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Abstract

In this paper we study the dual control approach for the optimal asset allocation
problem in a continuous-time regime-switching market. We find the lower and upper
bounds of the value function that is a solution to a system of fully coupled nonlinear
partial differential equations. These bounds can be tightened with additional controls
to the dual process. We suggest a Monte-Carlo algorithm for computing the tight lower
and upper bounds and show the method is effective with a variety of utility functions,
including power, non-HARA and Yaari utilities. The latter two utilities are beyond the
scope of any current methods available in finding the value function.
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1 Introduction

Stochastic control methods are widely used in solving dynamic portfolio optimization prob-
lems in finance, among many other applications. The key idea is to apply the dynamic
programming principle to the optimal value function and show that it satisfies a partial
differential equation (PDE), called the Hamilton-Jacobi-Bellman (HJB) equation. If one
can find a classical solution to the HJB equation, then one may verify it is the value func-
tion by the martingale principle of optimality, and find a feedback optimal control as a
by-product. Otherwise, one may show the value function is a unique viscosity solution to
the HJB equation and find it numerically; see the excellent exposition of stochastic control
and its applications in Pham (2009).

Since the HJB equation is a fully nonlinear PDE, its solvability crucially depends on the
terminal condition. In a Black-Scholes complete market model with a power or logarithmic
utility, we know there is a closed-form classical solution to the HJB equation. Bian et al.
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(2011) and Bian and Zheng (2015) use the dual control method to show there is a classical
solution to the HJB equation for a broad class of utility functions and give a representation of
the solution to the HJB equation in terms of that of the dual HJB equation. For constrained
market models one may have to use numerical methods to solve the HJB equations; see for
example, Huang et al. (2012) for a combined fixed point and policy iterations method and
Reisinger and Forsyth (2016) for a piecewise constant policy approximations method. In
this paper we discuss the method of finding an approximate solution to the HJB equation
arising from regime switching (RS) utility maximization problems.

The RS model is popular in financial data modelling and analysis as it allows parameters
of asset price dynamics to depend on a finite state Markov chain process (MCP). It has
been shown in the literature that MCP is effective in providing information of the market
environment. For example, Hamilton (1989) introduces a RS model for nonstationary time
series and business cycles. Hardy (2001) applies a two-regime model to provide a good fit
to monthly stock market returns. The RS model provides good flexibility for characterizing
macro market uncertainties while preserves analytic tractability for underlying asset price
dynamics. There has been active research in portfolio optimization with RS models. For
example, Zhang et al. (2005) and Yin et al. (2006) study the trading rules in a RS mar-
ket. Zhou and Yin (2003) and Çelikyurt and Özekici (2007) investigate the mean-variance
portfolio optimization in a discrete-time RS model. Çanakoğlu and Özekici (2012) discuss
the HARA utility maximization in a continuous-time RS model. Honda (2003), Sass and
Haussmann (2004), and Rieder and Bäuerle (2005) solve portfolio optimization problems
with partial information and regime-switching drift processes.

For a regime switching stochastic control problem, Bäuerle and Rieder (2004) and Fu
et al. (2014) show that the value function satisfies an HJB system of fully coupled non-
linear PDEs and prove a verification theorem. Furthermore, for a power or logarithmic
utility function, they reduce the HJB equation to a system of linear ODEs which are then
solved with matrix exponentials. For general utility functions, it seems highly unlikely, if
not impossible, that one can solve the system of HJB equations analytically. There are
some great efforts in the literature in designing numerical schemes. Huang et al. (2011)
study numerical methods for pricing American options under regime switching using policy
iteration to find the solution of the discretized HJB variational equations. It is computa-
tionally expensive to apply the methods of Huang et al. (2011) to RS utility maximization
as at each grid point one needs to solve an optimization problem over some unknown value
function. Similarly, the system is not clearly elliptic, so that a monotone scheme in Forsyth
and Labahn (2008) may be out of reach. Fu et al. (2014) introduce a functional operator to
generate a sequence of value functions and show that the optimal value function is the limit
of this sequence. Each function in the sequence solves an auxiliary portfolio optimization
problem in a single-regime market and is a solution to the HJB equation. The method in
Fu et al. (2014) is conceptually appealing but practically ineffective in finding a solution
to the regime switching HJB equation for general utility functions, due to the curse of
dimensionality; see Remark 2.1 for further discussions on this point.

In this paper we discuss how to derive tight lower and upper bounds of the solution
to the regime switching HJB equation. Inspired by the work of Bian et al. (2011) and
Bian and Zheng (2015), we extend the dual control approach to regime-switching models.
The dual value function can be easily computed by the Monte Carlo method as it is an
option pricing problem. The dual value function not only provides an upper bound for the
primal value function, but also suggests a good feasible control that can be used to find
a lower bound for the primal value function. These bounds can be improved, that is, the
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gap of these bounds can be reduced, with additional controls to the dual process. The
suggested method can be applied to general utility functions, including ones not necessarily
differentiable and/or strictly concave. The bounds are very tight (less than 1% of relative
error in most of our numerical tests) and may be used as an approximation to the value
function. An additional benefit in computing the tight lower bound is that we derive a
feedback control which may be used as an approximation to the optimal control. To the
best of our knowledge, this is the first time a Monte Carlo algorithm is suggested to find
the tight lower and upper bounds of the solution to the regime switching HJB equation for
general utility functions. Our numerical results show the method is reliable, effective and
accurate for power, non-HARA, and Yaari utilities. The latter two utilities are beyond the
scope of any current methods available in finding the value function.

The remaining parts of the paper is arranged as follows. Section 2 introduces the optimal
asset allocation problem in regime-switching markets. Section 3 presents the dual control
method for finding the tight lower and upper bounds and states the main result (Theorem
3.1) and the Monte Carlo algorithms. Section 4 gives extensive numerical tests for a variety
of utility functions, including power, non-HARA and Yaari utilities. Section 5 concludes
the paper. The appendix gives the proofs of the solution (8) to the stochastic differential
equation (7) and Theorem 3.1, and some tables of numerical tests.

2 Optimal asset allocation in regime-switching models

In this section, we formulate the stochastic control problem in a regime switching diffusion
model. Consider a fixed time horizon [0, T ]. Let (Ω,F , P ) be a complete probability space,
W a standard Brownian motion, α a continuous time finite state observable Markov chain
process (MCP), which are independent of each other, and let {Ft} be the natural filtration
generated by W and α completed with all P -null sets.

