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Abstract

In this paper we investigate an optimal investment problem under short-selling and portfolio
insurance constraints faced by a defined contribution pension fund manager who is loss averse.
The financial market consists of a cash bond, an indexed bond and a stock. The manager aims to
maximize the expected S-shaped utility of the terminal wealth exceeding a minimum guarantee.
We apply the dual control method to solve the problem and derive the representations of the
optimal wealth process and trading strategies in terms of the dual controlled process and the
dual value function. We also perform some numerical tests and show how the S-shaped utility,
the short-selling constraints and the portfolio insurance impact the optimal terminal wealth.
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1 Introduction

Pension funds act as one of the most important institutions in financial markets since they help
to ensure personal life after retirement. There are two major categories of pension plans: defined
benefit (DB) plans and defined contribution (DC) plans. In a DB plan, the benefits at retirement are
fixed in advance and the contributions from the pension plan participation are set and subsequently
adjusted to keep the fund in balance. The financial risk associated with a DB plan is borne by
the plan sponsor rather than the plan members. In a DC plan, only the contributions, often as
a fixed percentage of salary, are defined and the employee’s retirement benefits are determined by
the size of the accumulation at retirement. The financial risk linked to a DC plan is shifted from
the sponsor to the contributor. In recent years, DC plans have become increasingly popular in the
pension market due to the demographic evolution and the development of the equity markets.

The retirement benefit of a DC plan is mainly affected by the performance of its fund portfolios
before retirement. Asset allocation decisions are important for risk management of DC pension
funds during the accumulation phase. The optimal investment strategies of DC pension plans
with different objectives have been widely discussed in the literatures, such as the mean-variance
criterion (see Sun et al. (2016), Yao et al. (2013), Wu and Zeng (2015)) and the expected utility
maximization (see Boulier et al. (2001), Cairns et al. (2006), Blake et al. (2013), Blake et al. (2014),
Chen and Delong (2015), Zeng et al. (2018)). As the investment time horizon for a DC pension
plan is usually quite long, some studies incorporate the inflation risk into the model. For example,
Zhang et al. (2007) and Zhang and Ewald (2010) investigate the optimal asset allocation with
inflation risk for DC pension funds. Han and Hung (2012) discuss a continuous-time optimization
model for optimal DC plan management with inflation risk under CRRA utility maximization and
mean-variance criterion, respectively.

Most studies investigate utility maximization problems of DC pension funds for concave utility
functions. Prospect theory, proposed by Kahneman and Tversky (1979), assumes that in behavioral
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finance, the pain associated with a loss is greater than the pleasure associated with an equivalent
gain. Instead of focusing on the absolute level of wealth itself, Kahneman and Tversky (1979)
propose an S-shaped utility function which is defined over gains and losses relative to a reference
point and is commonly used to describe loss aversion utility. For example, Blake et al. (2013)
investigate an asset allocation problem of a DC pension plan under a loss-averse preference.

As the purpose of a pension plan is to provide an adequate retirement income for the members,
some research incorporates a portfolio insurance (PI) constraint into an investment problem for
DC pension funds, see Boulier et al. (2001), Cairns et al. (2006) and Deelstra et al. (2003). The
PI constraint can enhance the protection for policyholders or the pension members by imposing a
minimum guarantee on the insurance contract. Specifically, the PI constraint requires the manager
to keep the portfolio value above a minimum guarantee at retirement, which is essential for the
welfare of the members. One popular form of the minimum guarantee is the minimum annual
income to its retired members, see Boulier et al. (2001). Guan and Liang (2014) extend the average
life expectancy to a random time with a deterministic force of mortality. When the riskless interest
rate is a constant, the forms of the minimum guarantee at retirement in Boulier et al. (2001) and
Guan and Liang (2014) are equivalent to a deterministic lump sum payment to the members.

The closest to our research is the paper by Chen et al. (2017) who investigate the optimal
investment of a DC plan under loss aversion and PI constraints with inflation risk. However, the
market in their model is complete, which allows one to adopt the martingale method to solve
the portfolio choice problem. The martingale method is often used to solve optimal investment
problems in a complete market setting, see Pliska (1986), Cox and Huang (1989) and Karatzas
et al. (1986). One may first solve a static optimization problem to find the optimal strategy
and then use the martingale representation theorem to find the optimal strategy to replicate it.
However, in the presence of market imperfections such as short-selling constraints, the martingale
representation theorem cannot be applied. Most of the existing literature on the optimal investment
of a DC plan assumes that there is no limitation on short-selling stocks, which is often prohibited
in the real world by financial regulations. Therefore, it is reasonable to incorporate short-selling
constraints into the optimal allocation problems for a DC plan. Extending Chen et al. (2017), we
investigate the optimal investment of a DC plan under loss aversion, short-selling and PI constraints.
The considered market becomes incomplete due to short-selling prohibitions and the optimization
problem cannot be solved analytically by using the martingale method.

The dual control method is effective in solving the portfolio optimization problem with control
constraints since it relates the original stochastic optimal control problem to a dual problem which
may be relatively easier to solve than the primal problem. Xu and Shreve (1992) use a duality
method to characterize solutions for the optimal wealth and portfolio processes under prohibition
of short-selling of stocks. Cvitanić and Karatzas (1992) solve the concave utility maximization
problem under convex portfolio constraints, including short-selling or borrowing constraints, and
so on. Bian et al. (2011) investigate a constrained portfolio choice problem with utility functions
that are not necessarily differentiable or strictly concave. Although the dual control method has
been widely used in the constrained portfolio choice problem, few literature focuses on its applica-
tions in insurance and actuarial science. In the present paper, we extend the dual control method
to investigate the optimal portfolio choice of a DC pension plan under short-selling constraints.
Our paper is different from the portfolio selection literature at least in two aspects. Firstly, most
literature on the constrained portfolio choice problem focuses on maximizing the expectation of a
smooth utility of terminal wealth, whereas we need to solve a non-concave utility maximization
problem with control constraints, which is much more complex to deal with. Secondly, the contri-
bution term in a DC pension plan makes the wealth process not a self-financing portfolio, which
requires some modification of the procedures of our dual control method from those in the portfolio
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selection literature.
We apply the dual control method to solve the problem and characterize explicitly the optimal

portfolio and wealth processes. Furthermore, we extend Chen et al. (2017) to an S-shaped utility
function and general utilities on loss and gain segments, including power and non-HARA utilities,
and give the explicit expressions for the optimal allocation strategies. Our theoretical and numerical
results show that the short-selling and PI constraints can significantly improve the risk management
for investors and regulators due to their preference for less volatility. We also find that the reference
point and the minimum guarantee play important roles in asset allocation of a DC pension plan.
Numerical tests show that the expected optimal terminal wealth has a V-shaped pattern with a
minimum at a particular reference point, which is approximately equal to the difference between
the accumulated value at retirement when all the wealth is invested in the cash bond and the
protection level. When a reference point in the S-shaped utility moves away from that particular
reference point, the pension manager takes more risk by investing more in risky assets to achieve
higher expected gains. We also note that the PI constraint well protects the members’ benefits by
keeping the optimal terminal wealth always above the minimum guarantee. If the protection level
is low, then the PI constraint can not provide a significant improvement for risk management. If
the protection level is high, then the pension manager may take more prudent investment, which
results in a relatively low expected terminal wealth.

