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Abstract

In this paper we study a finite horizon optimal investment stopping problem with unobserv-
able random variable for the return of risky asset. Using the Bayesian filter and the dual control
approach, we transform the original primal problem into a dual finite horizon optimal stopping
problem, which results in the dual value function satisfying a variational inequality with two
state variables. For a class of utility functions that include power utility and non-HARA util-
ity, we show that the free boundary satisfies a Volterra type nonlinear integral equation with
expectation over the joint distribution of the dual state process and the filtered probability
process and we simplify and solve the integral equation with the dimension reduction and back-
ward recursive methods. We also construct two simple closed form approximations for the free
boundary using its asymptotic properties and show their accuracy and efficiency with numerical
examples. Furthermore, we demonstrate that different model parameters may lead to one, or
two, or no free boundaries with a simple example.
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1 Introduction

There has been extensive research in utility maximization of wealth and consumption, see Pham
(2009) for excellent exposition in theory, methodology, and applications. Among many different
model formulations, the mixed optimal control and optimal stopping problem (see Karatzas and
Wang (2000)) is one of most difficult to solve and highly useful models with many applications, see
for example Henderson and Hobson (2008) on asset sale, Yang and Koo (2018) on early retirement
option. If the underlying state process follows a Markov process, the value function satisfies a
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variational inequality that is in general difficult to solve as one has to find the boundary of the
stopping region, called the free boundary. The notion of viscosity solution, first defined by
Crandall et al. (1992), provides a framework to study the existence and uniqueness of the continuous
solution to the variational inequality, see Fleming and Soner (1993), Shreve and Soner (1994),
Soner and Touzi (2002) and Zariphopoulou (1992). However, the viscosity solution approach in
general does not provide information on the free boundary such as the smooth pasting condition
that is critical in analyzing the obstacle problem. In a Black-Scholes market model with known
deterministic coefficients and infinite investment horizon, the free boundary is a single point that
may be determined with the continuity and smooth pasting properties of the value function, and
the convex dual approach may be used to simplify the dynamic programming equation in the
continuation region, see Choi and Shim (2006), Bensoussan et al. (2016), Koo et al. (2021). If the
investment horizon is finite, the free boundary is an unknown function of time and it is much more
difficult to determine, one may only derive some quantitative properties of the free boundary and
the value function (continuity, monotonicity, etc.), see Jang et al. (2024), Jian et al. (2014), and
Ma et al. (2019).

In practice, model coefficients are not deterministic nor observable. Ekström and Vaicenavicius
(2016) point out that the incompleteness of information is inevitable as one needs a very long
time series to estimate the drift which is rarely available for public offering stock. To circumvent
this difficulty, one may use the filtering theory to estimate model coefficients based on observable
market information. There are three special but important filters, they are Kalman-Bucy filter
for linear diffusion, Wonham filter for finite state Markov chain, and Bayesian filter for random
variable. All of them have been extensively studied in portfolio optimization, see, for example,
Lakner (1998) and Papanicolaou (2019) for the linear diffusion model, Sass and Haussmann (2004)
and Eksi and Ku (2017) for the continuous-time finite state Markov chain model, Bismuth et al.
(2019) and Bodnar et al. (2017) for the random variable model. For optimal stopping with partial
information in finance, we refer to Ekström and Vaicenavicius (2016) for optimal liquidation, De
Angelis (2020) for optimal dividends, Xu and Yi (2019) for optimal strategy of stock loan, Décamps
et al. (2005) and Klein (2009) for optimal investment timing, and Chen et al. (2021) for optimal
retirement with investment and consumption.

This paper generalizes the results in Ma et al. (2019) for a one-dimensional complete market
model to the framework of partial information setting, specifically, we study a general optimal
investment and stopping problem in finite time horizon with unobservable random drift of risky
asset. Using the Bayesian filter and the dual approach, we convert the primal mixed optimal control
and stopping problem into a two-dimensional dual optimal stopping problem with the dual process
having stochastic volatility, which leads to a variational inequality with two state variables as well
as time variable. For a class of dual utility functions (see (3.1)), which include power utilities, and
under some assumption (see Assumption 3.1), we prove the existence of a unique continuous two-
dimensional free boundary that separates the whole space into two parts: the continuation region
and the stopping region (see Propositions 3.2 and 3.4) and we show that there may be two or no
free boundaries if the required assumption is not satisfied (see Example 4.2). The free boundary
satisfies a Volterra type nonlinear integral equation (see (3.9)) that is highly difficult to solve as it
involves the expectation over some joint distribution of the dual process and the filtered probability
process, which is in general unknown and the techniques in Ma et al. (2019) are not applicable to
the analysis of the free boundary. Thanks to the dimension reduction method, first introduced
in Klein (2009), we simplify the nonlinear integral equation with expectation (see (3.9)) further
to a nonlinear integral equation without expectation (see (3.19)) that can be solved easily using
the iteration method in Detemple (2005). Furthermore, using the asymptotic property of the free
boundary and linear interpolation, we construct two global closed-form approximations (see (3.27)
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and (3.28)) which are shown to be accurate by numerical examples.
We next compare our work with three papers in the literature that are closely related to ours

in model formulation and methodology. The first one is Chen et al. (2021) that also uses the dual
approach to solving the primal optimal investment, consumption and retirement problem with
partial information. Some differences are minor, for example, the drift term in Chen et al. (2021)
is a hidden continuous-time two state Markov chain process and estimated with the Wonham filter
whereas in this work an unobservable two-state random variable and estimated with the Bayesian
filter, and the properties of the dual value function and the dual free boundary in Chen et al. (2021)
are derived for power utilities whereas in this work for a more general class of utility functions (see
(3.1)). The key differences are that we characterize the free boundary with a numerically solvable
nonlinear integral equation (see (3.19)) and also propose two global closed-form approximations
(see (3.27) and (3.28)), none of which are discussed in Chen et al. (2021). On the other hand, Chen
et al. (2021) have some detailed small-scale asymptotic analysis of the dual value function whereas
in this work we do not have any asymptotic analysis as our focus is on the dual free boundary,
not the dual value function that can be determined once the dual free boundary is known (see
Proposition 3.9).