We identify the state space of {αt} as a finite set of unit vectors E := {e1, e2, . . . , ed}
where ei ∈ Rd is a column vectors with one in the ith position and zeros elsewhere, i =
1, . . . , d. Denote by Q = (qij)d×d the generator of the Markov chain {αt} with qij ≥ 0 for

i ̸= j and
∑d

j=1 qij = 0 for each i ∈ D := {1, . . . , d}. The MCP α has a semi-martingale
representation

αt = α0 +

∫ t

0
Q′αvdv +Mt, 0 ≤ t ≤ T, (1)

where Q′ is the transpose of Q, M is a purely discontinuous square-integrable martingale
with initial value zero; see Elliott et al. (1994).

Assume the financial market consists of one risk-free bond and one risky stock. The
bond and stock price processes B and S are assumed to follow the stochastic differential
equations (SDEs)

dBt = rtBtdt, dSt = St(µtdt+ σtdWt), 0 ≤ t ≤ T,

where rt = rαt, µt = µαt, σt = σαt, and r = (r1, . . . , rd) is a vector of risk-free interest
rates with ri being the rate in regime i, and µ = (µ1, . . . , µd) and σ = (σ1, . . . , σd) are
vectors of return and volatility rates of the risky asset. Assume all rates are positive
constants. Denote by θ := (θ1, . . . , θd) the vector of market prices of risk with θi = (µi −
ri)/σi for i ∈ D.

3



Let X be the wealth process of a portfolio comprising the bond B and the stock S. The
wealth process X satisfies the SDE

dXt = Xt (rtdt+ πtσt (θtdt+ dWt)) , 0 ≤ t ≤ T, (2)

where π is a progressively measurable control process. πt represents the proportion of wealth
Xt invested in risky asset St and θt = θαt is the market price of risk at time t.

The utility maximization problem is defined by

sup
π

E[U(XT )] subject to (2), (3)

where U is a utility function that is continuous, increasing, and concave on [0,∞).
Stochastic control is a standard method one may use to solve problem (3) (the other

method is convex duality martingale method; see Karatzas and Shreve (1998)). To do so,
we define a value function

Vi(t, x) := sup
π∈Πt

Et,x,i[U(XT )], i ∈ D, (4)

where Et,x,i is the conditional expectation operator given Xt = x and αt = ei (abbreviated
by αt = i) for i ∈ D, and Πt := {πs, s ∈ [t, T ]} is the set of all admissible control strategies
over [t, T ].

It is proved in Fu et al. (2014) and Bäuerle and Rieder (2004) that for a continuous,
strictly increasing, and strictly concave utility function U , the optimal value function Vi,
for i ∈ D, satisfies the following system of HJB equations

∂Vi

∂t
+ rix

∂Vi

∂x
− 1

2
θ2i

(
∂Vi

∂x

)2

/
∂2Vi

∂x2
+

d∑
j=1

qijVj = 0, i ∈ D, (5)

with boundary condition Vi(T, x) = U(x) for i ∈ D. Verification results are also given in
Bäuerle and Rieder (2004) and Fu et al. (2014).

Remark 2.1. When U is a power (or logarithmic) utility, one may write Vi(t, x) = U(x)fi(t)
(or Vi(t, x) = U(x)+fi(t)) to reduce (5) to a system of linear ODEs with unknown functions
fi, i ∈ D, which can be solved with matrix exponentials (see Bäuerle and Rieder (2004) and
Fu et al. (2014)). When U is a general utility, it is difficult to solve (5) as it is a system of
fully nonlinear PDEs and, unlike power utility, there is no clear candidate solution. Fu et al.
(2014) define a functional operator M and a sequence of functions {Hn} by Hn+1 = MHn

and show that Hn converges to the value function V as n tends to ∞. The function H0 can
be computed with the utility U . It also reduces a system of fully coupled nonlinear PDEs to
a system of decoupled nonlinear PDEs. Conceptually, this is an excellent algorithm to find
the value function, but it is impractical for implementation for the following reasons: to
find Hn+1, one has to solve a stochastic control problem using Hn which can only be derived
numerically. As such, curse of dimensionality quickly arises in the algorithm of Fu et al.
(2014).

Remark 2.2. We assume in this paper that the Markov chain α is observable. If α is not
observable, for example, when there is no regime switching in the volatility process σt, i.e.,
σ1 = . . . = σd, then a filtering problem arises for an investor who observes only the stock
prices. Such models with partial information and regime-switching in µ have been studied
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in the literature. Honda (2003) introduces the filtered probability as a new state variable,
derives an HJB equation with two state variables, and reduces the HJB equation to one
state variable for power utility. Rieder and Bäuerle (2005) use a similar approach and
derive the representation of the value function for power and logarithmic utility. Sass and
Haussmann (2004) derive an explicit representation of the optimal trading strategy using
HMM (hidden Markov model) filtering results and Malliavin calculus. Elliott et al. (2008)
discuss the differences of the models with constant and with switching volatility and explain
why filters have to be used in the first case while the Markov chain is observable in theory
in the second case.

When there is no regime switching, Bian et al. (2011) and Bian and Zheng (2015) apply
the dual control method to show that there is a classical solution to the HJB equation and
the optimal value function is the conjugate function of the optimal dual value function.
Inspired by these works, we will introduce in the following sections an efficient Monte Carlo
method based on the dual control framework to find the lower and upper bounds of the value
function for general utilities and show that these bounds are tight and can be improved with
increased number of the dual control variables. The usefulness of the algorithm is illustrated
by numerical tests of power, non-HARA, and Yaari utilities.

3 Dual-control Monte-Carlo method

In this section, we assume that the utility function U is continuous, increasing, and concave
(but not necessarily strictly increasing and concave), and U(0) = 0. The dual function of
U is defined by

Ũ(y) = sup
x≥0

(U(x)− xy), (6)

for y ≥ 0. The function Ũ(y) is a continuous, decreasing and convex function on [0,∞) and
satisfies Ũ(∞) = 0 (see e.g., Bian and Zheng (2015)). Define a dual process Yt

dYt = Yt− (−rtdt− θtdWt + CdMt) , (7)

where C is a constant row vector in Rd, W is a Brownian motion, and Mt is the martingale
defined in (1). The solution to (7) at time T , with initial condition Yt = y, can be written
as

YT = y exp(At,T ), (8)

where

At,T = −
∫ T

t

(
ru + CQ′αu +

1

2
θ2u

)
du−

∫ T

t
θudWu +

∑
t<s≤T

ln(1 + C(αs −αs−)). (9)

That YT defined as in (8) for all T > t satisfies the SDE (7) can be shown by the Itô formula
for semi-martingales. For convenience we provide a proof in Appendix A.