The main contribution of this paper to the actuarial/insurance literature is that we extend
the application of the dual control method in the portfolio selection literature to a constrained
non-concave utility maximization problem of a DC pension plan involving continuous contribution
inflows. We convert such an optimization problem into a classic constrained optimal portfolio choice
problem and characterize explicitly the optimal wealth process and the optimal investment strategy
under the assumption that the amount of money contributed to the pension fund is deterministic.
Although our paper is written in terms of DC pension plan, our analysis can also, for example,
be applied to the optimization problem under short-selling constraints of life insurance contracts
which provide minimum guarantees or the optimal portfolio problem with life insurance purchase
under short-selling constraints.

The rest of the paper is organized as follows. In Section 2, we formulate the market model
of the investment problem faced by a DC plan manager. In Section 3, we use the concavification
technique and the dual control method to solve the optimal investment problem with the S-shaped
utility, the PI and short-selling constraints and characterize explicitly the optimal wealth process
and the optimal investment strategy in terms of the dual controlled process and the dual value
function. In Section 4, we perform and analyze some numerical tests. Section 5 concludes.

2 The financial market and DC pension plan

We consider the investment problem of a DC pension plan from perspective of a pension manager.
Consider a continuous-time model with a finite time horizon T = [0, T ]. Let (Ω,F ,F, P ) be a filtered
complete probability space where the filtration F := {Ft|t ∈ T } satisfies the usual conditions.
Assume that all random variables and stochastic processes in this paper are well defined in this
probability space. The pension fund starts at time 0 and the retirement time is T .

Let W (t) := (W1(t),W2(t))
⊤ be a two-dimensional, standard Brownian motion, where W1(t)

and W2(t) are independent and a⊤ is the transpose of a. We consider a continuous-time financial
market with inflation risk, which is often represented by CPI (Consumer Price Index) and may be
regarded as a price level process. Following Brennan and Xia (2002), Han and Hung (2012) and
Chen et al. (2017), we use a price level process, P (t), to capture the inflation risk, and assume that
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P (t) satisfies the following stochastic differential equation:

dP (t)

P (t)
= idt+ σIdW1(t), P (0) = p0 > 0,

where i > 0 is the expected rate of inflation and σI > 0 is the volatility of the price level.
Assume that the financial market consists of three traded assets: a riskless cash bond, a risky

stock and an indexed bond which has the same risk source as the price level process.
The indexed bond I(t) offers a constant rate of real return rI and its price process follows

dI(t)

I(t)
= rIdt+

dP (t)

P (t)
= (rI + i)dt+ σIdW1(t).

The riskless money market account B(t) evolves as

dB(t)

B(t)
= rdt,

where r is a constant riskless rate of nominal return. The stock price S(t) follows a geometric
Brownian motion:

dS(t)

S(t)
= µSdt+ σS(ρdW1(t) + ρdW2(t)),

where µS is the growth rate, σS the volatility, −1 < ρ < 1 the correlation between the indexed
bond and the stock and ρ =

√
1− ρ2. We assume that rI + i > r, µS > r.

Define the volatility matrix

σ =

(
σI 0
σSρ σSρ

)
which is nonsingular. There exists a unique market price of risk, ξ, given by

ξ = σ−1

(
rI + i− r
µS − r

)
=

(
ϑI

(ϑS − ρϑI)/ρ

)
,

where ϑI = rI+i−r
σI

> 0 and ϑS = µS−r
σS

> 0 are the market prices of risk associated with the indexed
bond and the stock, respectively.

In a DC plan, the pension members make a continuous contribution of salary to the pension
plan before retirement time T and the amount of money contributed to the pension fund at time
t is assumed to be c(t) > 0. In practice, the contribution rate may follow a stochastic process (see
Chen et al. (2017) and Guan and Liang (2016)), which is more realistic but also makes essentially
impossible to explicitly solve the optimization problem with trading constraints. To derive closed-
form investment strategies, we assume c(t) is a deterministic, non-decreasing function in this paper.
This is based on the fact that, in the labor market, the average salary of employees and the
contribution rate often steadily increase in the long run and such an assumption is a reasonable
approximation to reality, see Boulier et al. (2001) in which c(t) is an exponential function of time
t. Furthermore, as mentioned in Chen et al. (2017), it is more realistic to set c(t) to be less
than a certain level due to government regulations on DC pension funds, which makes even the
unconstrained optimization problem more difficult to solve under the assumption that c(t) follows
a diffusion process. However, this more realistic consideration does not bring any difficulty in
mathematics in our model.
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Assume that there are no transaction costs or taxes in the market and short selling is not
allowed. The pension account is endowed with an initial wealth x0 ≥ 0. The pension manager can
invest in the financial market. Let π1(t) and π2(t) be the amounts of wealth invested in the indexed
bond and the stock, respectively. Then, the wealth process Xπ(t) satisfies

dXπ(t) = (rXπ(t) + π⊤(t)σξ)dt+ π⊤(t)σdW (t) + c(t)dt,Xπ(0) = x0 ≥ 0, (2.1)

where π(t) = (π1(t), π2(t))
⊤. We next define the set of admissible trading strategies.

Definition 2.1. A portfolio strategy π = (π1, π2)
⊤ is said to be admissible if it is a progressively

measurable, F-adapted process which satisfies E[
∫ T
0 ∥π(t)∥2dt] < ∞, π1(t) ≥ 0, π2(t) ≥ 0, a.s., and

there exists a unique strong solution Xπ(t) to (2.1). The set of all admissible portfolio strategies is
denoted by A.

In Definition 2.1, the condition π1(t) ≥ 0, π2(t) ≥ 0, a.s. rules out short-selling of the indexed
bond and stock, but borrowing is still allowed. Note that, when the constraint sets are closed convex
cones that include no borrowing or no short-selling constraints, we can use the dual control method
to explicitly solve the constrained portfolio choice problem. For the case with both borrowing and
short-selling constraints, that is, π1(t) ≥ 0, π2(t) ≥ 0, Xπ(t)− π1(t)− π2(t) ≥ 0, a.s., the constraint
set is not a closed convex cone, which leads to a nonlinear dual HJB equation and may not admit
a closed-form solution, see Karatzas and Shreve (1998).

The pension manager aims to find the best allocations in the indexed bond and stock to maxi-
mize the expected utility of the terminal wealth over a guaranteed threshold value, that is,{

max
π∈A

E[U(Xπ(T )− L)],

s.t. Xπ(t) satisfies (2.1), Xπ(T ) ≥ L,
(2.2)

where U is a continuous increasing function on [0,∞) and U(x) = −∞ for x < 0, L is a positive
constant which represents a lump sum to the members at retirement.

