilibrium value function with a coupled system of Hamilton-Jacobi nonlinear

ordinary differential equations. We prove, do not assume a priori, that the generalized Issac’s condi-

tion is satisfied, which ensures the existence and uniqueness of Nash equilibrium. We also perform

some numerical tests that show our model produces tighter bid/ask spreads than those derived us-

ing a benchmark model without price competition, which indicates the market liquidity would be

enhanced in the presence of price competition of market makers.

Keywords: dynamic equilibrium, market making, price competition, non-zero-sum stochastic differ-

ential game, generalized Issac’s condition.
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1 Introduction

Market makers play an important role in providing liquidity for other market participants. They keep

quoting bid and ask prices at which they stand ready to buy and sell for a wide variety of assets

simultaneously. One of the key challenges faced by market makers is to manage inventory risk. Market

makers need to decide bid/ask prices which influence both their profit margins and accumulation of

inventory. Many market makers compete for market order flows as their profits come from the bid/ask

spread of each transaction. Traders choose to buy/sell at the most competitive prices offered in the

market. Hence market makers face a complex optimization problem. In this paper, we model market

making for a single asset with price competition as a non-zero-sum stochastic differential game.

There has been active research on optimal market making in the literature with focus on inventory

risk management. Stochastic control and Hamilton-Jacobi-Bellman (HJB) equation, a nonlinear partial
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differential equation (PDE), are used to derive the optimal bid/ask spread. Ho and Stoll (1981) give the

first prototype model for the market making problem. Avellaneda and Stoikov (2008) propose a basic

trading model in which the asset mid-price follows a Brownian motion, market buy/sell order arrivals

follow a Poisson process with exponentially decreasing intensity function of bid/ask spread, and market

makers optimally set the bid/ask spread to maximize the expected utility of the terminal wealth.

Guéant et al. (2013) discuss a quote driven market and include the inventory penalty for terminal

utility maximization. Guéant (2017) extends the model in Guéant et al. (2013) to a general intensity

function and reduces the dimensionality of the HJB equation for CARA utility. Cartea and Jaimungal

(2015) consider the market impact and capture the clustering effect of market order arrivals with a

self-exciting process driven by informative market orders and news events, and solve the HJB equation

by an asymptotic method. Cartea et al. (2017) study the model uncertainty, similar to Avellaneda and

Stoikov (2008); Guéant et al. (2013), except for the self-exciting feature of market order arrivals. Fodra

and Pham (2015) divide the market orders depending on the size which may bump up the mid-price

that follows a Markov renewal process. Abergel et al. (2020) discusses a pure jump model for optimal

market making on the limit order book with the Markov decision process technique conditioned on the

jump time clock.

One common feature in the aforementioned papers is that market order arrivals follow a Poison

process with controlled intensity. The probability that a market maker buys/sells a security at the

bid/ask price she quotes is a function of her own bid/ask spread only. This setting provides tractability,

but ignores the influence of prices offered by other market makers. The price competition between

market makers in practice is an important trading factor and needs to be integrated in the model.

Kyle adopts the game theoretic approach in a number of papers Kyle (1984, 1985, 1989) to study the

price competition between market participants of informed traders, noisy traders and market makers,

and finds the equilibrium explicitly and shows its impact on price formation and market liquidity. To

the best knowledge of the authors there are no known results in the literature on price competition

between market makers who keep trading to profit from bid/ask spread while minimize inventory risk

and improve market liquidity. The primary motivation of this paper is to fill this gap. Market making

with price competition is the key difference of our model to that of Guéant et al. (2013) and others

in the literature. The standard optimal stochastic control is not applicable to our model due to the

looping dependence structure and the equilibrium control is used instead to solve the problem.

The main contributions of this paper is the following: Firstly, we discuss price competition be-

tween market makers in a continuous time setting with inventory constraints and incomplete market

information of competitors’ inventory, and extend the classical optimal market making framework in

Avellaneda and Stoikov (2008) with the game theoretic approach. Secondly, we prove the existence and

uniqueness of Nash equilibrium for the game under linear quadratic payoff and prove the generalized

Issac’s condition is satisfied for a system of nonlinear ordinary differential equations (ODEs), rather

than assuming it to hold a priori or solving it explicitly as in the most literature, see Hamadene et al.

(1997); Buckdahn et al. (2004); Bensoussan et al. (2014); Lin (2015). Thirdly, we perform some nu-

merical tests to compute the equilibrium value function and equilibrium controls (bid/ask spreads) and

compare results with those from a benchmark model without price competition, and we find our model

reduces the bid/ask spread and improves the asset liquidity in the market considerably.

The rest of the paper is organized as follows. In Section 2 we introduce the model setup and

notations. In Section 3 we state the main results on the existence and uniqueness of Nash equilibrium,

the generalized Issac’s condition, and the verification theorem for the equilibrium value function. In

Section 4 we perform numerical tests to show the impact of price competition and compare the results

with a benchmark model without price competition. In Section 5 we prove the main results (Theorems

3.3 and 3.4). Section 6 concludes.
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2 Model

Consider a market in a probability space (Ω,F , P ) with homogeneous market makers in a set Ωmm.

Choose one of them as a reference market maker, whose states include time variable t ∈ [0, T ], asset

reference price St, cash position Xt and the inventory position qt. St is public information known to all

market makers, whereas Xt and qt are each market maker’s private information. The reference asset

price St is assumed to follow a Gaussian process

dSt = σdWt,

where W is a standard Brownian motion adapted to the filtration {Ft}t∈R+ , generated by W and

augmented with all P -null sets, and σ is a constant representing asset volatility. The terminal time T

is small, normally a day, the probability that St becomes negative is negligible and we may assume St
is always positive. Market makers do not buy/sell the asset at the reference price, but at bid and ask

prices, and make profit from the bid/ask spread. Denote by a a buying order and b a selling order. The

reference market maker’s bid price Sbt and ask price Sat are given by

Sbt = St − δbt , Sat = St + δat ,

where δbt and δat are the bid and ask spreads controlled by the reference market maker.

At time t, other market makers also quote bid and ask prices simultaneously to compete with the

reference market maker. Among their quotes there exist a lowest ask price and a highest bid price,

which are the most competitive prices other than reference market maker’s prices. Denote by ka the

market maker who provides the lowest ask price Saka,t
, and kb the market maker who provides the

highest bid price Sbkb,t
, in other words, δbkb,t

and δaka,t
are the lowest bid and ask spreads among the

reference market maker’s competitors.

Traders tend to sell/buy at the most competitive bid/ask price, but may accept less competitive

prices due to other factors such as liquidation of large quantities. From the reference market maker’s

perspective, the arrival of buying/selling orders is unpredictable, but the intensities depend on both her

bid/ask spreads and the most competitive ones. The lower her bid/ask spreads to the most competitive

ones, the more likely they are to be hit by traders. Hence the arrival intensity is decreasing in terms of

her spread and increasing in the most competitive spread. The arrival of selling market order N b
t and

that of buying market order Na
t are Poisson processes with controlled intensities λbt and λat , defined by

λat = f(δat , δ
a
ka,t), λbt = f(δbt , δ

b
kb,t

),

where f is the intensity function. Denote by f ′1 the first order partial derivative of f to its first variable,

f ′′11 the second order partial derivative of f to its first variable, etc.