The second one is Klein (2009) that first introduces the dimension reduction method which we
also use in this paper. The key differences are the following: Firstly, Klein (2009) solves an optimal
stopping problem with drift uncertainty, whereas we have a mixed optimal investment and stopping
problem with drift uncertainty, so Klein (2009) can not be applied to our problem directly. To tackle
this difficulty, we introduce a dual process Y and convert the original problem into a dual optimal
stopping problem with stochastic volatility (see (2.11)). Secondly, Klein (2009) uses the measure
change to make the original state process to have complete information with constant drift, whereas
under the same measure change, the dual process Y has incomplete information with unknown drift
and volatility that are updated continuously, which is due to the stochastic volatility feature of the
dual process Y . To overcome this technical difficulty, we combine the measure change and the dual
control to introduce a new dual process Y that has complete information with constant drift and
volatility (see (3.13)) and has a relation with the original dual process Y . Thirdly, Klein (2009)
studies an infinite horizon optimal stopping problem, so the free boundary is a single point that
can be determined in closed form with the smooth pasting condition, whereas our dual problem
has a finite horizon which makes essentially impossible to find the free boundary in a closed form,
we use the integral equation and the iteration method to determine the free boundary and also
construct two global closed-form approximations, which is completely different from Klein (2009)
in methodology.

The third one is Ma et al. (2019) that studies the optimal investment stopping problem in a
Black-Scholes market model. The primal problem in that paper is converted into an equivalent
dual optimal stopping problem with its free boundary satisfying a Volterra type nonlinear integral
equation that can be calculated easily due to the geometric Brownian motion structure and a global
closed-form formula of the approximate free boundary can also be derived. In sharp contrast to
Ma et al. (2019), the unobservable drift coefficient in this paper requires different mathematical
machinery due to the unknown free boundary in a three-dimensional space (see Proposition 3.2). We
use the dual control approach to characterizing the equivalent dual value function and deriving the
nonlinear integral equation for the free boundary (see Proposition 3.6). However, the expectation
in the integral equation (3.9) can not be computed directly due to the unknown joint transition
density of the two-dimensional dual state process. Therefore, the asymptotic analysis technique in
Ma et al. (2019) is not applicable. Instead, we adopt the methodology proposed by Klein (2009)
and modify it to reduce the dimension of our dual problem. The numerical examples show that
our proposed method is accurate and efficient.
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The rest of the paper is organized as follows. In Section 2, the model is formulated, and the
primal problem is converted into a dual optimal stopping problem and the verification theorem
is given. In Section 3, the main results of this paper are presented. In Section 4, the examples
for power and non-HARA utility are studied. In Section 5, the numerical results are presented.
Section 6 concludes. In Appendix A, the proofs of the main results and examples are collected.

2 Model formulation and dual approach

In this paper, we consider a filtered probability space (Ω,F ,F,P). Here the filtration F =
{Ft}t≥0 satisfies the usual conditions and P denotes the probability measure. We assume µ
is an F0−measurable random variable and {Bt}t≥0 an Ft−adapted standard Brownian motion,
independent of µ. The market consists of one riskless saving account with constant interest rate
r > 0 and one risky asset, whose price evolves according to

dSt = µStdt+ σStdBt, 0 ≤ t ≤ T,

where σ is a constant volatility rate. We assume that one can observe FS = {FSt }t≥0, the
natural filtration generated by S, augmented with all P-null sets, but can not observe directly µ
and {Bt}t≥0. Moreover, we assume that µ takes value µl or µh with r < µl < µh and the agent’s
initial estimate of the probability of the event {µ = µh} is a constant p ∈ (0, 1).

Let {Xt}t≥0 denote the wealth process and πt the amount of wealth an investor holds in risky
asset at time t. By self-financing condition, the investor’s wealth X, starting with initial capital x,
satisfies

dXt = rXtdt+ πt
(
(µ− r)dt+ σdBt

)
, 0 ≤ t ≤ T.

We assume the portfolio process {πt}t≥0 is FSt −progressively measurable and satisfies E
[ ∫ T

0 |πt|
2dt
]
<

∞. Denote the set of all FSt −adapted stopping time taking values in [t, T ] by Tt,T . The optimal
investment stopping problem is given by

sup
π,τ

E
[
e−βτU(Xτ −K)

]
, (2.1)

where τ ∈ T0,T , β > 0 is a discount factor, K ≥ 0 the minimum wealth threshold value, and
U : (0,+∞) → R a utility function that is twice continuously differentiable, increasing, strictly
concave, satisfying U(0) = 0, U(∞) = ∞, U ′(0) = ∞, U ′(∞) = 0, U(x) < C(1 + xγ) for x > 0
and some constants C > 0 and 0 < γ < 1.

The following notations are used throughout this paper: Qx := (0, T )× (K,∞)× (0, 1), Qy :=
(0, T )×R+× (0, 1), Qz := (0, T )×R+×R+, these are the domains of variables for primal and dual
problems, a∧ b := min{a, b}, ∂xV, ∂xxV are the first and second order partial derivatives of V with
respect to x, similar notations are used for other partial derivatives.