3 Optimal investment strategy

Some earlier research mainly focuses on concave utilities maximization in a DC pension fund,
see Boulier et al. (2001) and Deelstra et al. (2003). Kahneman and Tversky (1979) claim that
most investors are loss-averse and make decisions relative to some reference levels. Based on
experiments, Kahneman and Tversky (1979) propose an S-shaped utility function to characterize
different behaviors of people over gains and losses relative to a reference point, that is, risk averse
over gains and risk seeking over losses. Mathematically, the S-shaped utility on [0,∞) is defined by

U(x) =

{
−U2(θ − x), 0 ≤ x < θ,
U1(x− θ), x ≥ θ,

(3.1)

where θ > 0 is a reference point, U1 and U2 are strictly increasing, strictly concave, continuously
differentiable on [0,∞) satisfying

U ′
1(x) < U ′

2(x), (3.2)

Ui(0) = 0, lim
x→+∞

Ui(x) = +∞, lim
x→0+

U ′
i(x) = +∞, lim

x→+∞
U ′
i(x) = 0, (3.3)
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and

0 ≤ Ui(x) ≤ Mi(1 + xpi), x ≥ 0, (3.4)

for some constants Mi > 0, 0 < pi < 1, i = 1, 2, see Xu and Shreve(1992) and Bian et al. (2011).
Define Ui(x) = −∞ for x < 0. Note that U is convex when x is less than θ (on the loss domain)
and concave when x is greater than θ (on the gain domain), which demonstrates that people tend
to be risk averse with respect to gains and risk seeking with respect to losses. Therefore, (3.1)
gives an S-shaped graph and is called an S-shaped utility function. The reference point θ is chosen
in advance to be associated with the contribution rate and initial wealth. Condition (3.2) holds
for loss aversion, which implies that people are more sensitive to a loss than to a gain of the same
amount, see Tversky and Kahneman(1992). For example, we can take U2(x) = λU1(x), for some
loss aversion degree λ > 1.

Condition (3.3) ensures that the strictly decreasing function U ′
1 has a strictly decreasing inverse

I1 : (0,∞) → (0,∞), that is

U ′
1(I1(y)) = y, ∀y > 0, I1(U

′
1(x)) = x,∀x > 0.

Next, we employ the concavification technique from Carpenter (2000) to find the optimal solution
of problem (2.2). Denote by f c the concave envelope of a function f with domain D by:

f c(x) := inf{g(x) : D → R|g(t) is a concave function, g(t) ≥ f(t),∀t ∈ D},∀x ∈ D.

We first derive the concave envelope of U, see Carpenter (2000). Let z be the tangent point of the
straight line starting at (0,−U2(θ)) to the curve U1(x), x ≥ θ. Simple calculus shows the concave

Figure 1: Concave envelope of U(x)

envelope of U is given by

U c(x) =

{
kx− U2(θ), 0 ≤ x < z,
U1(x− θ), x ≥ z,

(3.5)

where
k = U ′

1(z − θ) (3.6)

is the slope of the tangent line (see Figure 1) and z > θ is the unique solution of the following
equation

U1(x− θ) + U2(θ)− xU ′
1(x− θ) = 0. (3.7)
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Example 3.1. For the utility proposed by Kahneman and Tversky (1979)

U(x) =

{
−A(θ − x)γ1 , 0 ≤ x < θ,
B(x− θ)γ2 , x ≥ θ,

(3.8)

where A > B > 0, 0 < γ1, γ2 < 1, we have that z is the unique solution of the equation

B(x− θ)γ2 −Bγ2x(x− θ)γ2−1 +Aθγ1 = 0,

and k = Bγ2(z − θ)γ2−1.

The utility function (3.8) and the restrictions on the parameters are supported by experiments
and statistics in Kahneman and Tversky (1979) and commonly used in optimization problems, see
Berkelaar et al. (2004), Chen et al. (2017), Guan and Liang (2016), He and Kou (2018) and Lin et
al. (2017). In particular, when there are no short-selling constraints, Chen et al. (2017) and Guan
and Liang (2016) use the martingale method to solve the optimization problem (2.2) with utility
(3.8). However, when short-selling is not allowed, the martingale representation theorem can not
be used.

The dual control method is useful in solving constrained portfolio optimization problems. The
dual function plays an important role in establishing the dual relation between the primal and dual
problems. The dual function of U is defined by

V (y) = sup
x≥0

{U(x)− xy}, y > 0. (3.9)

and that of the concave envelope U c is defined by

V c(y) = sup
x≥0

{U c(x)− xy}, y > 0. (3.10)

It is easy to find that x∗(y) which solves both (3.9) and (3.10) is given by

x∗(y) =

{
θ + I1(y), 0 < y < k,
0, y ≥ k.

(3.11)

From Lemma 2.9 of Reichlin (2013), we have, for y > 0,

V (y) = V c(y) = U c(x∗(y))− x∗(y)y

=

{
U1(I1(y))− (I1(y) + θ)y, 0 < y < k,
−U2(θ), y ≥ k.

(3.12)

We next define the set of admissible dual controls.

Definition 3.2. A dual control process is a progressively measurable, F-adapted process ν =
(ν1, ν2)

⊤ which satisfies E[
∫ T
0 ∥ν(t)∥2dt] < ∞ and ν1(t) ≥ 0, ν2(t) ≥ 0, a.s.. We denote the set of

all dual control processes by A0.

To use the dual control method to study the utility maximization problem, the choice of dual
processes is crucial. For the wealth process (2.1) with c(t) = 0, Bian et al. (2011) choose a
nonnegative supermartingale process Y ν such that Xπ(t)Y ν(t) is a supermartingale. As the wealth
process (2.1) is not self-financing for c(t) > 0, the dual control method in Bian et al. (2011) cannot
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be directly applied. To convert the optimization problem (2.2) into a classical portfolio optimization
problem with control constraints, we follow Zhang and Ewald (2010) to define

D(t) =

∫ T

t
c(s)e−r(s−t)ds, (3.13)

the discounted value at time t of total pension contribution from t to T, and let

X̃π(t) = Xπ(t) +D(t). (3.14)

Using (2.1), we have

dX̃π(t) = (rX̃π(t) + π⊤(t)σξ)dt+ π⊤(t)σdW (t), X̃π(0) = x̃0 ≥ 0, (3.15)

with x̃0 = x0+D(0) = x0+
∫ T
0 c(s)e−rsds. Note that X̃π(T ) = Xπ(T ). Therefore, the optimization

problem (2.2) is equivalent to the following problem:{
max
π∈A

E[U(X̃π(T )− L)],

s.t. X̃π(t) satisfies (3.15), X̃π(T ) ≥ L.
(3.16)

Following a similar argument in Bian et al. (2011), we take a nonnegative supermartingale
process Y ν such that

Zν(t) := X̃π(t)Y ν(t), 0 ≤ t ≤ T,

is a supermartingale. Then the dual process is given by

dY ν(t) = Y ν(t)(−rdt− (σ−1ν(t) + ξ)⊤dW (t)), Y ν(0) = y0,

where ν ∈ A0. Since Zν is a supermartingale, also noting V c is the dual function of U c, we have

E[U c(X̃π(T )− L)] ≤ E[V c(Y ν(T )) + (X̃π(T )− L)Y ν(T )],

≤ E[V c(Y ν(T )) + x̃0y0 − LY ν(T )].

Consider the dual minimization problem

inf
ν∈A0

E[V c(Y ν(T ))− LY ν(T )].

For 0 ≤ t ≤ T and y > 0, the dual value function is defined by

v(t, y) = inf
ν∈A0

E[V c(Y ν(T ))− LY ν(T )|Y ν(t) = y].

The dual HJB equation is given by{
∂v
∂t (t, y)− ry ∂v

∂y (t, y) +
1
2y

2 min
ν∈[0,∞)2

∥ξ + σ−1ν∥2 ∂2v
∂y2

(t, y) = 0, y > 0, t < T,

v(T, y) = V (y)− Ly.
(3.17)

Here we have used V (y) = V c(y) for y > 0. Let

f(ν) := ∥ξ + σ−1ν∥2 = (
ν1
σI

+ ϑI)
2 +

1

ρ2
(
ν2
σS

+ ϑS − ρ(
ν1
σI

+ ϑI))
2. (3.18)
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Lemma 3.3. Under the assumption that rI + i > r, µS > r, we have that f has a unique minimizer
ν̂ ∈ [0,∞)2 satisfying ∥ξ + σ−1ν̂∥2 > 0 and min{ν̂1, ν̂2} = 0.