Assumption 2.1. Assume f is twice continuously differentiable and for all δ, x, y ∈ R, f(δ, x) > 0,

f ′1(δ, x) < 0, f ′2(δ, x) ≥ 0, limδ→+∞−
f ′1(δ,δ)
f(δ,δ) > 0, and

f(δ, x)f ′′11(δ, y)− 2f ′1(δ, x)f ′1(δ, y) + |f ′1(δ, x)f ′2(δ, y)− f ′′12(δ, y)f(δ, x)| < 0. (2.1)

Furthermore, assume there exists a twice continuously differentiable function λ : R → R such that

f(δ, x) ≤ λ(δ) for all x ∈ R, limδ→+∞ λ(δ)δ = 0 and λ(δ)λ′′(δ) < 2(λ′(δ))2.

Some conditions in Assumption 2.1 are technical and needed in the proof. Many functions satisfy

these conditions, for example, f(δ, x) = λ(δ)g(x), where λ is the one in Assumption 2.1 with negative

first order derivative and limδ→+∞−λ′(δ)
λ(δ) > 0, and g is increasing, positive and bounded. Here is

another example:

f(δ, x) :=
Λe−aδ√

1 + 3ek(δ−x)
, (2.2)
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where Λ is the magnitude of market order arrival rate, a the decay rate, k the dependence rate of

the difference between reference market maker’s price and the most competitive price in the market

with a ≥
√

2
2 k > 0. It is easy to check that f satisfies all conditions in Assumption 2.1. Some simple

functions may not satisfy Assumption 2.1. For example, a constant function is excluded, if it were

allowed, it would imply the size of bid/ask spread does not affect the arrival rate for market makers,

clearly unrealistic.

We assume there is an inventory position constraint for all market makers. Let Q = {−Q, · · · , Q}
be a finite set of integers with Q and −Q the maximum and minimum positions a market maker may

hold and qt ∈ Q. When qt = Q (or −Q), market maker can not buy (or sell) any more. Denote by Ib

and Ia the indicator functions of market maker’s buying or selling capability:

Ib(q) := 1{q+1∈Q}, Ia(q) := 1{q−1∈Q},

where 1A is an indicator that equals 1 if A is true and 0 if A is false. When market maker’s bid price

is hit by a market order (N b
t increases by 1), her inventory qt increases by 1 and she pays Sbt for buying

the asset. Similarly, when market maker’s ask price is hit by a market order (Na
t increases by 1), her

inventory qt decreases by 1 and she receives Sat for selling the asset. The dynamics of cash Xt and

inventory qt are given by
dXt = Sat I

a(qt)dN
a
t − Sbt Ib(qt)dN b

t

dqt = Ib(qt)dN
b
t − Ia(qt)dNa

t

with the initial condition (X0, q0) = (x, q) ∈ R×Q.

The reference market maker does not have complete information on the whole market. Denote

by (xkb ,qkb) and (xka ,qka) the states of market makers kb and ka, respectively. They are random

variables from the reference market maker’s perspective, as her competitors’ states are not public

information. The reference market maker can only deduce the probability distribution for both (xkb ,qkb)

and (xka ,qka) based on available public information. We assume their probability distributions are

known and time-invariant. They are Pb for (xkb ,qkb) and Pa for (xka ,qka). This incomplete information

assumption is a reasonable approximation of real market. We next use a heuristic example to illustrate

the incomplete information setting and Pa and Pb.

Example 2.2. Consider at time t there are 3 market makers quoting in the market including the ref-

erence market maker. Their potential states, corresponding probability and bid/ask spread are assumed

by following table.

x q Probability Bid spread Ask spread

0 −1 1
3 10 bps 50 bps

0 0 1
3 30 bps 30 bps

0 1 1
3 50 bps 10 bps

For simplicity we assume they all have same cash position x = 0 and there are only three inventory

possibilities q = −1, 0, 1. Assume uniform probability on q = −1, 0, 1. When q = −1, market maker

will prefer to buy than sell. Hence they will quote lower bid spread 10bps and higher ask spread 50bps.

For q = 1, it is the opposite. Denote the inventory of the reference market maker’s two competitors as

q1 and q2. We can calculate Pa as

Pa(0,−1) = P (q1 = −1)P (q2 = −1) =
1

9

Pa(0, 0) = P (q1 = −1)P (q2 = 0) + P (q1 = 0)P (q2 = −1) + P (q1 = 0)P (q2 = 0) =
1

3

Pa(0, 1) = 1− (Pa(0,−1) + Pa(0, 0)) =
5

9
.
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Take Pa(0,−1) as an example. It is the probability that market maker among the two that quotes the

lowest ask spread has inventory −1, which implies both market makers have inventory q1 = q2 = −1

as otherwise a lower ask spread 30 bps or 10 bps would be quoted if one of them had inventory 0 or 1.

Other values for Pa and Pb can be calculated similarly.

We assume market makers take closed loop feedback strategies that are deterministic functions of

state variables at time t, that is, there exist functions δa and δb such that bid/ask spreads of market

maker are given by

δat = δa(t, S, x, q), δbt = δb(t, S, x, q).

Denote by Aa and Ab the sets of all δa and δb that are lower bounded square integrable measurable

functions, δ := (δb, δa) ∈ Ab × Aa reference market maker’s strategy, ~δΩ := {δm,m ∈ Ωmm} the

collection of all market makers’ strategies, so reference market maker’s strategy δ ∈ ~δΩ. Using the

game theory convention, we may label the reference market maker as 0 and ~δ−0 the set of strategies of

all other market makers in Ωmm except the reference market maker, i.e., ~δ−0 := {δm,m 6= 0,m ∈ Ωmm}.
As everyone else in Ωmm can be reference market maker’s competitor when a market order arrives,

their strategies influence her expected market order arrival intensity. Reference market maker’s cash

and inventory are determined by her own strategy δ as well as those in the set ~δ−0. Starting at time

t ∈ [0, T ] with initial asset price S, cash x and inventory q, the reference market maker wants to

maximize the following payoff function:

J(δ, ~δ−0, t, S, x, q) = Et[XT + qTST − l(|qT |)−
1

2
γσ2

∫ T

t
(qs)

2ds], (2.3)

where Et is the conditional expectation operator given St = S, Xt = x and qt = q. The reference market

maker wants to maximize the expected value of terminal wealth while penalizes the holding inventory at

terminal time T and throughout the time interval [0, T ] with γ a positive constant representing the risk

adverse level and l an increasing convex function on R+ with l(0) = 0, denoting the liquidity penalty

for holding inventory at T . Due to the circular dependence nature among market makers and their

strategies, we use a game theoretic approach to solve the problem. We next define the Nash equilibrium.

Definition 2.3. We call the Nash equilibrium exists for a game Gmm if there exists an equilibrium

control profile ~δ∗Ω = {δ∗m,m ∈ Ωmm}, such that for every reference player 0 in Ωmm, given her strategy

δ∗ ∈ ~δ∗Ω and other players’ strategy set ~δ∗−0, her payoff satisfies the following equilibrium condition:

J(δ∗, ~δ∗−0, t, S, x, q) = max
δ∈Ab×Aa

J(δ, ~δ∗−0, t, S, x, q). (2.4)

Moreover, the reference market maker’s equilibrium control is δ∗ and the equilibrium value function is

V (t, S, x, q) := J(δ∗, ~δ∗−0, t, S, x, q). (2.5)

3 Main Results

In this section, we prove the existence and uniqueness of Nash equilibrium for Gmm when price compe-

tition is in place. We first reduce the model’s dimension by ansatz, then characterize the equilibrium

value function by a system of nonlinear ODEs, and prove the verification theorem, finally show the

existence and uniqueness of Nash equilibrium by an equivalent ODE system.