Since one can only observe the asset price process S, but not its drift coefficient µ nor its driving
Brownian motion process B, we first define an observable drift coefficient process {µt}t≥0 by the
conditional expectation of µ, given the filtration FS , as

µt = E[µ|FSt ],

and an observable probability process {Pt}t≥0 by the conditional probability of µ = µh, given
FS = {FSt }t≥0, as

Pt = P(µ = µh|FSt ). (2.2)
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Clearly, µt = µhPt + µl(1− Pt). Finally, define the innovation process {B̃t}t≥0 by

dB̃t = σ−1(µ− µt)dt+ dBt.

Then {B̃t}t≥0 is an FSt standard Brownian motion, see Bain and Crisan (2009, Chapter 3). The
process {Pt}t≥0 satisfies the following SDE

dPt = ΘPt(1− Pt)dB̃t, with P0 = p, (2.3)

where Θ = µh−µl
σ , see Décamps et al. (2005). We can rewrite the asset price process S as

dSt =
[
(µh − µl)Pt + µl

]
Stdt+ σStdB̃t,

with observable drift coefficient process and Brownian motion process. The wealth process X then
satisfies

dXt =
(
πtϑ(Pt)σ + rXt

)
dt+ σπtdB̃t, (2.4)

where ϑ(p) := pθh + (1− p)θl and θh := µh−r
σ and θl := µl−r

σ .
Solving problem (2.1), regarded as an optimal investment stopping problem of the Markovian

processes (2.3) and (2.4), reduces to determining

V (t, x, p) = sup
π,τ

E
[
e−β(τ−t)U(Xt,x,p

τ −K)
]
. (2.5)

Applying the dynamic programming principle, in the region Qx the value function satisfies

min
{(
− ∂tV − sup

π
LπX,PV + βV

)
(t, x, p), V (t, x, p)− U(x−K)

}
= 0 (2.6)

with terminal condition V (T, x, p) = U(x−K), where LπX,P is the infinitesimal generator of (X,P ),
given by

LπX,PV = (πϑ(p)σ + rx)∂xV +
1

2
σ2π2∂xxV +

1

2
Θ2p2(1− p)2∂ppV + Θp(1− p)σπ∂xpV.

It is in general highly difficult to solve the variational equation (2.6) as one needs to find the free
boundary as well as to solve a nonlinear PDE with two state variables.

We now use the duality approach to studying the primal problem (2.5). We first introduce the
state price density process Hs := e−r(s−t)Ms with

Ms := exp
{
−
∫ s

t
ϑ(Pu)dB̃u −

1

2

∫ s

t
ϑ2(Pu)du

}
, s ≥ t.

Using Itô’s lemma and the fact that B̃ is a standard Brownian motion under measure P, we get

d(HsXs) = e−r(s−t)Ms (σπs − ϑ(Ps)Xs) dB̃s, s ≥ t,

which means the process {HsXs}s≥t is a positive local martingale, hence a super-martingale. By
the optional sampling theorem, we have the following budget constraint

E[HτXτ ] ≤ x, (2.7)
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for any bounded stopping time τ ≥ t. The dual function of U(· −K) is given by, for y > 0,

ŨK(y) := sup
x>K

[U(x−K)− xy] = sup
x>0

[U(x)− xy]−Ky.

It is easy to check that

−Ky ≤ ŨK(y) ≤ C + Cy
γ
γ−1 −Ky (2.8)

for some positive constant C. Thanks to (2.7), we have for any Lagrange multiplier y > 0,

V (t, x, p) ≤ sup
π,τ

{
E[e−β(τ−t)U(Xτ −K)] + y(x− E[HτXτ ])

}
≤ sup

τ∈Tt,T
E[e−β(τ−t)ŨK(Y t,y,p

τ )] + xy, (2.9)

where Ys := yeβ(τ−t)Hτ . Itô’s lemma implies that the dual process Y satisfies the SDE:

dYs = (β − r)Ysdt− ϑ(Ps)YsdB̃s, t ≤ s ≤ T, with Yt = y. (2.10)

The dual problem is given by the following optimal stopping problem:

Ṽ (t, y, p) = sup
τ∈Tt,T

E[e−β(τ−t)ŨK(Y t,y,p
τ )]. (2.11)

The dynamic programming principle gives that the dual value function satisfies

min
{
− ∂tṼ − LY,P Ṽ + βṼ , Ṽ − ŨK

}
= 0, (t, y, p) ∈ Qy, (2.12)

Ṽ (T, y, p) = ŨK(y), (y, p) ∈ R+ × (0, 1), (2.13)

where LY,P is the infinitesimal generator of (Y, P ) given by

LY,P Ṽ =
1

2
ϑ2(p)y2∂yyṼ +

1

2
Θ2p2(1− p)2∂ppṼ −Θp(1− p)ϑ(p)y∂ypṼ + (β − r)y∂yṼ .

Compared with (2.6), the variational equation (2.12) is simpler as one only needs to solve a
linear PDE, not a nonlinear PDE as in (2.6), in the continuous region, but one still needs to find
the free boundary with two state variables, a highly difficult problem which we will address in the
next section.

We introduce the continuation region and stopping region of the dual problem as follows

Cy =
{

(t, y, p) ∈ Qy : Ṽ (t, y, p) > ŨK(y)
}
,

Sy =
{

(t, y, p) ∈ Qy : Ṽ (t, y, p) = ŨK(y)
}
.

Since Cy is determined once Sy is known, we will focus on finding the stopping region Sy and will
not write Cy and continuous regions for other related problems in the rest of the paper.