Proof. Since f is a continuous, strictly convex and coercive function, f has a unique minimizer
ν̂ ∈ [0,∞)2. To derive the unique minimizer of (3.18), we define a Lagrange function as

L(ν1, ν2, u1, u2) = (
ν1
σI

+ ϑI)
2 +

1

ρ2
(
ν2
σS

+ ϑS − ρ(
ν1
σI

+ ϑI))
2 − u1ν1 − u2ν2.

The Kuhn-Tucker condition implies that
Lν1 = 2

σI
( ν1σI

+ ϑI)− 2ρ
ρ2σI

( ν2
σS

+ ϑS − ρ( ν1σI
+ ϑI))− u1 = 0,

Lν2 = 2
ρ2σS

( ν2
σS

+ ϑS − ρ( ν1σI
+ ϑI))− u2 = 0,

uiνi = 0, ui ≥ 0, νi ≥ 0, i = 1, 2.

(3.19)

If u1 = 0, u2 = 0, solving (3.19) yields{
ν̂1 = −ϑIσI < 0,
ν̂2 = −ϑSσS < 0,

(3.20)

which contradicts the condition that ν1 ≥ 0, ν2 ≥ 0. Therefore, u1, u2 cannot be both zero and the
solution (3.20) is impossible, which implies ∥ξ + σ−1ν̂∥2 > 0. From the complementary slackness
condition uivi = 0, i = 1, 2, we conclude that ν̂1 = 0 or ν̂2 = 0.

Denote by ξ̂ = ξ + σ−1ν̂. Then ξ̂ ̸= 0 and the solution to (3.17) is given by{
v(t, y) = E[V (Y ν̂(T ))− LY ν̂(T )|Y ν̂(t) = y],

Y ν̂(s) = ye−(r+
∥ξ̂∥2
2

)(s−t)−ξ̂⊤(W (s)−W (t)), t ≤ s ≤ T.
(3.21)

Remark 3.4. If the guaranteed threshold value L = L(T ) is stochastic, then we can also follow the
same idea as above to define the dual value function as follows:

v(t, y, L) = inf
ν∈A0

E[V c(Y ν(T ))− L(T )Y ν(T )|Y ν(t) = y, L(t) = L].

However, solving such an optimization problem explicitly is difficult because the dual HJB equation
is a nonlinear PDE and we may have to rely on numerical methods. Although L in our paper is
deterministic, we can choose it by considering the average rate of inflation and the level of economic
growth to reduce the inflation risk.

Define the value functions of the primal problem and the concavified version to be

u(t, x̃) = max
π∈A

E[U(X̃π(T )− L)|X̃π(t) = x̃], (3.22)

and

uc(t, x̃) = max
π∈A

E[U c(X̃π(T )− L)|X̃π(t) = x̃]. (3.23)

We first calculate uc(t, x̃). Bian et al. (2011) and Xu and Shreve (1992) give the relationship between
the primal value function uc(t, x̃) and the dual value function v(t, y).
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Theorem 3.5. (Bian et al. (2011)) Assume v(t, y) is given by (3.21) and the conditions (3.3) and
(3.4) hold. Then we have

uc(t, x̃) = v(t, y(t, x̃)) + x̃y(t, x̃), x̃ ≥ 0,

where y = y(t, x̃) satisfies
vy(t, y) + x̃ = 0. (3.24)

Moreover, the optimal feedback control is given by

π∗(t) = (σ⊤)−1ξ̂y(t, x̃)vyy(t, y(t, x̃)) ∈ [0,∞)2. (3.25)

To see how the short-selling constraints impact the optimal wealth process, we express Y ν̂(T )
as

Y ν̂(T ) = Y ν̂(t)
H ν̂(T )

H ν̂(t)
,

where

H ν̂(t) = e−(r+
∥ξ̂∥2
2

)t−ξ̂⊤W (t) (3.26)

is a state-price density process in a fictitious market (see Cox and Huang (1989)). If there is

no limitation on the trading strategy, then ν̂ = (0, 0)⊤ and H ν̂(t) = e−(r+
∥ξ∥2
2

)t−ξ⊤W (t), which is
exactly the pricing kernel in a complete market. The following result is useful in deriving analytic
expressions for the optimal wealth process and the optimal investment strategy.

Lemma 3.6. Let H ν̂(t) be defined by (3.26). Then for any λ ∈ R, h > 0, y > 0, we have

E[(H ν̂(T ))λ1{H ν̂(T )<h}|H ν̂(t) = y] = yλe
λ2α2(t)

2
−λβ(t)Φ(d1(h, y, t)− λα(t)), (3.27)

where

α(t) = ∥ξ̂∥
√
T − t, β(t) = (r +

∥ξ̂∥2

2
)(T − t), d1(h, y, t) =

ln(h/y) + β(t)

α(t)
, (3.28)

and Φ is the cumulative distribution function of a standard normal variable.

Proof. We rewrite H ν̂(T ) as

H ν̂(T ) = H ν̂(t)eZ , Z = −β(t)− ξ̂⊤(W (T )−W (t)) ∼ N(−β(t), α2(t)). (3.29)

Then

E[(H ν̂(T ))λ1{H ν̂(T )<h}|H ν̂(t) = y] = yλ
∫ ln(h/y)

−∞
eλz

1√
2πα(t)

e
− (z+β(t))2

2α2(t) dz.

Simple calculus leads to (3.27).

Proposition 3.7. Under the utility function (3.5) and the condition x0 +
∫ T
0 c(s)e−rsds ≥ Le−rT ,

the optimal terminal wealth and the optimal wealth process at time 0 ≤ t < T are given by

Xπ∗
(T ) =

{
I1(y0H

ν̂(T )) + θ + L, H ν̂(T ) < k
y0
,

L, H ν̂(T ) ≥ k
y0
,

(3.30)
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and

Xπ∗
(t) =

1

H ν̂(t)
E[H ν̂(T )Xπ∗

(T )|Ft]−
∫ T

t
c(s)e−r(s−t)ds, (3.31)

where k is given by (3.6), y0 = Y ν̂(0) is the solution to the budget constraint

E[H ν̂(T )Xπ∗
(T )] = x0 +

∫ T

0
c(s)e−rsds, (3.32)

and

1

H ν̂(t)
E[H ν̂(T )Xπ∗

(T )|Ft] = G(k, y0H
ν̂(t), t) + θe−r(T−t)Φ(d2(k, y0H

ν̂(t), t)) + Le−r(T−t), (3.33)

with

G(k, y, t) =

∫ d1(k,y,t)

−∞
I1(ye

α(t)z−β(t))eα(t)z−β(t)φ(z)dz, (3.34)

φ the standard normal density function, d2(k, y, t) = d1(k, y, t) − α(t), α(t), β(t) and d1(k, y, t)
defined by (3.28).