The dual value function is defined by

Ṽi(t, y) = Et,y,i[Ũ(YT )], i ∈ D. (10)
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Since Y satisfies a linear SDE (7) and Ũ is a decreasing convex function, we know Ṽi(t, y)
is a decreasing convex function for y > 0 and fixed t and i. Denote by Wi(t, x) the dual
function of Ṽi(t, y) for fixed t and i, given by

Wi(t, x) = inf
y>0

(Ṽi(t, y) + xy). (11)

The next theorem is the main result of the paper.

Theorem 3.1. Let Wi(t, x) be given by (11) and S1 and S2 be sets of vectors C satisfying
|Ci| < 1/2 for i ∈ D. Then the optimal value function Vi(t, x) defined in (4) satisfies

Vi(t, x) ≤ inf
C∈S1

Wi(t, x). (12)

Furthermore, suppose Ṽi(t, y) given by (10) is twice continuously differentiable and strictly
convex for y > 0 and fixed t and i. Let y = y∗(t, x, i, C), written as y∗ for notational
simplicity, be the solution of

∂Ṽi(t, y)

∂y
+ x = 0. (13)

Let the feedback control π̄i(t, x) be defined by

π̄i(t, x) =
θi
σi

y∗

x

∂2

∂y2
Ṽi(t, y

∗) (14)

for t ∈ [0, T ] and x > 0. Let X̄ be the unique strong solution of SDE (2) with control process
πt = π̄αt(t, X̄t). Let W̄i(t, x) be defined by

W̄i(t, x) := Et,x,i[U(X̄T )]. (15)

Then the optimal value function Vi(t, x) satisfies

Vi(t, x) ≥ sup
C∈S2

W̄i(t, x). (16)

Proof. The proof is given in Appendix B. �
Remark 3.1. Clearly, if S1 ⊂ S̃1, then

Vi(t, x) ≤ inf
C∈S̃1

Wi(t, x) ≤ inf
C∈S1

Wi(t, x).

Using S̃1 instead of S1 gives a tighter upper bound but it may be more expensive in compu-
tation. The same applies to the lower bound.

Remark 3.2. Next we give some explanation to the choice of control π̄i(t, x) for the tight
lower bound for Vi(t, x). In theory, this is easy as any feasible control π and its corresponding
wealth process X provide a value E[U(XT )], which is a lower bound of Vi(t, x). Our objective
is to find a lower bound that is as large as possible. When there is no regime switching,
Bian et al. (2011) and Bian and Zheng (2015) show that Vi(t, x) = Wi(t, x) with C = 0 and
the optimal control is given by

πi(t, x) = − θi
σi

∂
∂xWi(t, x)

x ∂2

∂x2Wi(t, x)
, (17)
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which can be equivalently computed using the dual value function Ṽi(t, y) and its derivatives.
This suggests strongly to use Wi(t, x) to construct a control which may provide a good
lower bound for Vi(t, x), even though we only have the relation Vi(t, x) ≤ Wi(t, x) in the
current regime-switching framework. Assume Ṽi(t, y) is twice continuously differentiable
and strictly convex for y > 0 and fixed t and i and y = y∗ is the solution of equation (13)
(a sufficient condition that ensures the existence of a unique solution to equation (13) is

limy→0
∂Ṽi(t,y)

∂y = −∞ and limy→∞
∂Ṽi(t,y)

∂y = 0). Then we have

Wi(t, x) = Ṽi(t, y
∗) + xy∗.

Note that y∗ is continuously differentiable for x > 0 and fixed t and i by the implicit function
theorem. Some simple calculus, using (13), shows that

∂

∂x
Wi(t, x) = y∗,

∂2

∂y2
Ṽi(t, y

∗)
∂

∂x
y∗ + 1 = 0,

∂2

∂x2
Wi(t, x) = −1/

∂2

∂y2
Ṽi(t, y

∗).

Note that ∂
∂xy

∗ ̸= 0, otherwise, one would have 1 = 0, a contradiction. Substituting the
derivatives above into (17), we get a candidate control π̄i(t, x) in (14) for the lower bound.

Remark 3.3. The dual control vector C in (7) must satisfy 1 + C(αt − αt−) > 0 for
t ∈ [0, T ]; see (9). A sufficient condition to ensure this is |Ci| < 1/2 for i ∈ D. We may
also use a general progressively measurable process (Ct−)t≥0 in (7), provided (9) is well
defined, which indicates one may potentially get even tighter lower and upper bounds if C
is chosen to be a process, not just a constant vector. When there is no regime switching, C
can be set equal to zero.

The Monte-Carlo method can be used to find the tight lower and upper bounds. To
compute the tight lower bound, one key step is to find a solution of (13). We assume that
the utility U is strictly concave and satisfies Inada’s condition (U ′(0) = ∞ and U ′(∞) = 0),
which implies that Ũ is continuously differentiable and Ũ(0) = −∞ and Ũ(∞) = 0. From
(10), the pathwise differentiation method gives

∂Ṽi(t, y)

∂y
=

1

y
Et,y,i

[
YT Ũ

′(YT )
]
, (18)

which is −∞ for y close to 0 and 0 for y close to ∞. Choosing a sufficiently small y and a

sufficiently large y such that the expression ∂Ṽi(t,y)
∂y +x has opposite signs for x > 0, we can

then use the bisection method to find the solution to equation (13).
The Markov chain process α can be generated in a standard procedure as follows.

Assume the MCP is at state i. Generate two independent standard uniform variables ζ1
and ζ2, define

τi = − 1

qii
ln ζ1.

where qii :=
∑

j ̸=i qij is the intensity rate of MCP jumping from state i to some other state
(not decided yet). Then τi is the first jump time of MCP from state i. To decide which
state it jumps to, divide interval [0, 1] by d− 1 subintervals, with length of qij/qii for j ̸= i.
If ζ2 is realized in the j-th subinterval, the MCP has jumped to state j at time τi. Repeat
these steps to generate a sample path of MCP α on the interval [0, T ].

The dual control variable C may be chosen randomly by specifying a distribution for C
which ensures |Ci| < 1/2 and then generating samples C by simulation, or deterministically
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by specifying particular values such as fixed grid points on a d-dimensional hypercube
satisfying |Ci| < 1/2.

Next we describe the Monte-Carlo method for computing the tight lower and upper
bounds at time t = 0. The tight lower and upper bounds at other times t can be computed
similarly. Assume X0 = x, α0 = i and the dual function Ũ in (6) are known.