Writing the integral form of XT and qT in payoff function (2.3) with Ito’s lemma, we can simplify

the equilibrium value function V as

V (t, S, x, q) = x+ qS + θq(t), (3.1)
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where θq : [0, T ]→ R is defined by

θq(t) = sup
δ∈Ab×Aa

Et[
∫ T

t
[δasf(δas , δ

a
ka,s) + δbsf(δbs, δ

b
kb,s

)− 1

2
γσ2q2

s ]ds− l(|qT |)] (3.2)

with Et being the conditional expectation operator given qt = q. Since process qt takes value in a finite

set Q, it is a Markov chain with M = 2Q+ 1 states. Hence game Gmm is reduced to a continuous time

finite state stochastic game. Define a function θ : [0, T ]→ RM as

θ(t) = (θ−Q(t), · · · , θQ(t)). (3.3)

The equilibrium bid/ask spreads only depend on state qt at time t. As market makers are homogeneous,

under equilibrium at time t, any two market makers with the same state q quote the same bid/ask

spread, denoted by πbq(t) and πaq (t) respectively. Note that πbq(t) exists for every q ∈ Q except q = Q

when market maker reaches the maximum inventory and stops quoting bid price. πaq (t) is similarly

defined. We can define the equilibrium control as

πa(t) = (πa−Q+1(t), · · · , πaQ(t)), πb(t) = (πb−Q(t), · · · , πbQ−1(t)).

The market maker’s equilibrium control δ∗ = ((δa)∗, (δb)∗) is given by

(δa)∗(t, S, x, q) = πaq (t), (δb)∗(t, S, x, q) = πbq(t). (3.4)

When market order arrives at time t, the reference market maker expects her most competitive market

maker in bid side to have inventory q with probability P bq and in ask side P aq . As there are only finite

number of states, the most competitive market maker’s state probability is given by:

P a = (P a−Q+1, · · · , P aQ), P b = (P b−Q, · · · , P bQ−1).

Market makers with inventory on boundary values do not quote in the market, so P a−Q = P bQ = 0.

We next provide a characterization for the value function θ and the equilibrium controls πa, πb.

Applying the dynamic programming principle, we get the following Hamilton Jacobi ODE system:

θ′q(t) =
1

2
γσ2q2 − sup

δ
ηa(θ(t), δ, πa(t), q)Ia(q)− sup

δ
ηb(θ(t), δ, πb(t), q)Ib(q)

θq(T ) = −l(|q|)
πaq (t) ∈ argsup

δ
ηa(θ(t), δ, πa(t), q), ∀q ∈ {−Q+ 1, · · · , Q}

πbq(t) ∈ argsup
δ

ηb(θ(t), δ, πb(t), q), ∀q ∈ {−Q, · · · , Q− 1},

(3.5)

where ηa, ηb : RM × R × RM−1 × Q → R are defined by vectors µ = (µ−Q, · · · , µQ) ∈ RM , ξa =

(ξa−Q+1, · · · , ξaQ) or ξb = (ξb−Q, · · · , ξbQ−1) as

ηa(µ, δ, ξa, q) :=

Q∑
j=−Q+1

P aj f(δ, ξaj )(δ + µq−1 − µq)

ηb(µ, δ, ξb, q) :=

Q−1∑
j=−Q

P bj f(δ, ξbj)(δ + µq+1 − µq).

(3.6)

Note that
∑Q

j=−Q+1 P
a
j f(δ, πaj (t)) and

∑Q−1
j=−Q P

b
j f(δ, πbj(t)) are reference market maker’s expected in-

tensity of buying/selling market order arrival when her spread is δ and other market makers take the

equilibrium control. We can now characterize the Nash equilibrium.
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Theorem 3.1. Assume the Nash equilibrium of the game Gmm exists. Then the equilibrium value

function V can be decomposed as (3.1) with function θ. Equilibrium control δ∗ can be written as (3.4)

with two vectors πa(t) and πb(t). Moreover, θ, πa(t) and πb(t) satisfy the ODE system in (3.5).

The equilibrium condition for πa(t) and πb(t) in (3.5) leads to the following generalized Issac’s con-

dition, which is also defined in Cohen and Fedyashov (2017) to ensure the existence of Nash equilibrium

for non-zero-sum stochastic differential game and a natural extension of the standard Issac’s condition

in the zero-sum game to the non-zero-sum game.

Definition 3.2. We call the generalized Issac’s condition holds if there exist functions wa, wb : RM →
RM−1 such that for any vector µ ∈ RM ,

ηa(µ,waq (µ), wa(µ), q) = sup
δ
ηa(µ, δ, wa(µ), q), ∀q ∈ {−Q+ 1, · · · , Q}

ηb(µ,wbq(µ), wb(µ), q) = sup
δ
ηb(µ, δ, wb(µ), q), ∀q ∈ {−Q, · · · , Q− 1},

(3.7)

where waq , w
b
q : RM → R and wa, wb are defined by

wa(µ) := (wa−Q+1(µ), · · · , waQ(µ)), wb(µ) := (wb−Q(µ), · · · , wbQ−1(µ)).

If the generalized Issac’s condition is satisfied, we can substitute the function wa, wb into operators

ηa, ηb, and the system (3.5) is reduced to the following ODE system:

θ′q(t) =
1

2
γσ2q2 − ηa(θ(t), waq (θ(t)), wa(θ(t)), q)Ia(q)− ηb(θ(t), wbq(θ(t)), wb(θ(t)), q)Ib(q)

θq(T ) = −l(|q|).
(3.8)

We next state the verification theorem.

Theorem 3.3. Assume that f satisfies Assumption 2.1, that there exist bounded strategies πa, πb and

function θ on [0, T ] satisfying the system (3.5). Then the Nash equilibrium of the game Gmm exists.

The equilibrium value function is given by (3.1) and the equilibrium control by (3.4).

From Theorems 3.1 and 3.3 we know the existence and uniqueness of Nash equilibrium for game

Gmm are equivalent to the existence and uniqueness of equilibrium controls πa, πb and function θ that

satisfy the ODE system (3.5). We now state the main result of the paper.