The optimal investment strategy is given by

π∗(t) = (σ⊤)−1ξ̂Λ(t, Y ν̂(t)) ∈ [0,∞)2, (3.35)

where

Λ(t, y) = θe−r(T−t)φ(d2(k, y, t))

α(t)
− yGy(k, y, t) > 0. (3.36)

Proof. Assume ν̂⊤ = (ν̂1, ν̂2) with ν̂1 ≥ 0, ν̂2 ≥ 0 is a solution to (3.19). Note that V (y) is
continuous for y > 0 and continuously differentiable for y > 0 except at finitely many points. Using
(3.12) and pathwise differentiation, we have

vy(t, y) = −E[x∗(Y ν̂(T ))
Y ν̂(T )

y
|Y ν̂(t) = y]− Le−r(T−t), (3.37)

where x∗(y) is defined in (3.11). From (3.24), we obtain that under the utility function (3.5),

X̃π∗
(t) = −vy(t, y0H

ν̂(t))

= E[x∗(y0H
ν̂(T ))

H ν̂(T )

H ν̂(t)
|Ft] + Le−r(T−t). (3.38)

In particular,
Xπ∗

(T ) = X̃π∗
(T ) = x∗(y0H

ν̂(T )) + L, (3.39)

which yields (3.30) and y0 satisfies the budget constraint (3.32). Substituting (3.39) into (3.38)
yields

X̃π∗
(t) = E[X̃π∗

(T )
H ν̂(T )

H ν̂(t)
|Ft]. (3.40)

Equation (3.31) is a direct consequence of (3.40) and (3.14). Equation (3.33) follows from Lemma
3.6. It remains to show that there is a unique root y0 to (3.32). Note that for any ω ∈ Ω, y0 →
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Xπ∗
(T ) is a decreasing function of y0 since I1 is strictly decreasing. Then V (y0) = E[H ν̂(T )Xπ∗

(T )]
is continuous and strictly decreasing in y0. Furthermore, for any ω ∈ Ω, we have lim

y0→0+
Xπ∗

(T ) = ∞

and lim
y0→∞

Xπ∗
(T ) = L, which yields

lim
y0→0+

V (y0) = ∞, lim
y0→∞

V (y0) = Le−rT .

Thus, for Le−rT < x0 +
∫ T
0 e−rsds, there exists a unique solution y0 ∈ (0,∞) to equation (3.32);

for Le−rT = x0 +
∫ T
0 e−rsds, there is only one admissible solution Xπ∗

(T ) = L, which implies that
one should only invest in the risk-free cash bond to attain the minimum guarantee at retirement.

The optimal control π∗(t) in (3.35) can be easily derived from (3.25), (3.37) and (3.33). In
particular, (3.25) guarantees that π∗(t) ∈ [0,∞)2, which implies Λ given by (3.36) is nonnegative.

Remark 3.8. Similar to Basak and Shapiro (2001), it is easy to see that if x0 +
∫ T
0 c(s)e−rsds <

Le−rT , then the optimization problem (2.2) is infeasible.

Proposition 3.9. Under the utility function (3.1) and the condition x0 +
∫ T
0 c(s)e−rsds ≥ Le−rT ,

the value function of the primal problem (3.22) is

u(t, x̃) = uc(t, x̃),

where uc(t, x̃) is defined by (3.23). Furthermore, the optimal wealth process and the optimal invest-
ment strategy are given by (3.31) and (3.35), respectively. The optimal terminal wealth is given by
(3.30) and

P (Xπ∗
(T ) ∈ (L,L+ z)) = 0, (3.41)

where z is define by (3.7).

Proof. Since H v̂(T ) has no atom, Theorem 5.1 of Reichlin (2013) gives that u(t, x̃) = uc(t, x̃).
Therefore, the optimal wealth process and the optimal investment strategy under the utility (3.1)
are the same as those under the utility (3.5). Note that {x|U(x) < U c(x)} = (0, z) and {x∗(y) ∈
{U(x) < U c(x)}} = ∅. Then from Proposition 5.3 of Reichlin (2013), we have that the optimal
terminal wealth under the utility (3.1) is the same as that under the utility (3.5) given by (3.30).
Since I1(y) is a strictly decreasing function, we conclude that for H ν̂(T ) ≤ k

y0
,

I1(y0H
ν̂(T )) + θ + L ≥ I1(U

′
1(z − θ)) + θ + L = z + L.

Therefore, P (Xπ∗
(T ) ∈ (L, z + L)) = 0.

Equation (3.30) implies that the PI constraint ensures that the optimal terminal wealth is
always above L. If the economy is good, then the members also gain an additional amount over L
by θ + I1(y0H

ν̂(T )) from participating in the financial market.
Similar to the formulas for the optimal wealth process derived in Chen et al. (2017) in a complete

market, the optimal wealth process Xπ∗
(t) given by (3.31) is obtained by the pricing theory and

consists of two components. The first part 1
H ν̂(t)

E[H ν̂(T )Xπ∗
(T )|Ft] is the t-price of the random

variable Xπ∗
(T ) in an incomplete market. The second part

∫ T
t c(s)e−r(s−t)ds, which can also be

expresses as 1
H ν̂(t)

E[
∫ T
t H ν̂(s)c(s)ds|Ft], represents the price of the aggregated contribution from t
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to T. As mentioned in Zhang and Ewald (2010), in a complete market, the non-negative terminal
wealth constraint does not guarantee non-negative wealth at all times due to the presence of a
positive income stream, which is the problem of liquidity constraint. In our considered market, the
wealth may also become negative. However, the wealth Xπ∗

(t) plus the discounted value of future
contributions D(t) is no less than the discounted value of minimum performance at each time.

Equation (3.35) is similar to the result in the portfolio selection literature, which considers a
general investment problem. Comparing (3.35) with (29) in Chen et al. (2017), the contribution
part and the minimum guarantee are not included in the investment strategy under our model.
The reason is that the guarantee L and the contribution rate c(t) are both deterministic and these
two parts do not bring hedge demands in the investment strategy. When the contribution rate
c(t) and L both depend on the stock and indexed-bond market, we can still formulate the dual
optimization problem. However, this generalization leads to a nonlinear dual HJB equation which
is equally difficult to solve as the primal HJB equation.

Remark 3.10. For a utility defined in Example 3.1, when there are no short-selling and PI con-
straints, the optimal terminal wealth (3.30) has the same form as (3.5) in Guan and Liang (2016);
when there is only PI constraint, the optimal terminal wealth has the same form as (27) in Chen et
al. (2017). Therefore, extending Guan and Liang (2016) and Chen et al. (2017), we include both
PI and short-selling constraints in our framework. Due to incompleteness introduced through short-
selling constraints, the martingale method used in Guan and Liang (2016) and Chen et al. (2017)
does not work in our model.

We next analyze how the reference point θ and the protection level L impact the optimal
terminal wealth. If θ is 0, then the utility function (3.1) degenerates to U(x) = U1(x) for x ≥ 0.
We have z = 0, k = ∞ and d1(k, y, t) = ∞, which results in simplified expressions for the optimal
wealth and control processes in Proposition 3.7 and the optimal terminal wealth is given by

Xπ∗
(T ) = I1(y0H

ν̂(T )) + L. (3.42)

Comparing (3.30) with (3.42), we can see that the optimal terminal wealth Xπ∗
(T ) under a concave

utility is continuous, while Xπ∗
(T ) under an S-shaped utility takes a two-region form with a point

mass at L. When H ν̂(T ) is low, the optimal terminal wealth under loss aversion is similar to the
smooth concave utility and is above θ + L; when H ν̂(T ) is high, Xπ∗

(T ) equals to L since the loss
aversion states a risk-seeking preference under θ + L.

0
0

H
ν̂(T)

X
π

?

(T)

no PI cons traint

PI cons traint,L1

PI cons traint,L2 >L1

Figure 2: Xπ∗
(T ) versus H ν̂(T )), θ > 0

0
0

H
ν̂(T)

X
π

?