Monte-Carlo method for computing the tight upper bound:

Step 1: Sample d independent uniform variables Ci in [−0.4, 0.4], which are compo-
nents of a vector C.

Step 2: Generate M1 sample paths of Brownian motion W and MCP α, which are
used to compute YT with Y0 = y and the average derivatives:

∂Ṽi(0, y)

∂y
≈ 1

y

1

M1

M1∑
ℓ=1

YT Ũ
′(YT ).

Step 3: Use the bisection method to solve equation (13) and get the solution y ≈ y∗.

Step 4: Compute the upper bound

Wi(0, x) ≈ Ṽi(0, y
∗) + xy∗.

Step 5: Repeat Steps 1 to 4 N1 times and then compute the tight upper bound
infC∈S1 Wi(0, x).

Monte-Carlo method for computing the tight lower bound:

Step 1: Sample d independent uniform variables Ci in [−0.4, 0.4], which are compo-
nents of a vector C.

Step 2: Generate M2 sample paths of Brownian motion W and MCP α, which are
used to find the control process π̄ in (14) and the wealth process X̄ in (2).

Step 3: Compute the lower bound

W̄i(0, x) ≈
1

M2

M2∑
ℓ=1

U(X̄T ).

Step 4: Repeat Steps 1 to 3 N2 times and then compute the tight lower bound
supC∈S2

W̄i(0, x).

Remark 3.4. It is much more time consuming to compute the tight lower bound than to
the tight upper bound. The reason is that one has to generate sample paths of the wealth
process X̄ and control process π̄, which requires solving equation (13) at all grid points of
time, not just at t = 0 as in the case of computing the tight upper bound. However, there
is one exception when U is a power utility. In this case, the computation time for the tight
lower bound is much shorter than that for the tight upper bound, and the tight lower bound
with C = 0 coincides with the primal value; see the example in the next section.
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4 Case studies for a variety of utility functions

4.1 Power utility

Consider a power utility function:

U(x) =
xp

p
, 0 < p < 1. (19)

The dual function is given by

Ũ(y) =
1− p

p
y

p
p−1 .

Substituting (8), YT = y exp(At,T ), into (10), we have

Ṽi(t, y) =
1− p

p
y

p
p−1βi(t), (20)

where βi(t) = Et,i[exp(
p

p−1At,T )]. Since Ṽi(t, y) is C2 and strictly convex at y > 0 and

∂Ṽi(t,0)
∂y = −∞ and ∂Ṽi(t,∞)

∂y = 0. The conditions of Theorem 3.1 are satisfied and there is a
unique solution to equation (13). It follows from definition (11) that

Wi(t, x) = Ṽi(t, y
∗
i ) + xy∗i ,

where

y∗i =

(
x

βi(t)

)p−1

is the solution of (13) with Ṽi(t, y) given in (20). The tight upper bound on the primal
value is given by

inf
Ct

Wi(t, x) = inf
Ct

{
1− p

p
(y∗i )

p
p−1βi(t) + xy∗i

}
and can be computed with the Monte-Carlo method.

To calculate the tight lower bound on the primal value, we need first to calculate the
control π̄i(t, x). A direct computation, using (14), gives that

π̄i(t, x) =
θi
σi

1

1− p
.

The wealth process becomes

dX̄t = X̄t

(
rtdt+

θt
1− p

(θtdt+ dWt)

)
.

The solution is given by

X̄T = x exp

[∫ T

t

(
rs +

1− 2p

2(1− p)2
θ2s

)
ds+

θs
1− p

dWs

]
.

Since there is a closed-form expression for X̄T , we can generate X̄T directly without having
to generate a sample path of X̄ first. Note also that the control process π̄ is independent
of the dual control vector C, which implies the lower bound W̄i(t, x) is already the tight
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lower bound. These two facts make the computation of the lower bound for power utility
very fast, which is not the case for general utilities. The lower bound in (15) is given by

W̄i(t, x) =
1

p
xpEt,i

[
exp

[∫ T

t

(
prs +

p(1− 2p)

2(1− p)2
θ2s

)
ds+

pθs
1− p

dWs

]]
=

1

p
xpEt,i

[
exp

[∫ T

t

(
prs +

p

2(1− p)
θ2s

)
ds

]]
. (21)

The expectation after the first equality is over both Brownian motion W and MCP α and
the expectation after the second equality is over MCP α only. We can verify directly that
expression (21) satisfies the HJB equation (5) and the terminal condition W̄i(T, x) = xp/p.
Therefore, the lower bound W̄i(t, x) equals the primal value function Vi(t, x).

In the next numerical example we use the dual-control Monte-Carlo method to calculate
the lower and upper bounds for power utility (19) with p = 1/2. The initial wealth at
time t = 0 is x = 1, the investment period T = 1, and the number of simulations is
M1 = M2 = 107. Since the terminal wealth X̄T has a closed-form expression, there is no
need to use the Euler method to discretize SDE (2) to generate random variable X̄T , which
results in the computation of the lower bound being fast.

Example 4.1. We consider 2-state Markov chain process with generating matrix

Q =

(
−a a
b −b

)
, (22)

where a, b are positive constants. To show the robustness of the algorithm, we have chosen
5 samples of a, b from the uniform distribution on interval [0.1, 2.0], which means the tran-
sition of one state to another can be slow (average once every 10 years) or fast (average
twice a year) or anything in between. The states are a “growth economy” (state 1) and a
“recession economy” (state 2). The riskless interest rates, return, and volatility rates of
risky asset are given by

r = (0.05, 0.01), µ = (0.13, 0.07), σ = (0.20, 0.30). (23)

The comparisons are carried out for the cases of C = 0 and additional control vector
C (sampling N1 = 50 times for computing the tight upper bound and N2 = 0 times for
computing the tight lower bound). The reason for choosing N2 = 0 is that the exact lower
bound with C = 0 coincides with the primal value and there is no need to use the additional
control C in the computation of the lower bound. In the test, the benchmark value is the
primal value explicitly given by (see Bäuerle and Rieder (2004) and Fu et al. (2014))

V (t, x, i) = a(t, i)
xp

p
, for t ∈ [0, T ], x ≥ 0, i ∈ D,

where a(t, i) is the ith component of vector a(t) = exp[−(Λ −Q)(T − t)] · 1, 1 is a d × 1
vector with all components 1, and Λ is a d × d diagonal matrix with diagonal elements
λi =

1
2θ

2
i

p
p−1 − pri for i ∈ D.