Theorem 3.4. Assume f satisfies Assumption 2.1. Then there exists a unique Nash equilibrium for

game Gmm. Specifically, there exist unique locally Lipschitz continuous functions wa, wb that satisfy the

generalized Issac’s condition in Definition 3.2, and there exists unique classical solution θ to the ODE

system (3.8), such that the equilibrium value function is given by (3.1) and the equilibrium controls by

πa(t) = wa(θ(t)), πb(t) = wb(θ(t)), t ∈ [0, T ]. (3.9)

4 Numerical Test

In this section, we numerically find the Nash equilibrium value function and bid/ask spread when there

is price competition with the intensity f defined in (2.2) and compare the numerical results with those

derived using a benchmark model in Guéant (2017) without price competition and with the intensity

f̃(δ) := 0.5Λe−aδ and the liquidity penalty l(q) := 0.1q2. To make two models comparable, we define

parameters for f and f̃ in a way that when every market maker provides the same bid/ask spread, the

intensity of market order arrivals is the same in both cases, which gives 0.5Λ in the definition of f̃ . The

parameters of both models are set as follows:
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S σ (daily) γ k a Λ T (day) N Q

20.0 0.01 1.0 2.0 2.0 60.0 1.0 100 10

Here S is the initial asset value, N the number of time steps in discretization, T the period of one day,

σ the daily volatility, a and Λ used in intensity functions, γ inventory penalty coefficient, and Q the

inventory maximum capacity. Furthermore, probabilities of the most competitive market makers’ state

P a and P b are assumed to be given by (see Example 2.2 for explanation of P a and P b)

P a−10 = P b10 = 0

P a0 = P b0 = 0.2

P a1 = P b−1 = 0.4

P a2 = P b−2 = 0.3

P aq = 1/170, q 6= −10, 0, 1, 2

P bq = 1/170, q 6= 10, 0,−1,−2.

Figures 1 and 2 plot the equilibrium bid/ask spreads of both models at time 0.5. We note that higher

inventory leads to lower ask spread but higher bid spread, indicating the preference of market makers to

sell rather than to buy in order to remain inventory neutral, and that the equilibrium bid/ask spreads

of our model are tighter than those of the benchmark model, indicating improved market liquidity.

Figure 1: Ask spread strategy profile at time 0.5 Figure 2: Bid spread strategy profile at time 0.5

Figure 3 plots the equilibrium ask spreads with different inventory levels on [0, T ]. Market makers

with positive inventory are more willing to sell and clear their positions due to the liquidity punishment

at terminal time T , and this willingness increases as time nears T as the equilibrium ask spread is

decreasing when t tends to T . For market makers with negative inventory, it is opposite. This explains

empirical facts that trading volume increases at the end of the day.
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Figure 3: Equilibrium Ask Spread for Competi-

tion Model

Figure 4: Intensity v.s ask quote at time 0.5

Figure 4 plots the expected intensity functions in terms of bid/ask spread at time 0.5, which are

given by Gb(δ) = f̃(δ) for the benchmark model and G(δ) =
∑Q

j=−Q+1 P
a
j f(δ, πaj (t)) for our model,

respectively. The one from our model is derived endogenously from equilibrium, while the one assumed

by the benchmark model comes from Avellaneda and Stoikov (2008) in which the distribution of of

market order size and the statistics of the market impact are used. When price competition is in place,

the market order arrival intensity decays faster, indicating that when price competition is in place

but market maker assumes there were not, they would tend to overestimate the market order arrival

intensity and quote higher bid/ask spreads.

Figure 5: Value function θ at time 0.1 Figure 6: Value function θ at time 0.9

Figures 5 and 6 plot the equilibrium value function θ near the starting time 0 and the terminal time

T , respectively. We note that θ with price competition takes lower value than the one without at time

0.1 but performs better at time 0.9, especially when there are still large inventories to be liquidated,

as market makers of the benchmark model overestimate the arrival intensity, which results in higher

spreads and worse performance.

In summary, when price competition between market makers is in place, market maker tends to

quote tighter bid/ask spreads and the market has better liquidity and lower transaction cost. However,

the profit of market maker is reduced. The value function is lower when there is competition between

market makers.
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5 Proofs of Theorems 3.3 and 3.4

5.1 Proof of Theorem 3.3

Proof. To verify that (~δΩ)∗ is the equilibrium control profile and V is the equilibrium value function,

it is sufficient to check that they satisfy the equilibrium condition in (2.4). For any market maker in

Ωmm, given other market makers’ strategies in (~δΩ)∗ and any admissible strategy δ we should prove:

J(δ, (~δ−0)∗, t, S, x, q) ≤ J((δ)∗, (~δ−0)∗, t, S, x, q) = V (t, S, x, q).

Assume the reference market maker takes the arbitrary strategy δ, while every other market maker

decides his/her bid/ask spread by (δa)∗(t, St, Xt, qt) = πaqt(t) and (δb)∗(t, St, Xt, qt) = πbqt(t). Denote

reference market maker’s cash position at any time t as X∗,δt , while their inventory is q∗,δt . Then for

any time t ∈ [0, T ], by the ansatz (3.1) and Itô’s lemma with respect to function θ, we get following.

V (T, ST , X
∗,δ
T , q∗,δT ) = X∗,δT + q∗,δT ST + θ

q∗,δT
(T ) = x+ qS + θq(t)

+

∫ T

t
δbuI

b(q∗,δu )dN b
u +

∫ T

t
δauI

a(q∗,δu )dNa
u +

∫ T

t
q∗,δu dSu +

∫ T

t
θ′
q∗,δu

(u)du

+

∫ T

t
(θ
q∗,δu +1

(u)− θ
q∗,δu

(u))Ib(q∗,δu )dN b
u +

∫ T

t
(θ
q∗,δu −1

(u)− θ
q∗,δu

(u))Ia(q∗,δu )dNa
u .

(5.1)

As q∗,δu takes value in finite set Q, and the solution for ODE exists on compact set [0, T ], we know

both θq(u) and θ′q(u) are uniformly bounded on [0, T ] for all q ∈ Q and:

E[

∫ T

t
(q∗,δu )2du] < +∞, E[

∫ T

t
(θ′
q∗,δu

(u))2du] < +∞.

Moreover, from assumption that f(δ, x) ≤ λ(δ) for all x, we have admissible control satisfies (see Guéant

(2017, page 16)):

E[

Q∑
j=−Q+1

P aj

∫ T

t
f(δau, π

a
j (t))Ia(q∗,δu )|δau + θ

q∗,δu −1
(u)− θ

q∗,δu
(u)|du] < +∞

E[

Q−1∑
j=−Q

P bj

∫ T

t
f(δbu, π

b
j(t))I

b(q∗,δu )|δbu + θ
q∗,δu +1

(u)− θ
q∗,δu

(u)|du] < +∞.

Take expectation on both side of (5.1), we have:

E[V (T, ST , X
∗,δ
T , q∗,δT )] = V (t, S, x, q) + E[

∫ T

t
θ′
q∗,δu

(u)du]

+ E[

∫ T

t
ηa(θ(u), δau, π

a(u), q∗,δu )Ia(q∗,δu )du] + E[

∫ T

t
ηb(θ(u), δbu, π

b(u), q∗,δu )Ib(q∗,δu )du].

where ηa and ηb are defined in (3.6). Hence we have:

E[V (T, ST , X
∗,δ
T , q∗,δT )] ≤ V (t, S, x, q) + E[

∫ T

t
θ′
q∗,δu

(u)du]

+ E[

∫ T

t
sup
δau

ηa(θ(u), δau, π
a(u), q∗,δu )Ia(q∗,δu )du] + E[

∫ T

t
sup
δbu

ηb(θ(u), δbu, π
b(u), q∗,δu )Ib(q∗,δu )du].

(5.2)

As θ satisfies ODE system (3.5) for every u ∈ [0, T ]. We substitute it into the corresponding part in

(5.2) and have following.

J(δ, (~δ−0)∗, t, S, x, q) = E[V (T, ST , X
∗,δ
T , q∗,δT )− 1

2
γσ2

∫ T

t
(q∗,δu )2du] ≤ V (t, S, x, q).