(T)

no PI cons traint

PI cons traint,L1

PI cons traint,L2 >L1

Figure 3: Xπ∗
(T ) versus H ν̂(T )), θ = 0
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For a given θ ≥ 0, it is easy to conclude that y0 increases with L from the budget constraint
(3.32). which implies that for a quite low H ν̂(T ), the optimal terminal wealth Xπ∗

(T ) decreases
with L. Figures 2 and 3 display the relationship between the optimal terminal wealth and H ν̂(T )
for an S-shaped utility and a concave utility, respectively. We can observe that in good economic
states the PI constraint decreases the optimal terminal wealth and in bad economic states the PI
constraint keeps the terminal wealth above L, which implies the protection for the members in bad
economic states is at the expense of the optimal terminal wealth in good economic states. We can
also note that a higher protection level L leads to a lower value of Xπ∗

(T ) in good economic states.
Therefore, putting the PI constraint improves the risk management since it keeps the optimal
terminal above L and makes the optimal terminal wealth less volatile.

The PI constraint provides a minimum guarantee for bad economic states. The next result
measures the region of the protected states.

Proposition 3.11. For a given θ > 0, we have that

P (Xπ∗
(T ) = L) = 1− Φ(d1(k, y0, 0)),

where k is given by (3.6) and y0 is determined by (3.32). Furthermore, P (Xπ∗
(T ) = L) is an

increasing function of L.

Proof. From (3.30), we have

P (Xπ∗
(T ) = L) = P (H ν̂(T ) ≥ k

y0
).

The fact that y0 increases in L concludes the result.

Remark 3.12. The design of the minimum guarantee is important for the DC pension plan. If L
is too high, then more states need to be insured against, which brings a prudent investment process
and a small expected optimal terminal wealth. If L is too low, then the effect of the PI constraint is
not significant. Similar to Boulier et al. (2001), Liang and Guan (2014) and Chen et al. (2017),
we can set L to be the annual guarantee, that is, L =

∫ ϖ
T e−r(s−T )a(s)s−T pTds, where ϖ is the

largest survival age, a(s) = a(T )eg(s−T ), s ∈ [T, τ ] is the annuity at time s, g is a constant that
reflects the average inflation rate and the increasing standard of living, τ is the date of death and
random, s−T pT = e−

∫ s
T λ(v)dv is the probability that the contributor will survive to s given that she

is still alive at T and λ(v) is the deterministic force of mortality.

From Propositions 3.7, 3.9, we can easily obtain the optimal wealth process for a special class
of utility function, including power and non-HARA utilities.

Example 3.13. Let the dual function of U1 be given by

V1(y) =

m∑
i=1

ciy
qi , (3.43)

where qi < 0, ci > 0, i = 1, 2, · · · ,m, and m ≥ 1 is an integer. (3.43) covers many utility functions,
including power utility

U1(x) = Bxγ , 0 < γ < 1, B > 0,

with dual function given by

V1(y) = B(1− γ)(
y

Bγ
)

γ
γ−1 ,
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and non-HARR utility (see Bian and Zheng (2015))

U1(x) =
1

3
H(x)−3 +H(x)−1 + xH(x),

where H(x) = ( 2
−1+

√
1+4x

)
1
2 , with dual function given by

V1(y) =
1

3
y−3 + y−1.

Propositions 3.7, 3.9 say that the optimal wealth process is given by (3.31) with

G(k, y, t) = −
m∑
i=1

ciqiy
qi−1eΓi(t,T )Φ(di(k, y, t))),

where Γi(t, T ) = −qiβ(t) +
q2i
2 α

2(t), and di(k, y, t) = d1(k, y, t)− qiα(t).

Next we derive the explicit formulas for the dual control ν̂, the optimal wealth process and the
optimal investment strategy under the utility function (3.1).

Proposition 3.14. Consider the utility function (3.1).
Case A: If ϑI > ρϑS and ϑS > ρϑI , then the optimal wealth process is given by (3.31) with ν̂

and ξ̂ replaced by (0, 0)⊤ and (ϑI , (ϑS − ρϑI)/ρ)
⊤, respectively. The optimal investment strategy is

π∗(t) = Λ(t, Y ν̂(t))

(
ϑI−ρϑS

σIρ
2

ϑS−ρϑI

σSρ
2

)
,

where Λ(t, y) is defined in (3.36).
Case B: If ρϑI ≥ ϑS , then the optimal wealth process is given by (3.31) with ν̂ and ξ̂ replaced

by (0, σS(ρϑI − ϑS))
⊤ and (ϑI , 0)

⊤, respectively. The optimal investment strategy is

π∗(t) =

(
ϑIΛ(t,Y

ν̂(t))
σI

0

)
.

Case C: If ρϑS ≥ ϑI , then the optimal wealth process is given by (3.31) with ν̂ and ξ̂ replaced by
(σI(ρϑS − ϑI), 0)

⊤ and (ρϑS , ρϑS)
⊤, respectively. The optimal investment strategy is

π∗(t) =

(
0

ϑSΛ(t,Y
ν̂(t))

σS

)
.

Proof. To derive the explicit formulas for the optimal wealth, we need to find the unique minimizer
of (3.18), ν̂, with min{ν̂1, ν̂2} = 0. We solve the equation (3.19) according to the following three
cases.

Case A: If u1 > 0, u2 > 0, then ν̂1 = 0, ν̂2 = 0, and{
u1 =

2(ϑI−ρϑS)
σIρ

2 ,

u2 =
2(ϑS−ρϑI)

σSρ
2 .

Since u1 > 0, u2 > 0, we must have ϑI > ρϑS , ϑS > ρϑI , and ξ̂ = σ−1ν̂ + ξ = ξ = (ϑI ,
ϑS−ρϑI

ρ )⊤.

Substituting the expressions for ν̂ and ξ̂ into (3.31) and (3.35), we obtain the result.
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Case B: If u1 > 0, u2 = 0, then ν̂1 = 0, and{
2ϑI
σI

− 2ρ
σIρ

2 (
ν2
σS

+ ϑS − ρϑI)− u1 = 0,
2

σSρ
2 (

ν2
σS

+ ϑS − ρϑI) = 0.

Solving the above equation, we have{
u1 =

2ϑI
σI

ν̂2 = (ρϑI − ϑS)σS .

Since u1 > 0, ν̂2 ≥ 0, we have ρϑI ≥ ϑS , and ξ̂ = σ−1ν̂ + ξ = (ϑI , 0)
⊤.

Case C: If u1 = 0, u2 > 0, then ν̂2 = 0, and{
2
σI
( ν1σI

+ ϑI)− 2ρ
σIρ

2 (ϑS − ρ( ν1σI
+ ϑI)) = 0,

2ρ
σSρ

2 (ϑS − ρ( ν1σI
+ ϑI))− u2 = 0.

Solving the above equation, we obtain{
ν̂1 = σI(ρϑS − ϑI),

u2 =
2ϑS
σS

.

From ν̂1 ≥ 0, u2 > 0, we have ρϑS ≥ ϑI and ξ̂ = σ−1ν̂ + ξ = (ρϑS , ρϑS)
⊤.