The numerics in Table 8 (see Appendix C) show that the dual-control Monte-Carlo
method generates correct and tight lower and upper bounds on the primal value and the use
of control vector C can decrease further the gap between the lower and upper bounds. We
have also listed statistics in Table 8, including the average computation time in seconds,
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the mean and the standard deviation of absolute and relative difference between the lower
and upper bounds. The improved upper bound with additional dual control variable C comes
with increased computation time. This is a trade-off of accuracy and speed.

In Table 1, we give the mean and standard deviation of the absolute and relative dif-
ference between the lower and upper bounds for power utility with many randomly sampled
parameters-sets: 100 samples of a, b from the uniform distribution on interval [0.1, 2.0],
r1, r2 on [0.01, 0.08], µ1, µ2 on [0.03, 0.20], σ1, σ2 on [0.1, 0.6]. It is clear that the gap be-
tween the tight lower and upper bounds is very small, especially when the dual control C is
used. This shows that the algorithm is reliable and accurate.

Table 1: Mean and std of the absolute and relative difference between the lower and upper
bounds for power utility in Example 4.1 with many randomly sampled parameters-sets.

No Control C With Control C
mean diff 0.0039 0.0009
std diff 0.0120 0.0025
mean rel-diff (%) 0.1443 0.0328
std rel-diff (%) 0.4096 0.0837

4.2 A non-HARA utility

Consider the following non-HARA utility function from Bian and Zheng (2015):

U(x) =
1

3
H(x)−3 +H(x)−1 + xH(x) (24)

for x > 0, where H(x) =
√
2(−1 +

√
1 + 4x)−1/2. Bian and Zheng (2015) show that U

is continuously differentiable, strictly increasing and strictly concave, satisfying U(0) = 0,
U(∞) = ∞, U ′(0) = ∞ and U ′(∞) = 0. Furthermore, the relative risk aversion coefficient
of U is given by

R(x) = −xU ′′(x)

U ′(x)
=

1

4

(
1 +

1√
1 + 4x

)
,

which shows that U is not a HARA utility and represents an investor who will increase the
percentage of wealth invested in the risky asset as wealth increases.

To find the dual function Ũ(y) we may use the definition (6) to compute the maximum
of U(x)− xy over x > 0. Some simple calculus shows that U ′(x) = H(x), so the maximum
is achieved at a point x∗ satisfying H(x∗) = y, which gives x∗ = y−2 + y−4. Substituting
x∗ into U(x)− xy, we conclude that the dual function is given by

Ũ(y) =
1

3
y−3 + y−1.

Inserting (8) into (10), we get

Ṽi(t, y) = Et,y,i[Ũ(YT )] =
1

3
y−3Dt,i + y−1Ft,i, (25)

where Dt,i = Et,i [exp(−3At,T )] and Ft,i = Et,i [exp(−At,T )]. It is easy to check that the
conditions of Theorem 3.1 are satisfied and there is a unique solution y∗ to the equation
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(13). From definition (11) we obtain the upper bound

Wi(t, x) =
1

3
(y∗)−3Dt,i + (y∗)−1Ft,i + xy∗,

where

y∗ =

√
1

2x

(
Ft,i +

√
F 2
t,i + 4xDt,i

)
is the solution of (13) with Ṽi(t, y) given by (25). The tight upper bound infC∈S1 Wi(t, x)
can be computed with the Monte-Carlo method.

Now we compute the control π̄i(t, x). A direct computation yields, using (14) and (25),

π̄i(t, x) =
2θi
σi

1

x

[
(y∗)−4Dt,i + x

]
, i ∈ D.

Here we have used the relation (y∗)−4Dt,i+(y∗)−2Ft,i = x. The Euler discretization for the
wealth process (2) with step size ∆t is given by

X̄t+△t = (1 + rt∆t)X̄t + X̄tπ̄(t, X̄t)σt(θt∆t+W∆t), (26)

withX0 = x, where π̄(t, X̄t) =
(
π̄1(t, X̄t), . . . , π̄d(t, X̄t)

)
αt. Using the Monte-Carlo method,

we can find the tight lower bound

sup
C∈S2

W̄i(t, x) = sup
C∈S2

Et,x,i[U(X̄T )].

In the following numerical examples we use the dual-control Monte-Carlo method to
calculate the lower and upper bounds for non-HARA utility (24). The initial wealth at
time t = 0 is x = 1, the investment period T = 1, and the number of simulations is
M1 = M2 = 106. Since there is no closed form expression for the terminal wealth X̄T , we
use (26) with stepsize ∆t = 0.01 to generate sample paths of the wealth process X̄ to get
X̄T , which makes the comptation of the lower bound more expensive.

Example 4.2. We compare the lower and upper bounds generated by the dual-control
Monte-Carlo with the exact primal values when there is no regime-switching. The primal
value function has the following explicit form (see Bian and Zheng (2015)):

V (t, x) =
2

3

(
(y∗)−1e(r+θ2)(T−t) + 2xy∗

)
,

where

(y∗)2 =
1

2x

(
e(r+θ2)(T−t) +

√
e2(r+θ2)(T−t) + 4xe3(r+2θ2)(T−t)

)
and θ = (µ − r)/σ. By choosing (r, µ, σ) = (0.05, 0.13, 0.20) and (0.01, 0.07, 0.30), we can
find two exact (benchmark) values of the primal problem. Now we set r,µ,σ as in (23) and
the generating matrix Q as in (22) with a = b = 0.005. Since the probability of a jump of
MCP on the interval [0, T ] is very small (less than 0.005), we expect to see the lower and
upper bounds, starting from initial states 1 and 2, are close to the exact values for (r, µ, σ)
chosen above. Table 2 shows that this is indeed the case.
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Table 2: Comparisons of lower and upper bounds with the exact (benchmark) value for
Example 4.2 (non-HARA utility).

α0 Benchmark LB UB diff rel-diff (%)

1 2.6171 2.6140 2.6172 0.0032 0.1224
2 2.3060 2.3059 2.3060 0.0001 0.0034

Table 3: Lower bound (LB) and upper bound (UB) with two-state regime-switching for
Example 4.3 (non-HARA utility).

No control C With control C
α0 LB UB diff rel-diff (%) LB UB diff rel-diff (%)

1 2.5569 2.5627 0.0057 0.2243 2.5569 2.5592 0.0022 0.0873
2 2.3611 2.3660 0.0049 0.2063 2.3611 2.3622 0.0011 0.0452

Example 4.3. We now consider a regime switching model with generating matrix Q given
by (22) and a = b = 0.5 and other parameters given by (23). There is no closed-form
formula for the exact value. The comparisons are carried out for the cases of C = 0 and
additional control vector C (sampling N1 = 50 times for computing the tight upper bound
and N2 = 50 times for computing the tight lower bound). The numerics in Table 3 show
that the use of control vector C significantly decreases the difference between the lower and
upper bounds.