Since ϑ(p) is bounded, we find that for any ᾱ ∈ R

E
[

sup
0≤s≤T

(
Y y,p
s

)ᾱ] ≤ C, (2.14)

where C is a constant depending on y, T, ᾱ and independent of p (e.g. see Jacka and Ocejo (2018,
Appendix A)). By (2.8) and (2.14), the standard optimal stopping theory (see Peskir and Shiryaev
(2006, Corollary 2.9)) yields that the optimal stopping time is given by

τ∗(t, y, p) := inf
{
s ≥ t : (s, Y t,y,p

s , P t,ps ) ∈ Sy
}
∧ T. (2.15)
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In the end of this section, we give a verification theorem which shows that the primal value
function V , the optimal stopping time τ∗, the optimal control π∗, and the optimal wealth X∗ can
all be recovered from those of the dual counterpart and that we only need to focus on solving the
dual problem, which is what we will do in the rest of the paper.

Proposition 2.1. Let Ṽ be a function satisfying the variational inequality (2.12) with terminal
condition (2.13) such that

(i) Ṽ ∈ C1(Qy) ∩ C(Q̄y);

(ii) Ṽ ∈ C1,2,2(Qy\∂Cy) with locally bounded derivatives near ∂Cy;

(iii)
∣∣Ṽ (t, y, p)

∣∣ ≤ C(yq + 1
)

for some constant q < 0;

(iv) Ṽ (t, ·, p) is strictly convex;

(v) −∂yṼ (t, y, p)→ +∞ as y → 0 and −∂yṼ (t, y, p)→ K̂ ≤ K for some positive constant K̂.

Then the value function for problem (2.5) is given by

V (t, x, p) = inf
y>0

[
Ṽ (t, y, p) + xy

]
, (t, x, p) ∈ Qx.

Moreover, for s ≥ t, the optimal stopping time, the optimal portfolio strategy and optimal wealth
are respectively given by

τ∗ = inf
{
s ≥ t : (s, Ys, Ps) ∈ Sy

}
∧ T,

π∗s =
ϑ(Ps)Ys∂yyṼ (s, Ys, Ps)−ΘPs(1− Ps)∂ypṼ (s, Ys, Ps)

σ
1{t≤s≤τ∗},

X∗s = −∂yṼ (s, Ys, Ps),

with Yt = y∗ and Pt = p, where y∗ is the unique solution to the equation ∂yṼ (t, y, p) + x = 0 with
X∗t = x and 1{·} denotes the indicator function of some set.

Proof. The proof of the verification theorem is standard. For details, see e.g. Jang et al. (2024,
Theorem 14).

3 Main results

In the rest of this paper, analogous to Ma et al. (2019), we consider the dual utility function
of the following form

ŨK(y) =
J∑
j=1

− 1

qj
yqj −Ky, (3.1)

where q1 < q2 < · · · < qJ < 0. Note that Ũ0(y) is the dual function of the power utility
U(x) = 1

γx
γ , γ ∈ (0, 1), with J = 1, q1 = γ

γ−1 , and that of the non-HARA utility

U(x) =
1

3
H−3(x) +H−1(x) + xH(x), (3.2)
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where H(x) = ( 2
−1+

√
1+4x

)1/2, with J = 2, q1 = −3, q2 = −1. Therefore, (3.1) covers a broad class

of utility functions. We introduce an important function by

φ(y, p) :=
J∑
j=1

Aj(p)y
qj − rKy, (3.3)

where

Aj(p) :=
1

2
ϑ2(p)(qj − 1) +

(
1− 1

qj

)
β − r, j = 1, 2, . . . , J.

Note that A1 < A2 < · · · < AJ . We assume the following assumption holds in the rest of this
section.

Assumption 3.1. The parameters of the model satisfy K > 0 and A1(1) > 0.

3.1 The free boundary

To study the optimal stopping problem, the following monotonicity of Ṽ is critical for subsequent
analysis.

Proposition 3.1. The function y 7→ Ṽ (t, y, p) is strictly convex. The functions t 7→ Ṽ (t, y, p)
and y 7→ Ṽ (t, y, p) are decreasing, and p 7→ Ṽ (t, y, p) is increasing. Furthermore, if Assumption 3.1
holds, then the function y 7→ Ṽ (t, y, p)− ŨK(y) is increasing.

Proof. See Appendix A.1.

For the shape of the stopping region Sy, we have the following result.

Proposition 3.2. There exists a unique free boundary b defined by

b(t, p) := sup
{
y ∈ R+ : Ṽ (t, y, p) = ŨK(y)

}
(3.4)

such that

Sy =
{

(t, y, p) ∈ Qy : y ≤ b(t, p)
}
. (3.5)

Moreover, the functions t 7→ b(t, p) is increasing and p 7→ b(t, p) is decreasing.

Proof. See Appendix A.2.

We next show that Ṽ is continuous differentiable across the free boundary b.

Proposition 3.3. For any (t, p) ∈ (0, T )× (0, 1), we have

∂yṼ
(
t, b(t, p), p

)
= Ũ ′K

(
b(t, p)

)
,

∂pṼ
(
t, b(t, p), p

)
= 0,

∂tṼ
(
t, b(t, p), p

)
= 0.

Furthermore, the function Ṽ is C1 in Qy and the following limits hold

lim
y→0
−∂yṼ (t, y, p) = +∞, lim

y→∞
−∂yṼ (t, y, p) := K̂ ≤ K (3.6)

for any fixed (t, p) ∈ [0, T ]× (0, 1), where K̂ is a non-negative constant.
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Proof. The C1 regularity of Ṽ can be derived by penalty method, we refer to Chen et al. (2021,
Theorem 2) for details. (3.6) follows from the same proof of Ma et al. (2019, Corollary 2.4).

Proposition 3.4. The free boundary b(t, p) defined by (3.4) is continuous for any (t, p) ∈
(0, T )× (0, 1).