Remark 3.15. To gain some economic intuition of the optimal strategies, we may express the
dynamics of I(t) and S(t) as

dI(t)

I(t)
= rdt+ σI(ϑIdt+ dW1(t)),

dS(t)

S(t)
= rdt+ σSρ(ϑIdt+ dW1(t)) + σSρ(

ϑS − ρϑI

ρ
dt+ dW2(t)),

where ϑI is the market price of W1(t) and (ϑS − ρϑI)/ρ is the market price of W2(t), or similarly,

dS(t)

S(t)
= rdt+ σS(ϑSdt+ dWS(t)),

dI(t)

I(t)
= rdt+ σIρ(ϑSdt+ dWS(t)) + σIρ(

ϑI − ρϑS

ρ
dt+ dW3(t)),

where WS(t) and W3(t) are two independent Brownian motions, ϑS is the market price of WS(t)
and (ϑI − ρϑS)/ρ is the market price of W3(t).

We may explain the optimal strategies as follows: if the market price of the risk W2(t) is non-
positive, then we should not invest the money in the stock; if the market price of the risk W3(t) is
non-positive, then we should not invest the money in the indexed bond; if the market prices of the
risk of all Brownian motions are positive, then we should invest in both the indexed bond and the
stock.

Remark 3.16. For a utility defined in Example 3.1, if we set the contribution rate c(t) = 0 and
L = 0, our model degenerates to the no pension case studied in Berkelaar et al. (2004). When the
parameters satisfy the condition ϑI > ρϑS and ϑS > ρϑI , Case A of Proposition 3.14 coincides
with theirs by considering an indexed bond and a stock as two risky assets. Note that, if there are
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no short-selling constraints, then ξ̂ = ξ. Therefore, when ϑI > ρϑS and ϑS > ρϑI , the optimal
control naturally meets the short-selling constraints, which implies that the short-selling constraints
are not binding. If the reference point θ is also set to be 0, then the percentage of wealth invested

in the risky assets becomes π∗(t)
Xπ∗ (t)

= (σ⊤)−1ξ̂
1−γ2

. If we set ρ = 0, then we have
π∗
1(t)

Xπ∗ (t)
= ϑI

(1−γ2)σI
and

π∗
2(t)

Xπ∗
(t)

= ϑS
(1−γ2)σS

, which are Merton’s portfolio, see Merton (1969, 1971).

4 Numerical analysis

In this section, we carry out some numerical analysis for the optimal investment problem under the
short-selling and the PI constraints. Since the impacts of the parameters on the optimal strategies
have been investigated in a lot of literature, we mainly study the influence of the reference point,
the short-selling and PI constraints on the optimal terminal wealth.

Consider the utility function defined in Example 3.1. For all the computations, the values of
certain parameters are held fixed except otherwise indicated: T = 40, rI = 0.02, r = 0.05, i =
0.04, µS = 0.08, σI = 0.2, σS = 0.25, ρ = 0.8. The pension account’s initial wealth is x0 = 1. The
amount of the money contributed to the pension is set to be c(t) = 0.1. Assume A = 2.25 and
B = 1, as estimated in Tversky and Kahneman(1992), and choose γ1 = 0.15 and γ2 = 0.2.

4.1 Impact of reference point and short-selling constraints on terminal wealth

In this section, we perform some numerical calculations to investigate the effect of the reference
point θ and the short-selling constraints on the optimal terminal wealth. To better illustrate how θ
impacts on the optimal terminal wealth, we let L = 0. Figure 4 displays the relationship between the
optimal terminal wealth P (Xπ∗

(T ) = 0) and θ. From it we can observe that as the reference point
θ increases, the probability that Xπ∗

(T ) achieves 0 increases. The reason is that P (Xπ∗
(T ) = 0)

measures the region of bad economic states {H ν̂(T ) ≥ k
y0
} and a larger value of θ is sure to enlarge

the region of the domain of the losses. Note that the manager is endowed with x0 = 1 and receives a
continuous contribution payment c = 0.1. We note that the probability P (Xπ∗

(T ) = 0) is very low
for a small θ, since it is easy to achieve. We can also see that the probability P (Xπ∗

(T ) = 0) under
short-selling constraints is larger than that without short-selling constraints. The intuitive reason
is that the manager has less choices of the investment strategies under short-selling constraints.
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Figure 4: P (Xπ∗
(T ) = 0) versus θ, L = 0
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Figure 5: E(Xπ∗
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Figure 5 represents the relationship between E(Xπ∗
(T )) and θ. We can see that the uncon-

strained expectation is larger than the constrained one. We can also observe that the expectation
has a V-shape pattern in the reference point. The threshold value is about x0e

rT+
∫ T
0 cersds = 20.1.

This is because if the manager puts all of his initial surplus and the contribution into the risk-free
bond, then he will reach a level about 20.1. As explained in Chen et al. (2017), when the reference
point is quite low (less than the threshold), a decrease in the reference point leads to an increase in
the proportion of wealth invested in each risky asset, since the low reference point is very easy to
attain by investing in the risk-free asset. When the reference point is larger than this threshold, the
loss-averse manager in the domain of losses seeks more risk and therefore put much more money
into risky assets to achieve his goal.
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Figure 6: σ(Xπ∗
(T )) versus θ, L = 0
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Figure 7: optimal portfolio weight, L =
0, θ = 20

Figure 6 represents the relationship between the standard deviation of Xπ∗
(T ) and θ. Note that

the curve of Figure 6 is similar to that of Figure 5. The variance also has a V-shaped pattern in
the reference point. From it we also see that the short-selling constraints induce a preference for
less volatility.

Figure 7 presents the optimal investment strategies with θ = 20 (for notational convenience,
we still use π∗(t) to denote the optimal proportion of wealth invested in the risky assets in this
section). We can observe that the proportions invested in the risky assets under short-selling or
no short-selling constraints are both very low, which complies with the observations from Figures
5-6: when θ is set to be about x0e

rT +
∫ T
0 cersds, the reference point can be easily obtain by

investing a large proportion of wealth in the cash bond. We can also see that the manager can only
invest in the stock under the short-selling constraints, while he can short sell the indexed bond
under no short-selling constraints. Therefore, the manager may earn more gains when there are no
restrictions on short-selling, which explains the observation from Figure 5.

Table 1 presents the probability P (Xπ∗
(T ) = 0), mean, standard deviation, and quantile values

at low end and high ends of Xπ∗
(T ) for different θ with and without short-selling constraints

to further illustrate the impact of θ on the optimal terminal wealth. We note that numerical
results presented in Table 1 are consist with the observations from Figures 4-6. The probability
P (Xπ∗

(T ) > 0), mean, standard deviation, and quantile values at high end of Xπ∗
(T ) under short-

selling constraints are all less than those without short-selling constraints, since the manager has
less choices of investment strategies under short-selling constraints. Quantile values at high end
illustrate that the optimal terminal wealth under loss aversion in good economic states increases
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Table 1: Means, standard deviations, quantile values and probabilities
θ(short-selling constraints) θ (no constraint)
0 20 40 100 0 20 40 100

mean 41.4 26.5 34.9 51.2 55.6 31.2 39.3 58.9

std dev 50.1 10.4 21.6 57.3 88.8 20.1 24.6 60.3

0.025 quantile 4.1 0 0 0 3.2 0 0 0

0.975 quantile 169.6 50.2 62.1 127.7 267.9 77.9 79.9 144.4

P (Xπ∗
(T ) = 0) 0 0.042 0.262 0.555 0 0.042 0.226 0.503

with θ, which is at the expense of enlarging the region of domain of losses, since P (Xπ∗
(T ) = 0)

increases with θ. We also see that there exists a threshold such that E(Xπ∗
(T )) and σ(Xπ∗

(T ))
decrease with θ when it is less than this threshold and then increase with θ when it is larger than
the threshold. Therefore, the choice of reference point θ is very important for the pension manager.
A relatively low value of θ may bring an unsatisfactory utility of terminal wealth, while a too high
value of θ will lead the pension manager to take more risk to achieve a terminal wealth higher than
θ, which makes the members be more likely to get nothing.