Using the optimal control vector C∗ for computing the tight lower bound in Table 3, we
draw 2D graphs for sample paths of MCP α, feedback control π̄, optimal wealth process X̄
(Figure 1), 3D graphs for feedback control π̄ (Figure 2), and distributions of the terminal
wealth X̄T (Figure 3).

Example 4.4. This numerical test is to show the robustness of the dual control Monte Carlo
method. The setup and data used are the same as those in Example 4.1. The comparisons
are carried out for the cases of C = 0 and additional control vector C (N1 = 50 and
N2 = 20). The numerics in Table 9 (see Appendix C) show that the use of the control
vector C significantly decreases the difference between the lower and upper bounds.

In Table 4, we give the mean and standard deviation of the absolute and relative differ-
ence between the lower and upper bounds for non-HARA utility with many randomly sampled
parameters-sets: 10 samples of a, b from the uniform distribution on interval [0.1, 2.0], r1, r2
on [0.01, 0.08], µ1, µ2 on [0.03, 0.20], σ1, σ2 on [0.1, 0.6]. It is clear that the gap between the
tight lower and upper bounds is very small, especially when the dual control C is used. This
shows that the algorithm is reliable and accurate.

Example 4.5. We consider 3-state MCP with generating matrix

Q =

 −1.5a a 0.5a
b −2b b

0.5c c −1.5c

 ,

where a, b, c are positive constants. This structure of the generating matrix is to indicate
that a state is more likely to move to its adjacent state then to a state farther away. The
states can be a “growth economy” (state 1), an “average economy” (state 2) and a “recession

13
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Figure 1: Sample paths of MCP, π(t, X̄t), X̄t with initial wealth x = 1 (Example 4.3
(non-HARA utility)). The left three figures has the same sample with initial regime state
α0 = 1 and optimal control vector C∗ = (0.399566, 0.310858). The right three figures
has the same sample with initial regime state α0 = 2 and optimal control vector C∗ =
(0.023798,−0.028443).

Table 4: Mean and std of the absolute and relative difference between the lower and upper
bounds for non-HARA utility in Example 4.4 with many randomly sampled parameters-sets.

No Control C With Control C
mean diff 0.1241 0.0184
std diff 0.3755 0.0578
mean rel-diff (%) 2.9121 0.4885
std rel-diff (%) 8.5918 1.5245

economy” (state 3). The jump intensities a, b, c are chosen from the uniform distribution
on interval [0.1, 2.0]. The riskless interest rates, return and volatility rates of risky asset
are given by

r = (0.06, 0.04, 0.01), µ = (0.20, 0.12, 0.07), σ = (0.25, 0.20, 0.30).
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Figure 2: 3D graphs of the optimal control π∗(t, x) (Example 4.3 (non-HARA util-
ity)). The left figure is for initial regime state α0 = 1 and optimal control vector
C∗ = (0.399566, 0.310858) for computing the tight lower bound. The right figure is for
initial regime state α0 = 2 and optimal control vector C∗ = (0.023798,−0.028443) for
computing the tight lower bound.

The comparisons are carried out for the cases of C = 0 and additional control vector C
(N1 = 50 and N2 = 20). The numerics in Table 10 (see Appendix C) show that the use of
control vector C significantly decreases the difference between the lower and upper bounds.

4.3 Yaari utility

Consider the utility function:
U(x) = x ∧H, (27)

where H is a positive constant. Since the optimal terminal wealth XT is distributed as a
Bernoulli random variable similar to the optimal portfolio choice in Yaari dual theory (see
Yaari (1987)) we call the utility defined in (27) a Yaari utility.

The dual function is given by

Ũ(y) = H(1− y)+,

where x+ = max(x, 0). Inserting (8) into (10), we get the dual value function

Ṽi(t, y) = Et,i

[
H(1− y exp(At,T ))

+
]
,

where the expectation is over Brownian motion W and MCP α. Given α, At,T is a normal
variable with mean mt,T and variance σ2

t,T , given by

mt,T = −
∫ T

t

(
ru + CQ′αu +

1

2
θ2u

)
du+

∑
t<s≤T

ln(1 + C(αs −αs−)),

σ2
t,T =

∫ T

t
θ2udu.
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Figure 3: Distribution of terminal wealth process for non-HARA utility (Example 4.3).

The dual value function Ṽi(t, y) is simply a European put option price, for a given MCP α,
and can be simplified further as

Ṽi(t, y) = Et,i

[
HΦ

(
− ln y −mt,T

σt,T

)
−Hy exp

(
mt,T +

1

2
σ2
t,T

)
Φ

(
− ln y −mt,T

σt,T
− σt,T

)]
,

(28)
where the expectation is over MCP α only and Φ is the cumulative distribution function of
a standard normal variable. The derivatives of Ṽi(t, y) are given by

∂Ṽi(t, y)

∂y
= −Et,i

[
H exp

(
mt,T +

1

2
σ2
t,T

)
Φ

(
− ln y −mt,T

σt,T
− σt,T

)]
, (29)

∂2Ṽi(t, y)

∂y2
= Et,i

[
H

yσt,T
exp

(
mt,T +

1

2
σ2
t,T

)
ϕ

(
− ln y −mt,T

σt,T
− σt,T

)]
.

Using definition (11), we obtain the upper bound

Wi(t, x) = Ṽi(t, y
∗) + xy∗,

where y∗ is the solution of (13) with ∂Ṽi(t,y)
∂y given by (29), i.e.,

−Et,i

[
H exp

(
mt,T +

1

2
σ2
t,T

)
Φ

(
− ln y −mt,T

σt,T
− σt,T

)]
+ x = 0. (30)

There is no explicit formula for the solution to equation (30). The bisection method can be
applied to solve equation (30). In addition, the left-hand side of (30) is increasing with y,
thus the equation (30) has a unique root if and only if the left-hand side of (30) is less than
zero when y goes to zero and greater than 0 when y goes to positive infinity. This gives a
condition to ensure equation (30) has a unique root, i.e.,

x < Et,i

[
H exp

(
mt,T +

1

2
σ2
t,T

)]
. (31)

If (31) is not satisfied, then Ṽi(t, y) + xy is an increasing function of y > 0, which implies
the minimum in the definition of Wi(t, x), see (11), is achieved at y∗ = 0. Therefore,
Wi(t, x) = H is an obvious upper bound as U(x) = x ∧H ≤ H for all x > 0.
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The tight upper bound infC∈S1 Wi(t, x) can be computed with the Monte-Carlo method.
The control π̄i(t, x) can be computed by the following formula:

(i) When condition (31) holds, we use (14) to compute π̄i(t, x) and get

π̄i(t, x) =
θi
σi

y∗i
x
Et,i

[
H

y∗σt,T
exp

(
mt,T +

1

2
σ2
t,T

)
ϕ

(
− ln y∗ −mt,T

σt,T
− σt,T

)]
.