Proof. See Appendix A.3.

To calculate the free boundary b, it is important to find the value of b near the terminal time
T . The next proposition shows such a result.

Proposition 3.5. The free boundary b defined by (3.4) satisfies

lim
t↑T

b(t, p) = `(p), (3.7)

where `(p) is the unique solution to the equation φ(y, p) = 0 for any p ∈ (0, 1).

Proof. See Appendix A.4.

The free boundary can be characterized by a Volterra type nonlinear integral equation, see
Detemple (2005, Theorem 70).

Proposition 3.6. The value function Ṽ has the following representation

Ṽ (t, y, p) = −E
[ ∫ T

t
e−β(s−t)φ(Y t,y,p

s , P t,ps )1{Y t,y,ps >b(s,P t,ps )}ds
]

+ ŨK(y). (3.8)

Moreover, the free boundary b(t, p) satisfies the following Volterra type non-linear integral equation:

E
[ ∫ T

t
e−β(s−t)φ(Y t,b(t,p),p

s , P t,ps )1{Y t,b(t,p),ps >b(s,P t,ps )}ds
]

= 0 (3.9)

with terminal condition given by Proposition 3.5.

3.2 Dimension reduction

As the law of the process (Y, P ) is not available in general, we are not able to calculate the
expectation in (3.9) directly. It is difficult to solve the integral equation (3.9) with the traditional
backward recursion method proposed in Detemple (2005). Following Klein (2009), we first reduce
the dimension of equation (3.9) and then apply a simple backward recursive method to solve it.
The critical technique used in this procedure is measure change. To this end, we define a likelihood
ratio process {Φt}t≥0 by

Φt :=
Pt

1− Pt
, t ≥ 0. (3.10)

Furthermore, introduce a new process W by

dWt := ΘPtdt+ dB̃t,

and a new probability measure by

dQ
dP

∣∣∣
FSt

:= exp
(
− 1

2

∫ t

0
Θ2P 2

udu−
∫ t

0
ΘPudB̃u

)
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= exp
(1

2

∫ t

0
Θ2P 2

udu−
∫ t

0
ΘPudWu

)
. (3.11)

Girsanov’s theorem gives that W is a standard Brownian motion under Q. Then the likelihood
ratio process satisfies

dΦt = ΘΦtdWt, with Φ0 = ϕ :=
p

1− p
.

If we let Ft := 1+Φt
1+ϕ , then Itô’s lemma yields

dFt = ΘPtFtdWt, with F0 = 1.

By (3.11), it turns out that

Ft =
dP
dQ

∣∣∣
FSt
. (3.12)

Under the measure Q, the wealth process X satisfies

dXs = (rXs + πsθlσ)ds+ σπsdWs, s ≥ t,

which implies that the corresponding dual process, denoted by Y, should satisfy

dYs = (β − r)Ysds− θlYsdWs, s ≥ t (3.13)

and the corresponding budget constraint becomes

EQ[H̃τXτ ] ≤ x,

where H̃s := e−β(s−t)Yt,1s . For any y > 0, we have

V (t, x, p) = sup
π,τ

EQ[e−β(τ−t)FτU(Xτ −K)]

≤ sup
π,τ

{
EQ[e−β(τ−t)FτU(Xτ −K)] + y(x− EQ[H̃τXτ ])

}
≤ sup

τ∈Tt,T
EQ[e−β(τ−t)Fτ ŨK(Yτ/Fτ )] + xy. (3.14)

Inspired by (2.9) and (3.14), we apply Itô’s lemma to FY and deduce that

d(FsYs) = (β − r)FsYsds− θlFsYsdWs, FtYt = y.

Comparing with (3.13), we derive the relation between Y under P and Y under Q as Yt = FtYt.
Using the observation above, we can rewrite the dual problem (2.11) under measure Q as follows.

Proposition 3.7. Let Q be a probability measure given by (3.11). Then the dual value function
Ṽ has the following representation

Ṽ (t, y, p) =
1

1 + ϕ
sup
τ∈Tt,T

EQ
[ ∫ τ

t
e−β(s−t)ψ

(
s, z,Φt,ϕ

s

)
ds
]

+ ŨK(y),

where

ϕ =
p

1− p
, z = ϕ−$(1 + ϕ)ye−ςt, ψ(s, z,Φ) = −(1 + Φ)φ

(zeςsΦ$

1 + Φ
,

Φ

1 + Φ

)
and ς = β − r − 1

2θ
2
l −

1
2Θθl and $ = − θl

Θ < 0.

10



Proof. See Appendix A.5.

Let Ṽ(t, z, ϕ) := (1 +ϕ)(Ṽ (t, y, p)− ŨK(y)). Thanks to Proposition 3.7, we study the following
optimal stopping problem

Ṽ(t, z, ϕ) = sup
τ∈Tt,T

EQ
[ ∫ τ

t
e−β(s−t)ψ

(
s, z,Φs

)
ds
]
, (3.15)

By dynamic programming principle, Ṽ satisfies

min
{

(−∂tṼ −
1

2
Θ2ϕ2∂ϕϕṼ + βṼ)(t, z, ϕ)− ψ(t, z, ϕ), Ṽ(t, z, ϕ)

}
= 0 in Qz, (3.16)

with terminal condition Ṽ(T, z, ϕ) = 0. Note that z can be viewed as a parameter other than a
variable. In this sense we have reduced the dimension of the original dual problem (2.11). We
continue the study of problem (3.15) by introducing the stopping region as follows

Sz := {(t, z, ϕ) ∈ Qz : Ṽ(t, z, ϕ) = 0}.

In order to study the shape of Sz, we state the following proposition.