10



On the other hand, if the reference market maker also takes equilibrium control, her cash position

and inventory are denoted by X∗t and q∗t respectively. And we have following.

ηa(θ(t), πaq (t), πa(t), q) = sup
δ
ηa(θ(t), δ, πa(t), q), ηb(θ(t), πbq(t), π

b(t), q) = sup
δ
ηb(θ(t), δ, πb(t), q).

Substituting the equilibrium control defined in (3.4) to (5.2) can conclude the proof as following:

J((δ)∗, (~δ−0)∗, t, S, x, q) = E[V (T, ST , X
∗
T , q
∗
T )− 1

2
γσ2

∫ T

t
(q∗u)2du] = V (t, S, x, q) ≥ J(δ, (~δ−0)∗, t, S, x, q).

5.2 Proof of Theorem 3.4

The proof of Theorem 3.4 is made of three steps:

1. There exist functions wa, wb such that for any vector µ ∈ RM , wa(µ) and wb(µ) satisfy equation

(3.7).

2. wa and wb are unique and locally Lipschitz continuous, which guarantees RHS of the ODE system

(3.8) are also locally Lipschitz continuous.

3. There exists unique classical solution to ODE system (3.8).

The key step for proving Steps 1 and 2 is to characterize the vectors wa(µ) and wb(µ) by the first

order condition of Hamiltonian. They are the solutions to some equation system. Then we can prove

step 1 and 2 by discussing the zero point for the equation system. The key step for proving Step 3 is to

obtain upper bound estimation for θ. It can be done by showing θ is also a solution to another system

of ODE, which admits the comparison principle, and hence upper bound for its solution. Without

confusion of notations, we write wa(µ) and wb(µ) as,

wa(µ) = wa = (wa−Q+1, · · · , waQ), wb(µ) = wb = (wb−Q, · · · , wbQ−1).

5.2.1 Proof of Step 1

We first show that wa and wb satisfy the equilibrium condition of the Hamiltonian system. We provide

some preliminary results for the existence and uniqueness of the maximum point for Hamiltonian

Gaq(δ) := ηa(µ, δ, w, q) given any vector µ ∈ RM and w ∈ RM−1. We can define Gbq(δ) and prove the

same result similarly.

Lemma 5.1. Assume intensity function f satisfies all the assumptions in Theorem 2.1. Then given any

vectors w = (w−Q+1, · · · , wQ) ∈ RM−1 and µ, the maximum point exists and is unique for function Gaq
when q = −Q+ 1, · · · , Q. Furthermore, the maximum point of Gaq(δ) satisfies the first order condition:

dGaq(δ)

dδ
= 0.

Proof. Given any vector µ and w, the expected intensity function d is defined by

d(δ) :=

Q∑
j=−Q+1

P aj2f(δ, wj).

From Assumption 2.1, we know for any δ, x and y:

f(δ, x)f ′′11(δ, y) + f(δ, y)f ′′11(δ, x) < 4f ′1(δ, x)f ′1(δ, y). (5.3)
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Simple calculation shows

d(δ)d′′(δ) < 2(d′(δ))2,

which implies δ+µq−1−µq +d(δ)/d′(δ) is a strictly increasing function of δ. Combining with d′(δ) < 0,

we conclude that there exists a unique δ∗ such that
dGa

q (δ∗)

dδ = 0 and Gaq(δ) is strictly increasing for

δ < δ∗ and strictly decreasing for δ > δ∗, that is, δ∗ is the unique global maximum point of Gaq .

Step 1 is equivalent to following theorem, which proves that the generalized Issac’s condition in

Definition 3.2 holds for any vector µ ∈ RM . We only focus on wa, as the proof of wb is similar.

Theorem 5.2. Assume the intensity function f satisfies Assumption 2.1. Then for any fixed vector

µ = (µ−Q, · · · , µQ) ∈ RM , there exists vector wa = (wa−Q+1, · · · , waQ) such that for q = −Q+ 1, · · · , Q,

waq = argmax
δ
{ηa(µ, δ, wa, q)}. (5.4)

Define a mapping T : RM−1 → RM−1 as

Tq(w) = argmax
δ∈R

{ηa(µ, δ, w, q)}, ∀q ∈ {−Q+ 1, · · · , Q}

T (w) := (T−Q+1(w), · · · , TQ(w)),
(5.5)

(5.4) is equivalent to wa = T (wa), namely, wa is a fixed point of mapping T . We need the following

Schauder Fixed Point Theorem to prove the existence of wa.

Theorem 5.3 (Schauder). If K is a nonempty convex closed subset of a Hausdorff topological vector

space V and T is a continuous mapping of K into itself such that T (K) is contained in a compact subset

of K, then T has a fixed point.

To apply Theorem5.3, we need to show the existence of K and the continuity of T . The next lemma

confirms the first requirement.

Lemma 5.4. Given any vector µ = (µ−Q · · · , µQ) ∈ RM and mapping T defined in (5.5), there exists

a nonempty convex compact set K ⊂ RM−1 such that T (K) ⊂ K.

Proof. Firstly, for any vector w ∈ RM−1, define ~y = (y−Q+1, · · · , yQ) = T (w). There exist a uniform

δmin ∈ R such that for every q,

yq ≥ δmin. (5.6)

We can prove by contradiction. Assume there were no lower bound for yq. Define Gaq(δ) =

ηa(µ, δ, y, q) for q = −Q+ 1, · · · , Q, we know

yq = argmax
δ
{Gaq(δ)}.

Denote the uniform upper bound and lower bound of µq−1 − µq among all q ∈ Q as Md and md. We

have

yq > −Md.

Otherwise, Gaq(yq) < 0 and contradicts with the fact that δ > −md, G
a
q(δ) > 0 and yq = argmaxδ{Gaq(δ)}.

Hence we can conclude that

yq ≥ δmin := −Mp.

Secondly, for any vector w ∈ [δmin,+∞)M−1, define ~y = (y−Q+1, · · · , yQ) = T (w). There exists a

uniform δmax ∈ R such that for every q,

yq ≤ δmax. (5.7)
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Define δ0 := −md + 1. By definition of md, for every q we have

δ0 + µq−1 − µq ≥ 1 > 0.

Hence for every q ∈ Q, Gaq(δ0) > 0. Moreover, as f is increasing to its second argument, for any vector

w ∈ [δmin,+∞)M−1, we have:

Gaq(δ0) ≥
Q∑

j=−Q+1

P aj f(δ0, δmin). (5.8)

By assumption limδ→+∞ λ(δ)δ = 0, there exists δmax > δ0 such that

max
q
{

Q∑
j=−Q+1

P aj λ(δmax)(δmax + µq−1 − µq)} <
Q∑

j=−Q+1

P aj f(δ0, δmin). (5.9)

As f(δmax, ·) is bounded by λ(δmax) uniformly, (5.8) and (5.9) imply that for any vector w ∈ [δmin,+∞)M−1,

max
q
Gaq(δmax) < Gaq(δ0).

Since δmax > δ0 and Gaq(δmax) < Gaq(δ0), we know that the maximum point δ∗ of Gaq cannot be in the

interval (δmax,∞) as it would otherwise be a contradiction to Gaq(δ) being a strictly increasing function

of δ for δ < δ∗. Hence for any q ∈ Q,

yq ∈ [δmin, δmax],

which shows T (K) ⊂ K, where K = [δmin, δmax]M−1.