(ii) When constraint (31) is not satisfied, the best strategy is to invest all the money into
the risk-free asset, i.e.,

π̄i(t, x) = 0.

We can then generate sample paths of the wealth process X̄ with the Euler method as in
(26) and find the tight lower bound supC∈S2

W̄i(t, x) with the Monte Carlo method.
In the following numerical examples we use the dual-control Monte-Carlo method to

calculate the lower and upper bounds for Yaari utility. The data used are: the initial
wealth x = 1 at time t = 0, the investment period T = 1 and the threshold level H = 2.
Since there is no closed form expression for terminal wealth X̄T , we use (26) with stepsize
∆t = 0.02 to generate sample paths of the wealth process X̄ to get X̄T . There is a further
complication in computing the lower bound as we have to find the solution y∗ of equation
(30) numerically. We use the bisection method with the error tolerance 10−6. It is time
consuming to compute the lower bound, so we only choose M1 = M2 = 5000 simulations.

Example 4.6. We compare the lower and upper bounds generated by the dual-control
Monte-Carlo with the exact primal values when there is no regime-switching. The primal
value function has the following explicit form (see Bian and Zheng (2015)):

V (t, x) =

{
HΦ

(
Φ−1

(
x
H er(T−t)

)
+ θ

√
T − t

)
, 0 ≤ x < He−r(T−t),

H, x ≥ He−r(T−t),

where θ = (µ− r)/σ is a constant. The other data used are the same as those in Example
4.2. The numerical results in Table 5 show that the lower and upper bounds coincide with
the exact value ignoring the Monte-Carlo simulation errors.

Table 5: Comparisons of lower and upper bounds with the exact (benchmark) value for
Example 4.6 (Yaari utility).

α0 Benchmark LB UB diff rel-diff (%)

1 1.3576 1.3374 1.3576 0.0202 1.5072
2 1.1684 1.1569 1.1684 0.0114 0.9888

Example 4.7. The setup and data used in this numerical test are the same as those in
Example 4.3. The comparisons are carried out for the cases of C = 0 and additional control
vector C (N1 = 100 and N2 = 10). The numerics in Table 6 show that the use of the control
vector C significantly decreases the difference between the lower and upper bounds.

Using the optimal control vector C∗ for computing the tight lower bound in Table 6, we
plot 3D graphs for the optimal control π∗(t, x) (Figure 4) and distributions of the terminal
wealth X̄T (Figure 5).
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Table 6: Lower bound (LB) and upper bound (UB) with two-state regime-switching for
Example 4.7 (Yaari utility).

No control C With control C
α0 LB UB diff rel-diff (%) LB UB diff rel-diff (%)

1 1.3001 1.3270 0.0269 2.0677 1.3069 1.3267 0.0199 1.5217
2 1.1721 1.2070 0.0349 2.9748 1.1815 1.2069 0.0254 2.1465
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Figure 4: 3D graphs of the optimal control π∗(t, x) (Example 4.7 (Yaari utility)). The left
figure is for initial regime state αt = 1 and optimal control vector C∗ = (0.070462, 0.261362)
for computing the tight lower bound. The right figure is for initial regime state αt = 2 and
optimal control vector C∗ = (−0.093885,−0.332256) for computing the tight lower bound.

Example 4.8. The setup and data used in this numerical test are the same as those in
Example 4.1. The comparisons are carried out for the cases of C = 0 and additional control
vector C (N1 = 100 and N2 = 5). The numerics in Table 11 (see Appendix C) show that
the use of the control vector C significantly decreases the difference between the lower and
upper bounds.

In Table 7, we give the mean and standard deviation of the absolute and relative dif-
ference between the lower and upper bounds for Yaari utility with many randomly sampled
parameters-sets: 10 samples of a, b from the uniform distribution on interval [0.1, 2.0], r1, r2
on [0.01, 0.08], µ1, µ2 on [0.03, 0.20], σ1, σ2 on [0.1, 0.6]. It is clear that the gap between the
tight lower and upper bounds is small, but the effect of the dual control C is less pronounced
than in the cases for power and non-HARA utilities. The algorithm is still reliable and
accurate even for non-differentiable and non-strictly-concave utilities.

5 Conclusions

In this paper, we study the dual control approach for the optimal asset allocation problem
in a continuous-time regime-switching market. We find the tight lower and upper bounds of
the value function that is a solution to the HJB equation, a system of fully coupled nonlinear
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Figure 5: Distribution of terminal wealth process for Yaari utility (Example 4.7).

Table 7: Mean and std of the absolute and relative difference between the lower and upper
bounds for Yaari utility in Example 4.8 with many randomly sampled parameters-sets.

No Control C With Control C
mean diff 0.0345 0.0276
std diff 0.0219 0.0122
mean rel-diff (%) 2.7910 2.2435
std rel-diff (%) 1.5750 0.8950

partial differential equations. We suggest a Monte-Carlo algorithm for computing these tight
lower and upper bounds and show the method is reliable and accurate with a number of
numerical tests for power, non-HARA and Yaari utility functions. We can therefore find the
approximate value function and its corresponding control strategies numerically for general
utility functions in a regime switching Black-Scholes model.
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Appendix A: Proof of (8)

We verify that YT defined in (8) is the solution of SDE (7) at time T . Define

Xc
s = −

∫ s

t

(
ru + CQ′αu +

1

2
θ2u

)
du−

∫ s

t
θudWu,

Xj
s =

∑
t<u≤s

ln(1 + C(αu −αu−)),

for t ≤ s ≤ T . Then Xc
s is a continuous process and Xj

s is a pure jump process. Define
Xs = Xc

s +Xj
s and Ys = f(Xs) for t ≤ s ≤ T with f(x) = y exp(x). Using Itô formula for

semi-martingale processes, see Protter (2005), we have

dYs = YsdX
c
s +

1

2
Ysd[X

c, Xc]s + Ys − Ys−,

for t < s ≤ T , where [Xc, Xc]s =

∫ s

0
θ2udu is the quadratic variation of Xc at s and Ys−Ys−

is the pure jump part of Y at s. Since

Ys = Ys− exp (ln(1 + C(αs −αs−))) = Ys− (1 + C(αs −αs−)) ,

we have
Ys − Ys− = Ys−C(αs −αs−).