Proposition 3.8. There exists a positive function (t, z) 7→ b̂(t, z) such that the stopping region
with respect to problem (3.15) can be represented as

Sz = {(t, z, ϕ) ∈ Qz : ϕ ≥ b̂(t, z)}, (3.17)

with the function z 7→ b̂(t, z) being strictly increasing. Moreover,

b(t, p) =
p$

(1− p)$−1
eςtb̂−1

(
t,

p

1− p

)
, (3.18)

where b̂−1(t, ϕ) denotes the inverse function of b̂(t, ·) for any fixed t ∈ (0, T ).

Proof. See Appendix A.6.

Using the shape of the continuous region and measure change, we can derive the nonlinear
Volterra type integral equation with respect to the free boundary b̂(t, z).

Proposition 3.9. The function Ṽ has the following representation

Ṽ(t, z, ϕ) =

∫ T

t
e−β(s−t)

∫ d(s−t,b̂(s,z),ϕ)

−∞
ψ(s, z, ϕe−

1
2

Θ2(s−t)+Θ
√
s−tη)n(η)dηds.

Moreover, the free boundary b̂ satisfies the following nonlinear integral equation:∫ T

t
e−β(s−t)

∫ d(s−t,b̂(s,z),b̂(t,z))

−∞
ψ(s, z, b̂(t, z)e−

1
2

Θ2(s−t)+Θ
√
s−tη)n(η)dηds = 0 (3.19)

where n(η) := 1√
2π
e−

1
2
η2 and d(s, ϕ̂, ϕ) :=

log(ϕ̂/ϕ)+ 1
2

Θ2s

Θ
√
s

. The terminal condition is given by

lim
t↑T

b̂(t, z0) =
p0

1− p0
(3.20)

for any fixed z0 > 0, where p0 is the unique solution to

z0 = `(p)
(1− p)$−1

p$
e−ςT .

Proof. See Appendix A.7.
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3.3 Global closed form approximation

Using the dimension reduction method, the free boundary b̂ is characterized by the integral
equation (3.19) that can be solved numerically with the backward recursive method, which is
accurate but time consuming. We now establish a simple global closed-form approximation of the
free boundary and will compare their performance with some numerical tests in Section 5. To this
end, for any p ∈ [0, 1], we consider the following optimal stopping problem

Ṽ (t, y; p) = sup
τ∈Tt,T

E
[
e−β(τ−t)ŨK(Ỹ t,y

τ )
]
, (3.21)

where the dynamic of Ỹ follows

dỸs = (β − r)Ỹsds− ϑ(p)ỸsdB̃s, s ≥ t, Ỹt = y,

with ϑ(p) = Θp+ θl.
For any fixed p ∈ [0, 1], define the stopping region of problem (3.21) by

S̃ p
y =

{
(t, y) ∈ [0, T )× (0,+∞) : Ṽ (t, y; p) = ŨK(y)

}
.

The properties of the free boundary associated with the optimal stopping problem (3.21) are sum-
marized in the next result, its proof is similar to Ma et al. (2019, Theorem 3.7, Theorem 3.9) and
therefore omitted.

Proposition 3.10. Let κ(p) := (2r − 2β + ϑ2(p))/ϑ2(p), λ(p) := 2β/ϑ2(p). There exists a
positive function b̃ such that

S̃ p
y =

{
(t, y) ∈ [0, T )× (0,+∞) : y ≤ b̃(t; p)

}
. (3.22)

The free boundary b̃ is increasing in t with limits

lim
t↑T

b̃(t; p) = `(p), (3.23)

and
lim

T−t→∞
b̃(t; p) = ˆ̀(p), (3.24)

where ˆ̀(p) is the unique solution to

J∑
j=1

− 1

qj

[
qj −

1

2

(
κ(p)−

√
κ2(p) + 4λ(p)

)]
yqj−1

−K
[
1− 1

2

(
κ(p)−

√
κ2(p) + 4λ(p)

)]
= 0.

Furthermore, as t→ T , the free boundary b̃(t; p) satisfies

lim
t↑T

`(p)− b̃(t; p)
ϑ(p)`(p)

√
2(T − t)

= A, (3.25)

where A is the unique solution to

1

2
e−x

2 −
√
π

2
x+ x2

∫ 1

0
e−x

2η2 3η2 + η4

(1 + η2)2
dη = 0.

12



Using Proposition 3.10, we have the following asymptotic result of b at p = 0 and p = 1.

Proposition 3.11. The free boundary b defined by (3.4) satisfies

lim
p↓0

b(t, p) = b̃(t; 0), lim
p↑1

b(t, p) = b̃(t; 1), (3.26)

where b̃ is defined by (3.22).

Proof. See Appendix A.8.

Propositions 3.5, 3.10 and 3.11 show that free boundaries b and b̃ have the same limits at t = T
and p = 0, 1. We know, for fixed p, there is a simple and accurate global closed-form approximation
for b̃ (see Ma et al. (2019)), we therefore suggest to use that approximation for the free boundary
b too, albeit P is now a process, not a constant.

Inspired by (3.7), (3.23) - (3.26), we construct an approximation of the form

b(t, p) ≈ bI(t, p) := `(p)− (`(p)− ˆ̀(p))
√

1− e−2α∗(T−t) (3.27)

with α∗ =
(
Aϑ(p)`(p)

`(p)−ˆ̀(p)

)2
.

We may also use the previous approximation and linear interpolation to produce a new approx-
imation as follows

b(t, p) ≈ bII(t, p) := bI(t, 0)(1− p) + bI(t, 1)p (3.28)

with bI(t, 0) and bI(t, 1) given by (3.27). We shall give some numerical examples to verify the
validity of the previous two formulas in Section 5.