To prove T is a continuous mapping, we need the following Berge Maximum Theorem.

Theorem 5.5 (Berge). Let X and Θ be metric spaces, f : X×Θ→ R be a function jointly continuous

in its two arguments, and C : Θ→ X be a compact-valued correspondence. For x in X and θ in Θ, let

f∗(θ) = max{f(x, θ)|x ∈ C(θ)},

and

x∗(θ) = arg max{f(x, θ)|x ∈ C(θ)} = {x ∈ C(θ) | f(x, θ) = f∗(θ)}.

If C is continuous at some θ, then f∗ is continuous at θ and x∗ is non-empty, compact-valued, and

upper hemicontinuous at θ, that is, if θn → θ and bn → b as n→∞ with bn ∈ x∗(θn), then b ∈ x∗(θ).

The next lemma shows that any single valued, bounded, upper hemicontinuous mapping is a con-

tinuous function.

Lemma 5.6. Let A,B be two Euclidean spaces, Γ : A → B be a single-valued, bounded and upper

hemicontinuous mapping, then Γ is a continuous function.

Proof. For any sequence an → a and bn = Γ(an) (Γ is a single-valued mapping), if bn tends to a limit

b, then we must have b = Γ(a) by the hemicontinuity of Γ and we are done. Assume the sequence bn
did not have a limit. Since bn is a bounded sequence, there exist at least two subsequences bnk

and bn′k
that converge to two different values b and b′. Since an → a, we must have both ank

and an′k tend to

a, the hemicontinuity of Γ would imply b = Γ(a) and b′ = Γ(a), a contradiction to the assumption that

b 6= b′. Therefore, Γ is continuous.

We now can prove the mapping T defined in (5.5) is continuous on K.

Lemma 5.7 (Continuious Mapping T in RM ). Given any vector µ = (µ−Q · · · , µQ) ∈ RM and bounded

set K defined in Lemma 5.4, mapping T defined in (5.5) is continuous on K.
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Proof. We prove that given vector µ, each element Tq(w) of mapping T is continuous respect to each

wq. As the maximum point of ηa(µ, ·, w, q) exists and is unique for every q ∈ {−Q + 1, · · · , Q}, Tq is

a well defined single value mapping. Moreover, ηa(µ, δ, w, q) is jointly continuous w.r.t δ and w. By

Berge’s maximum theorem, Tq is upper hemicontinuous function of w on bounded set K. Therefore,

by Lemma 5.6, for q ∈ {−Q+ 1, · · · , Q}, Tq is also continuous w,r,t every wq. We conclude that given

vector µ, the mapping T is a continuous mapping from K → K.

Finally we can prove theorem 5.2, which concludes the proof of step 1.

Proof of Theorem 5.2. As the intensity function f satisfies Assumption 2.1, from the Lemma 5.1, the

maximum point of Gaq(δ) exists and is unique for every q. Fixed vector µ ∈ RM , define mapping

T : RM−1 → RM−1 as in (5.5). wa is the fixed point of mapping T . To show the existence of fixed

point to the mapping, Schauder fixed-point theorem is applied to T by following steps.

Firstly, by Lemma 5.4, there exists a bounded closed set K ⊂ RM−1 which is equivalently a compact

set, such that T (K) ⊂ K. From the proof of Lemma 5.4, the compact set K is convex.

Secondly, from Lemma 5.1 and 5.7, T is a single value continuous mapping from K to K. By

Theorem 5.3, T has a fixed point for every given µ, denoted by wa, and

waq = T (wa) ∈ K. (5.10)

This concludes the proof of Step 1.

5.2.2 Proof of Step 2

We first state a global implicit function theorem in (Galewski and Rădulescu, 2018, Theorem 4), which

is used in the proof.

Theorem 5.8. Assume F : Rn × Rm → Rn is a locally Lipschitz mapping such that

• For every y ∈ Rm, the function φy : Rn → R, defined by φy(x) = 1
2 ||F (x, y)||2, is coercive, i.e.,

lim||x||→∞ φy(x) = +∞.

• The set ∂xF (x, y) is of maximal rank for all (x, y) ∈ Rn × Rm.

Then there exists a unique locally Lipschitz function f : Rm → Rn such that equations F (x, y) = 0 and

x = f(y) are equivalent in the set Rn × Rm.

With the help of Theorem 5.8, we can show the local Lipschitz continuity of functions wa and wb.

Theorem 5.9. Assume the intensity function f satisfies Assumption 2.1. Then there are single valued

and locally Lipschitz continuous functions wa, wb : RM → RM−1, such that they satisfy the generalized

Issac’s condition (3.7) in Definition 3.2 for any given vector µ ∈ RM .

Proof. We provide the proof for wa only. The proof for wb is similar.

To begin with, from Assumption 2.1, we have (5.3) for all δ, x and y. From Lemma 5.1, the

maximum point of Gaq(δ) = ηa(µ, δ, wa, q) is unique. From Remark 5.1, given any vector µ, wa that

satisfies the generalized Issac’s condition in Definition 3.2 is also the solution to the following first order

condition for every q,

Q∑
j=−Q+1

P aj [f(waq , w
a
j ) + f ′1(waq , w

a
j )(waq + µq−1 − µq)] = 0.
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For any vector µ and δ = (δ−Q+1, · · · , δQ), define function Fq : RM−1 × RM → R for every q ∈
{−Q+ 1, · · ·Q} as following:

Fq(δ, µ) := −
∑Q

j=−Q+1 P
a
j f(δq, δj)∑Q

j=−Q+1 P
a
j f
′
1(δq, δj)

− δq − (µq−1 − µq).

Define mapping F : RM−1 × RM → RM−1 as

F (δ, µ) := (F−Q+1(δ, µ), · · · , FQ(δ, µ)).

F is continuously differentiable and wa is determined implicitly by F (wa, µ) = 0. From the proof of

step 1, there exists a function wa : RM → RM−1 such that F (wa(µ), µ) = 0 for any vector µ. If we can

verify Theorem 5.8 holds in this case, the function wa satisfying F (wa(µ), µ) = 0 must be unique and

continuously differentiable, which concludes our proof. Hence the next step is to verify Theorem 5.8.

Firstly, we prove that the Jacobian matrix of F never vanish. Denote Jacobian matrix of F with

respect to δ as ∂δF , a 2Q×2Q matrix, and its component at (i,m) is ∂Fi
∂δm

(δ, µ) for i,m = −Q+1, . . . , Q.

Denote by, for i ∈ {−Q+ 1, · · · , Q},

Di := (

Q∑
m=−Q+1

P amf
′
1(δq, δm))2 > 0

Ai =
1

Di

Q∑
m=−Q+1

Q∑
j=−Q+1

P amP
a
j [f ′′11(δi, δm)f(δi, δj)− f ′1(δi, δm)f ′1(δi, δj)]

Iim :=
1

Di
P am

Q∑
j=−Q+1

P aj [f(δi, δj)f
′′
12(δi, δm)− f ′1(δi, δj)f

′
2(δi, δm)].

For m = i, we have:
∂Fi
∂δi

(δ, µ) = −1 +Ai + Iii.

From Assumption 2.1 we have (5.3), and simple calculation shows:

− 1 +Ai =
1

Di

Q∑
m=−Q+1

Q∑
j=−Q+1

P amP
a
j [f ′′11(δi, δm)f(δi, δj)− 2f ′1(δi, δm)f ′1(δi, δj)] < 0.