4.2 Impact of PI constraint on terminal wealth

In this section, we analyze the effect of the PI constraint on the terminal wealth. Let L = 10, θ = 100
and the other parameters are the same as those in the previous section.
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Figure 8: E(Xπ∗
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L, short-selling constraints
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Figure 9: E(Xπ∗
(T )) versus θ for different

L, no short-selling constraints

Figures 8-9 show the impacts of the PI and short-selling constraints on E(Xπ∗
(T )). From them

we can see that similar to Figure 5, Figures 8-9 both have V-shaped curves and E(Xπ∗
(T )) without

short-selling constraints is larger than that with short-selling constraints. Furthermore, an increase
of L leads to a left shift of the threshold value of the V-shaped curve. The intuitive reason is that in
order to reach the minimum guarantee, the pension manager puts aside Le−rT at the initial time and
if all of the net surplus is invested in the cash, then the net account value is x0e

rT +
∫ T
0 cersds−L,

which is about the threshold value. We can also note that on average an increase in the minimum
guarantee L will lead to a decrease of E(Xπ∗

(T )), since the manager will hold a portfolio with less
risk to achieve a higher L. In particular, for L = 20, E(Xπ∗

(T )) is not sensitive to θ and is always a
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bit larger than 20. This is due to the fact that L is very close to the initial surplus x0+
∫ T
0 ce−rsds

and then only little money can be invested in the risky assets.
Figure 10 presents the optimal investment strategies for L = 20. From it we can see that whether

or not there are short-selling constraints, the pension manager invests a very low proportion of
money in the risk assets at initial time. Then with time passing, she/he invests almost all of the
wealth in the cash bond so that she/he can reach the guarantee 20, which explains the curve of
E(Xπ∗

(T )) for L = 20 in Figures 8-9.
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Figure 10: optimal portfolio weight for θ =
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0 5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

1

1.5

t

π
?(t))

π1(t),no short-selling

π2(t),no short-selling

π1(t),no constraint

π2(t),no constraint

Figure 11: optimal portfolio weight for θ =
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Figure 11 plots the optimal investment strategies for L = 10. Since the guarantee is easy to
attain, the pension manager takes more risk to achieve the reference point θ = 100. We note that
when there are no short-selling constraints, the manager shorts about 40% of the indexed bond
and invests about 50% of the stock at the beginning of the pension fund. Gradually the proportion
of money in the stock increases about to 130% and the proportion of money in the indexed bond
decreases to about -100%. When the pension manager achieves a wealth higher than θ in some
states at time about 23, the proportions of money in the risky assets become very low and the
proportion of money in the cash bond is very high so that she/he can obtain the guarantee L
at retirement time. when short-selling is not allowed, the manager can only invest in the stock.
Similarly, at the beginning of the pension plan, she/he increases the the proportion of money in
the stock slowly and the proportion is much lower than that without short-selling constraints.
Then from about time 23, the proportion of money in the stock decreases quickly and instead the
proportion of money in the cash bond increases quickly to attain the guarantee.

Figure 12 displays the impacts of the initial surplus x0 and the contribution rate c on E(Xπ∗
(T ))

for a given L = 10. From them we can see that the impact of x0 is similar to that of c. Increasing
x0 or c leads to an increase in the threshold of the V-shaped curves of E(Xπ∗

(T )) and σ(Xπ∗
(T )),

since the threshold is about x0e
rT +

∫ T
0 cersds−L. We can also observe that E(Xπ∗

(T )) increases
with the initial surplus x0 and the contribution rate c.

Figure 13 represents the effect of the correlation between the indexed bond and the stock on
the expectation of Xπ∗

(T ). We can see that for a low ρ, the optimal investment strategy naturally
satisfies the short-selling constraints and therefore the constrained expectation of Xπ∗

(T ) is the
same as the unconstrained expectation. When ρ grows to ϑI

ϑS
, the short-selling constraints lead the

manager to only invest in the stock. Therefore, the constrained and unconstrained expectations
of Xπ∗

(T ) are different, and E(Xπ∗
(T )) under short-selling constraints is less than that under no

20



0 50 100 15025 75 125125
20

30

40

50

60

70

80

90

θ

E(Xπ
?

(T))

no short-s elling,x0=2

no cons traint,x0=2

no short-s elling,c=0.2

no cons traint,c=0.2

Figure 12: E(Xπ∗
(T )) versus θ for different

x0, c, L = 10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
40

45

50

55

60

65

ρ

E(Xπ
?

(T))

no short-s elling

no cons traint

Figure 13: Effect of ρ on E(Xπ∗
(T )), θ =

100, L = 10

Table 2: Means, standard deviations, quantile values and probabilities
L(short-selling constraints) L (no constraint)
5 10 15 20 5 10 15 20

mean 47.9 43.3 36.4 22.1 54.9 49.4 41.0 22.8

std dev 55.6 52.2 45.0 16.8 58.7 55.5 48.6 18.6

0.025 quantile 5 10 15 20 5 10 15 20

0.975 quantile 128.8 128.6 128.4 123.9 141.1 137.8 133.8 124.4

P (Xπ∗
(T ) = L) 0.627 0.712 0.818 0.986 0.575 0.664 0.779 0.980

short-selling constraints, since the manager under no short-selling constraints can make much more
gains by short selling risky assets.

Table 2 presents the probability P (Xπ∗
(T ) = L), mean, standard deviation, and quantile values

at low end and high ends of Xπ∗
(T ) for a given θ = 100 and different L with and without short-

selling constraints to deeply analyze the impact of the guarantee on the optimal terminal wealth.
From it we see that the probability P (Xπ∗

(T ) > L), mean, standard deviation, and quantile
values at high end of Xπ∗

(T ) under short-selling constraints are all less than those without short-
selling constraints, which implies short-selling constraints can reduce the investment risk. We can
also observe that as L increases, the probability P (Xπ∗

(T ) > L), mean, standard deviation, and
quantile values at high end all decrease, since the pension manager will become more prudent and
make the optimal terminal wealth less volatile in order to achieve a higher guarantee.

Therefore, numerical results illustrate that by putting the short-selling and PI constraints can
improve the risk management for the investors and the regulators.

5 Conclusions

The S-shaped utility can better reflect the pension plan manager’s attitude toward risk since it
includes loss aversion and risk seeking for losses. We investigate an investment problem for a DC
plan manager under an S-shaped utility function. To better protect the member from the man-
ager’s gambling investment strategies, we incorporate the short-selling and PI constraints into the
modelling. By using a concavification technique and a dual control method, we derive the explicit
expressions for the optimal wealth process and the optimal investment strategy. Theoretical and
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numerical results show that the short-selling and PI constraints strictly improve the risk manage-
ment. In particular, the PI constraint can well protect the members’ benefits for the loss states by
keeping the terminal wealth no less than the minimum guarantee.

The present work might be extended. One possible extension is that the continuous contribution
payment and the minimum guarantee follow some stochastic processes. Another possible extension
is to consider the optimal investment for a DC pension plan under both the short-selling and the
VaR constraints. We leave these to future research.
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