4 Examples

In this section, we consider some special cases of utility functions, including power and non-
HARA utility functions, and investigate the shape of investment stopping region. We especially
pay attention to the situation when Assumption 3.1 does not hold. We first present an example for
power utility, that is, we assume J = 1, q1 = γ

γ−1 with 0 < γ < 1. Then Ũ0(y) is the dual function

of the power utility U(x) = 1
γx

γ . In this case the function φ defined in (3.3) is given by

φ(y, p) = A1(p)yq1 − rKy,

with A1(p) = 1
2ϑ

2(p)(q1 − 1) + (1− 1
q1

)β − r.

Example 4.1. Assume J = 1, q1 = γ
γ−1 with 0 < γ < 1. We have the following cases:

(i) A1(1) > 0 (equivalently β > rγ − q1
2 θ

2
h). If K > 0, there exists a unique free boundary given

by (3.4); if K = 0, it is optimal to stop the investment immediately.

(ii) A1(1) ≤ 0, A1(0) > 0 (equivalently rγ − q1
2 θ

2
l < β ≤ rγ − q1

2 θ
2
h) and K ≥ 0. There exists a

unique free boundary g(t, y) ≤ p0 with p0 being the unique solution to A1(p) = 0 such that

Sy =
{

(t, y, p) ∈ Qy : p ≤ g(t, y)
}
. (4.1)

(iii) A1(0) ≤ 0 (equivalently β ≤ rγ − q1
2 θ

2
l ) and K ≥ 0. There is no free boundary and it is not

optimal to stop before the maturity.

13



Proof. See Appendix A.9.

Remark 4.1. Example 4.1 implies that, for power utility agent, if the discount factor β is large
and K > 0, the agent should sell all risky assets once the wealth process reaches the high threshold
value; if β is large and K = 0, investing in risky assets is never optimal and the agent should put
all his money in the bank account immediately; if β is small, the agent should invest in risky assets
until the maturity.

We next present two examples for non-HARA utility, that is, we assume J = 2, q1 = −3,
q2 = −1. Then Ũ0(y) is the dual function of the non-HARA utility function U in (3.2). In this case
the function φ defined in (3.3) is given by

φ(y, p) = A1(p)y−3 +A2(p)y−1 − rKy,

where A1(p) = −2ϑ2(p) + 4
3β − r, A2(p) = −ϑ2(p) + 2β − r. Note that A1 and A2 are decreasing

functions of p. Lemma A.3 in Appendix A.10 gives the full characterization of all cases and free
boundaries, which depends on the combination of signs of Ai(p) for i = h, l and p = 0, 1 and some
other measures. To appreciate its practical meanings and implications, we use it to identify the
relation of the range of the discount factor β and its associated free boundary in the next example.

Example 4.2. Assume J = 2, q1 = −3, q2 = −1 and K > 0. Denote by, for i = h, l,

β1,i :=
3

2
θ2
i +

3

4
r, β2,i :=

1

2
θ2
i +

1

2
r, β3,i := β2,i +

√
rK(

4

3
θ2
i +

1

3
r) +

4

9
r2K2 − 2

3
rK.

Note that β2,i < β3,i < β1,i for i = h, l. Assume further β1,l > β2,h. We have the following results:

(i) If β > β1,h, there exists one free boundary b(t, p);

(ii) If β3,l < β ≤ β1,h, there exist two free boundaries b1(t, p) and b2(t, p);

(iii) If β ≤ β3,l, there is no free boundary.

Proof. See Appendix A.10.

Remark 4.2. Example 4.2 shows that, for non-HARA utility agent, if the discount factor β is
large, one should sell the risky asset once the wealth process is above the threshold wealth level, if
β is small, then one should hold the risky asset until the maturity, and for β in the mid range,
one should stop once the wealth process reaches the lower or upper threshold wealth level. These
optimal decisions are based on the assumption that β1,l > β2,h. If β1,l ≤ β2,h, one can use Lemma
A.3 to derive a similar relation of the discount factor and the free boundary. Specifically, β can be
classified into five intervals with one free boundary if β ∈ (β1,l, β2,h]∪ (β1,h,∞), two free boundaries
if β ∈ (β3,l, β1,l] ∪ (β2,h, β1,h], and no free boundary if β ∈ (0, β3,l].

For K = 0 and non-HARA utility, we have the following results that can be similarly proved as
those in Example 4.2 by studying the set {(t, y, p) : φ(y, p) ≥ 0}, so omitted here.

Example 4.3. Assume J = 2, q1 = −3, q2 = −1 and K = 0. We have the following cases.

(i) A1(1) < 0, A1(0) ≤ 0 (equivalently β ≤ β1,l). There exists a function b̄(t, p) such that

Sy =
{

(t, y, p) ∈ Qy : y ≥ b̄(t, p)
}
.

(ii) A1(1) ≥ 0 (equivalently β ≥ β1,h). It is optimal to stop the investment immediately.

14



(iii) A1(1) < 0, A1(0) > 0, A2(1) > 0 (equivalently β1,l < β < β1,h, β > β2,h). There exists a
positive function g(t, y) such that

Sy = [0, T )× (0, ỹ1]× (0, g]

with ỹ1 being the unique solution to φ(y, 1) = 0.

(iv) A1(1) < 0, A1(0) > 0, A2(1) ≤ 0 (equivalently β1,l < β ≤ β2,h). There exists a positive
function g(t, y) such that

Sy = [0, T )× (0,∞)× (0, g].