Substituting [Xc, Xc]s and Ys−Ys− into dYs, also noting (1), we derive SDE (7). Therefore,
YT is the solution of (7) at time T . �
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Appendix B: Proof of Theorem 3.1

Using Ito’s formula, we have

d(XtYt) = XtYt(−θt + πtσt)dWt +XtYtCdMt,

which implies that the process XY is a local-martingale and therefore a super-martingale
due to XtYt being non-negative. This, together with (6), gives the following relation

Et,x,i[U(XT )] ≤ Et,y,i[Ũ(YT )] + xy. (32)

Since the left side of (32) is independent of y whereas the right side of (32) is independent
of π, we have, see (4),

Vi(t, x) ≤ Wi(t, x), (33)

where Wi(t, x) is defined by (11). Note that Wi(t, x) depends on C. If S1 is a set of vectors
C, then we must have (12) from (33), which gives the tight upper bound.

The tight lower bound (16) is obvious as the process πt = π̄αt(t, X̄t), 0 ≤ t ≤ T , is
an admissible control process by the assumption of the theorem and Vi(t, x) is the optimal
value function. �

Appendix C: Tables 8, 9, 10, 11

We list the tables for Examples 4.1, 4.4, 4.5, and 4.8 with random choices of generator
matrix Q.

Table 8: Numerical results for Example 4.1 (power utility) with random choices of generator
matrix Q for two-state regime switching.

No Control C With Control C
a, b α0 Benchmark LB UB LB UB

0.100015 1 2.2139 2.2139 2.2141 2.2139 2.2140
0.349922 2 2.0762 2.0761 2.0767 2.0761 2.0764

1.535650 1 2.1542 2.1537 2.1549 2.1537 2.1545
0.971435 2 2.0918 2.0918 2.0924 2.0918 2.0921

1.112258 1 2.1616 2.1615 2.1623 2.1615 2.1620
0.516022 2 2.0776 2.0774 2.0781 2.0774 2.0778

0.189385 1 2.2110 2.2110 2.2113 2.2110 2.2112
1.389843 2 2.1245 2.1243 2.1253 2.1243 2.1249

1.390663 1 2.1692 2.1690 2.1698 2.1690 2.1694
1.875917 2 2.1188 2.1188 2.1194 2.1188 2.1190

ave time 4.67 4.63 4.59 228.83
diff rel-diff (%) diff rel-diff (%)

mean 0.0007 0.0322 0.0004 0.0181
std 0.0003 0.0139 0.0002 0.0095
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Table 9: Numerical results for Example 4.4 (non-HARA utility) with random choices of
generator matrix Q for two-state regime switching.

No Control C With Control C
a, b α0 LB UB LB UB

0.100015 1 2.6021 2.6049 2.6021 2.6040
0.349922 2 2.3510 2.3560 2.3510 2.3525

1.535650 1 2.4925 2.4981 2.4925 2.4934
0.971435 2 2.3785 2.3836 2.3785 2.3801

1.112258 1 2.5060 2.5125 2.5061 2.5073
0.516022 2 2.3539 2.3580 2.3539 2.3548

0.189385 1 2.5967 2.5996 2.5967 2.5984
1.389843 2 2.4368 2.4450 2.4368 2.4394

1.390663 1 2.5188 2.5244 2.5188 2.5215
1.875917 2 2.4264 2.4324 2.4264 2.4290

ave time 102.08 0.49 2063.39 24.55
diff rel-diff (%) diff rel-diff (%)

mean 0.0052 0.2115 0.0018 0.0719
std 0.0016 0.0673 0.0007 0.0266

Table 10: Numerical results for Example 4.5 (non-HARA utility) with random choices of
generator matrix Q for three-state regime switching.

No Control C With Control C
a, b, c α0 LB UB LB UB

0.100015 1 3.0018 3.0170 3.0018 3.0134
0.349922 2 2.6440 2.6561 2.6440 2.6479
1.535650 3 2.5688 2.5973 2.5688 2.5780

0.971435 1 2.7853 2.8192 2.7853 2.8009
1.112258 2 2.6005 2.6254 2.6005 2.6124
0.516022 3 2.4137 2.4322 2.4137 2.4219

0.189385 1 2.9749 2.9954 2.9749 2.9897
1.389843 2 2.7014 2.7280 2.7014 2.7095
1.390663 3 2.5641 2.5999 2.5641 2.5791

1.875917 1 2.6998 2.7249 2.6998 2.7155
0.828654 2 2.5946 2.6091 2.5946 2.6057
1.086891 3 2.4688 2.4887 2.4693 2.4811

1.678834 1 2.6913 2.7160 2.6940 2.7009
0.165687 2 2.5915 2.5961 2.5915 2.5955
0.201577 3 2.3509 2.3575 2.3509 2.3535

ave time 165.08 0.60 3273.52 29.76
diff rel-diff (%) diff rel-diff (%)

mean 0.0208 0.7836 0.0100 0.3750
std 0.0091 0.3427 0.0044 0.1570

23



Table 11: Numerical results for Example 4.8 (Yaari utility) with random choices of generator
matrix Q for two-state regime switching.

No Control C With Control C
a, b α0 LB UB LB UB

0.100015 1 1.3242 1.3506 1.3308 1.3506
0.349922 2 1.1629 1.1998 1.1763 1.1997

1.535650 1 1.2713 1.2923 1.2713 1.2922
0.971435 2 1.1911 1.2205 1.1951 1.2200

1.112258 1 1.2637 1.2984 1.2723 1.2981
0.516022 2 1.1683 1.2027 1.1831 1.2026

0.189385 1 1.3265 1.3481 1.3265 1.3481
1.389843 2 1.2371 1.2595 1.2371 1.2594

1.390663 1 1.2827 1.3088 1.2906 1.3087
1.875917 2 1.2147 1.2530 1.2319 1.2526

ave time 3218.12 0.02 16515.24 1.60
diff rel-diff (%) diff rel-diff (%)

mean 0.0291 2.3617 0.0217 1.7394
std 0.0066 0.6142 0.0024 0.2325
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