Hence

|∂Fi
∂δi

(δ, µ)| ≥ 1−Ai − |Ii,i|.

For i 6= m, the non-diagonal element of the Jacobian matrix ∂δF is given by:

∂Fi
∂δm

(δ, µ) = Iim.

To compare the diagonal element with the sum of non-diagonal elements, we have:

|∂Fi
∂δi

(δ, µ)| −
∑
m6=i
| ∂Fi
∂δm

(δ, µ)| ≥ 1−Ai −
Q∑

m=−Q+1

|Iim|. (5.11)

From the definition of Ai and Iim,

1−Ai −
Q∑

m=−Q+1

|Iim|

=
1

Di

Q∑
m=−Q+1

P am{
Q∑

j=−Q
P aj [2f ′1(δi, δm)f ′1(δi, δj)− f ′′11(δi, δm)f(δi, δj)]

− |
Q∑

j=−Q+1

P aj [f(δi, δj)f
′′
12(δi, δm)− f ′1(δi, δj)f

′
2(δi, δm)]|}.

(5.12)
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By the assumption of f in (2.1), we have

Q∑
j=−Q+1

P aj [2f ′1(δi, δm)f ′1(δi, δj)− f ′′11(δi, δm)f(δi, δj)]

± [

Q∑
j=−Q+1

P aj [−f ′2(δi, δm)f ′1(δi, δj) + f ′′12(δi, δm)f(δi, δj)]] > 0.

(5.13)

Therefore, as Di > 0, from (5.11), (5.12) and (5.13), we conclude that

|∂Fi
∂δi

(δ, µ)| −
∑
m 6=i
| ∂Fi
∂δm

(δ, µ)| > 0.

The Jacobian matrix ∂δF (δ, µ) is strictly diagonally dominant, and is therefore a nonsingular matrix.

Secondly, we show that given any fixed vector µ, whenever ||δ|| → ∞, ||F (δ, µ)|| → ∞. For any vector

sequence ~δk, k = 1, 2 · · · , ||~δk|| → ∞. Then there exists sequence nk ∈ {−Q + 1, · · · , Q}, k = 1, 2 · · · ,
such that |δknk

| → ∞. δknk
is the nkth element of vector ~δk. In the case that δknk

→ −∞, as we have

Lnk
(~δk) :=

∑Q
m=−Q+1 P

a
mf(δknk

, δkm)∑Q
m=−Q+1 P

a
mf
′
1(δknk

, δkm)
< 0.

Hence we know following when k → +∞:

Fnk
(~δk, µ) = −Lnk

(~δk)− δknk
− (µnk−1 − µnk

) > −δknk
− (µnk−1 − µnk

)→ +∞.

It means when δknk
→ −∞, ||F (~δk, µ)|| → ∞.

On the other hand, in the case that δknk
→ +∞, we can always assume δknk

= max{δki }i∈Q,i>−Q. As

f ′1 < 0, f > 0 and f is increasing function to its second variable, we have the following estimation on

Fnk
(~δk, µ):

Fnk
(~δk, µ) = −

∑Q
m=−Q+1 P

a
mf(δknk

, δkm)∑Q
m=−Q+1 P

a
mf
′
1(δknk

, δkm)
− δknk

− (µnk−1 − µnk
)

≤ −
∑Q

m=−Q+1 P
a
mf(δknk

, δknk
)

P ank
f ′1(δknk

, δknk
)

− δknk
− (µnk−1 − µnk

).

From the assumption that limδ→+∞−
f ′1(δ,δ)
f(δ,δ) > 0, we have:

0 < − lim
δknk
→+∞

∑Q
m=−Q+1 P

a
mf(δknk

, δknk
)

P ank
f ′1(δknk

, δknk
)

< +∞.

Then by taking δknk
→ +∞, we finally have:

lim
δknk
→+∞

Fnk
(~δk, µ) = −∞.

Hence when fixed µ and δknk
→ +∞, we also get ||F (~δk, µ)|| → ∞. Moreover, if δknk

is consisted of

two sub-sequences such that one converges to +∞, another to −∞, by combining above, we can still

get ||F (~δk, µ)|| → ∞. We conclude that whenever ||δ|| → ∞, ||F (δ, µ)|| → ∞.

Theorem 5.8 implies that there exists a function wa : RM → RM−1 such that F (wa(µ), µ) = 0 and

wa is unique and locally Lipschitz continuous, which concludes the proof of Step 2.
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5.2.3 Proof of Step 3

We next prove there exists a unique classical solution θ to ODE system (3.8) on [0, T ]. The proof

is divided by two parts. Firstly, we show the solution to ODE system (3.8) is bounded if it exists.

Secondly, we provide the proof for existence and uniqueness of the classical solution to ODE system

(3.8).

Lemma 5.10. Assume the intensity function f satisfies Assumption 2.1. If θ : [0, T ] → RM is a

solution to the ODE system (3.8), then for all q ∈ Q we have

−1

2
γσ2Q2T − l(Q) ≤ θq(t) ≤ 2 sup

δ
λ(δ)δT.

Proof. We first prove the upper bound. From the assumption on f and the proof for the steps 1 and

2, the ODE system (3.8) is well defined. Since θ is assumed to be a solution, define twice continuously

differentiable functions d0 and d1 as

d0(t, δ) :=

Q−1∑
j=−Q

P bj f(δ, wbj(θ(t))) ≤ λ(δ)

d1(t, δ) :=

Q∑
j=−Q+1

P aj f(δ, waj (θ(t))) ≤ λ(δ).

From Assumption 2.1, we have (5.3) for all δ, x and y. Simple calculation shows that d0 and d1 satisfy

dζ(t, δ) ≤ λ(δ),
∂2dζ

∂δ2
(t, δ)dζ(t, δ) < 2(

∂dζ

∂δ
(t, δ))2, ζ = 0, 1.

On the other hand, θ is also the solution to ODE system for all q ∈ Q:

θ′q(t) =
1

2
γσ2q2 − sup

δ
{d0(t, δ)(δ + θq+1(t)− θq(t))}Ib(q)− sup

δ
{d1(t, δ)(δ + θq−1(t)− θq(t))}Ia(q)

θq(T ) = −l(|q|).
(5.14)

The comparison principle for ODE system (5.14) can be proved easily with similar argument in the

proof of comparison principle in Guéant (2017). Define operator Hζ : [0, T ]× R→ R for both ζ = 0, 1

as
Hζ(t,∆µ) := sup

δ
{dζ(t, δ)(δ + ∆µ)}.

Then from Guéant (2017), we know Hζ is an increasing and non-negative function in ∆µ.

max
t∈[0,T ],ζ=0,1

Hζ(t, 0) ≤ sup
δ
{λ(δ)δ}.

Define θ̄ : [0, T ]→ RM as following:

θ̄q(t) = 2 sup
δ
λ(δ)δ(T − t).

Substituting θ̄ into ODE system (5.14), we have

− θ̄′q(t) +
1

2
γσ2q2 −H0(t, θ̄q+1(t)− θ̄q(t))Ib(q)−H1(t, θ̄q−1(t)− θ̄q(t))Ia(q)

=

1∑
ζ=0

(sup
δ
λ(δ)−Hζ(t, 0)) +

1

2
γσ2q2 ≥ 0

θ̄q(T ) = 0 ≥ θq(T ) = −l(|q|).
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Then by the comparison principle from Guéant (2017), we know for every q ∈ Q,

θq(t) ≤ θ̄q(t) ≤ 2 sup
δ
λ(δ)δT.

We next prove the lower bound. Let θ̃ : [0, T ]→ RM satisfy the following ODE system for all q ∈ Q:

θ̃′q(t)−
1

2
γσ2q2 = 0

θ̃q(T ) = −l(|q|).
(5.15)

The closed-form solution is given by

θ̃q(t) =
1

2
γσ2q2(t− T )− l(|q|).

Note we have estimation that for every vector µ ∈ RM and every q ∈ Q,

ηa(µ,waq (µ), wa(µ), q) ≥ 0, ηb(µ,wbq(µ), wb(µ), q) ≥ 0.

Since θ̃q(T ) ≤ θq(T ), θ̃
′
q(t) ≥ θ

′
q(t), then it can be proved similarly as the proof of the upper solution

that for every q ∈ Q:

θq(t) ≥ θ̃q(t) ≥ −
1

2
γσ2Q2T − l(Q).

To prove the existence of a classical solution to the coupled ODE system (3.8), we cite the Picard-

Lindelof theorem in ODE theory that provides the existence and uniqueness of solution.

Theorem 5.11 (Picard-Lindelof theorem). Consider the initial value problem in RM :

y′(t) = F (t, y(t)), y(t0) = y0,

where F : R×RM → RM is uniformly Lipschitz continuous in y with Lipschitz constant L (independent

of t) and continuous in t. Then, for some value ε > 0, there exists a unique solution y(t) to the initial

value problem on the interval [t0 − ε, t0 + ε].

The next lemma is a direct conclusion from the proof of Theorem 5.11, see Teschl (2012). It helps

us to extend the local existence and uniqueness of solution to the global existence and uniqueness.

Lemma 5.12. Let Ca,b = [t0 − a, t0 + a]× Bb(y0), where Bb(y0) is a closed ball in RM with center y0

and radius b. Define
M = sup

(t,y)∈Ca,b

‖F (t, y)‖.

Then the solution to the ODE system (3.8) exists and is unique on interval [t0 − ε, t0 + ε], if ε satisfies

following:

ε < min{ b
M
,

1

L
, a}.

Theorem 5.13. Consider the terminal value ODE problem on [0, T ]:

θ′(t) = F (t, θ(t)), θ(T ) = θ0, (5.16)

where F : [0, T ]×RM → RM is a jointly locally Lipschitz continuous function. Assume that there exists

a constant K such that if solution θ exists on any sub-interval of [0, T ], θ(t) ∈ [−K,K]M . Then there

exists a unique solution to (5.16) on [0, T ].

18



Proof. Define AT,2
√
MK := [0, T ]×[−2

√
MK, 2

√
MK]M . F is a continuous function. Hence there exists

uniform constant C > 0 such that

C := sup
(t,y)∈AT,2

√
MK

‖F (t, y)‖. (5.17)

Since F is jointly locally Lipschitz continuous, there exists a series of open set Ai such that F is Lipschitz

continuous in Ai with Lipschitz coefficient Li, and AT,2
√
MK ⊂ ∪iAi. By Heine Borel theorem, there

are finite set I of i such that AT,2
√
MK ⊂ ∪i∈IAi. Define L := maxi∈I Li, we know F is Lipschitz

continuous on the compact set AT,2
√
MK with uniform Lipschitz coefficient L.

As terminal value θ0 ∈ [−K,K]M , we define C0
T,
√
MK

:= [0, T ] × B√MK(θ0). Then C0
T,
√
MK

⊂

AT,2
√
MK . For ε := min{

√
MK
C , 1

L , T}, the solution θ to ODE system (5.16) exists and is unique on

[T − ε, T ]. If ε = T , then we are done, otherwise, update the new terminal time as T̃ := T − ε. Since

θ(T̃ ) ∈ [−K,K]M by assumption, we can update a new terminal value θ0 := θ(T̃ ). Define a new

C1
T̃ ,
√
MK

:= [0, T̃ ] × B√MK(θ(T̃ )) ⊂ AT,2
√
MK . For ε := min{

√
MK
C , 1

L , T̃}, solution θ to ODE system

(5.16) exists and is unique on [T̃ − ε, T̃ ], and hence exists and is unique also on [T̃ − ε, T ]. Repeat this

process and we can reach ε = T̃ after finite number of steps, in which case we have proved the existence

and uniqueness of solution θ to ODE system (5.16) on the whole time interval [0, T ].

Combining Lemma 5.10, Theorem 5.9, and Theorem 5.13, we can finally proceed to show that the

ODE system (3.8) has a unique classical solution.

Theorem 5.14. There exists unique classical solution θ to ODE system (3.8) on [0, T ].

Proof. According to Lemma 5.10, we know if the solution θ exists on any sub-interval of [0, T ], there

exists constant K ≥ 0 such that

−K ≤ θq(t) ≤ K.

Define F : [0, T ]× RM → RM as

Fq(t, θ(t)) :=
1

2
γσ2q2 − ηa(θ(t), waq (θ(t)), wa(θ(t)), q)Ia(q)− ηb(θ(t), wbq(θ(t)), wb(θ(t)), q)Ib(q)

F (t, θ(t)) := (F−Q(t, θ(t)), · · · , FQ(t, θ(t))).

As q is finite, the original ODE system (3.8) can be rewritten in a vector form with F as in (5.16). Then

F is a jointly locally Lipschitz continuous function, and if solution θ exists on any sub-interval of [0, T ],

θ(t) ∈ [−K,K]M . By Theorem 5.13, the ODE system has unique solution on [0, T ]. This concludes the

proof of step 3.

5.2.4 Completion of Proof of Theorem 3.4

From Steps 1, 2 and 3, we know there exist unique locally Lipschitz continuous functions wa, wb that

satisfy the generalized Issac’s condition in Definition 3.2, the ODE system (3.8) is well defined and

equivalent to the ODE system (3.5).There exists a unique classical solution to ODE system (3.8).

Define the equilibrium value function for Gmm by (3.1), and the equilibrium controls by (3.9). As θ is

the classical solution to the ODE system (3.8), it is a continuous function on [0, T ] and hence bounded.

Then both πa(t) = wa(θ(t)) and πb(t) = wb(θ(t)) are bounded on [0, T ]. θ, πa(t) and πb(t) satisfy the

ODE system (3.5). Hence from the verification Theorem 3.3, the equilibrium for game Gmm exists. On

the other hand, as the solution to ODE system (3.5) is unique, by Theorem 3.1 we know the equilibrium

point is also unique.
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6 Conclusions

In this paper we have modeled the price competition between market makers, proved the generalized

Issac’s condition, which ensures the existence and uniqueness of Nash equilibrium for market making

with price competition, and derived the equilibrium strategies and the equilibrium value function. We

have also performed numerical tests to compare our model with a benchmark model in existing literature

without price competition and found that the introduction of price competition reduces bid/ask spreads

and improves market liquidity. There remain many open questions, for example, the jump processes

Na and N b are no longer of Poisson type but more general (Hawkes processes, more general Markov

jump processes), the set of inventory position constraints is no longer a finite set but may be infinite

(eventually uncountable if considering a whole interval), we leave these and other open questions to our

future research.
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