Remark 4.3. In Example 4.3, we consider the non-HARA utility function without any constraints
on the initial wealth. Compared with Example 4.2, Example 4.3 also shows that if β is small enough,
there is no stopping boundary for K > 0 whereas there is a unique stopping boundary for K = 0
and the agent should sell the stocks once the wealth is sufficiently low; if β is sufficiently large, there
is a unique stopping boundary for K > 0 whereas there is no stopping boundary for K = 0 and the
agent should stop investing in the risky assets at once; if β ∈ (β1,l, β1,h) ∩ (β2,h,∞), there exists
two stopping boundaries for K > 0 whereas there exists only one stopping boundary for K = 0 and
the agent should stop the investment when the posterior probability process reaches sufficiently high
level; if β ∈ (β1,l, β2,h), there is a unique stopping boundary no matter K > 0 or K = 0, which
further illustrates that the portfolio insurance K plays a key role in choosing the optimal trading
strategy and we can not set K = 0 to simplify our problem.

5 Numerical examples

In this section, we present the numerical results computed by the integral equation method
(IEM) and global closed form approximation methods (GCA) . For IEM, we adopt the backward
recursion method in Detemple (2005) to compute the boundary b̂ by solving the integral equation
(3.19). Denote by

J (s, t, ϕ̂, ϕ, z) := e−βs
∫ d(s,ϕ̂,ϕ)

−∞
ψ(t+ s, z, ϕe−

1
2

Θ2s+Θ
√
sη)n(η)dη.

Then we need to solve ∫ T−t

0
J (s, t, b̂(t+ s, z), b̂(t, z), z)ds = 0

with terminal condition (3.20). Set the discretization mesh ti = T − i∆ for i = 0, . . . , N with
∆ = T/N and denote by b̂i the approximation of b̂(ti, z). Using the trapezoidal rule to discretize
the integral equation, we get

0 =
N−i∑
j=1

(
J (j∆, ti, b̂i+j , b̂i, z) + J ((j − 1)∆, ti, b̂i+j−1, b̂i, z)

)
(5.1)

for i = 0, 1, . . . , N − 1. There are N equations and N + 1 unknowns b̂0, . . . b̂N . Using (3.7), we
may set b̂N = `(p) and then find b̂i, i = N − 1, . . . , 0, by solving equations (5.1) in a backward
way and with the Newton iteration method. After getting b̂i for i = 0, 1, . . . , N , we can obtain
the corresponding value for free boundary b by the relation (3.18). Finally, the free boundary of
problem (2.5) can be calculated by the dual relation

B(t, p) = −Ũ ′K(b(t, p)).

Besides, we have constructed two global closed-form approximations (GCAs) in (3.27) and (3.28).
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Example 5.1. In this example, we plot the free boundary and the optimal strategy of the optimal
investment stopping problem (2.5). We consider the dual utility function of the form

ŨK(y) = −1

q
yq −Ky

with q = −3 and K = 1. In this case, Ũ0(y) is the dual function of the power utility U(x) = 4
3x

3
4 .

The other parameters used in this example are β = 0.05, r = 0.01, σ = 0.25, µh = 0.03, µl = 0.02,
T = 1. The initial wealth is x0 = 1.2 and the initial belief p0 = 0.5.

We notice that the parameters above satisfy the Assumption 3.1. Thus, there exists a unique
free boundary b for the dual problem (2.11) given by (3.4). In Figure 1, we plot the optimal exercise
boundary by the integral equation method (IEM), using (3.27) and (3.28) and we view the solution
derived by IEM as a benchmark. It is shown that the errors of the two approximation formulas
are small and GCA-I is more accurate than GCA-II. In Figure 2(a) and Figure 2(b), the sample
path of optimal wealth and optimal trading strategy are depicted. To find the optimal stopping
time, we solve ∂yṼ (0, y, p0) +x0 = 0 firstly to obtain y = y∗. The optimal stopping time is the first

time that the process {Φ}t≥0 hits the free boundary b̂(t, z) starting from Φ0 = p0/(1 − p0) with

z = y∗(1−p0)$−1

p$0
, which is depicted as τ0 in Figure 2(c). Figure 2 reveals that it is optimal to stop

investing in the risky assets at t = τ0 when the corresponding path of Φ hits the free boundary b̂
for the first time, and when the path of Φ does not hit the free boundary b̂ before terminal date T
the individual should hold the risky asset until the terminal time.
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Figure 1: (a) The optimal stopping boundary compared with GCA-I; (b) The optimal stopping
boundary compared with GCA-II.

16



0 0.2 τ0 0.4 0.6 0.8 1.0
t

1.16

1.18

1.20

1.22

1.24

1.26

X t

Path 1
Path 2

(a)

0 0.2 τ0 0.4 0.6 0.8 1.0
t

0.0

0.1

0.2

0.3

0.4

0.5

π
* t

Path 1
Path 2

(b)

0 0.2 τ0 0.4 0.6 0.8 1.0
t

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

φ

Continuation Region

Stopping Region

b̂̂t, z)
Path 1
Path 2

(c)

Figure 2: (a) Two different sample paths of wealth with initial wealth x0 = 1.2 ; (b) Two different
sample paths of optimal investment strategy with initial wealth x0 = 1.2 ; (c) Two different sample
paths of likelihood ratio process with initial ratio ϕ0 = 1 and optimal stopping time.

Example 5.2. In this example, we compare the optimal values and the optimal investment strategies
obtained by the two GCAs and the IEM at the time t = 0 for utility function used in Example 5.1.

(i) We compare the numerical results between the two GCAs and IEM. The parameters used are
the same as Example 5.1. The numerical result is shown in Table 1.

(ii) Table 2 presents the mean and standard deviation of the relative difference between IEM and
the GCAs. We fix K = 1, T = 1, initial wealth x0 = 1.5 and initial belief p0 = 0.5. The rest
parameters are selected randomly: 10 samples of µh from the uniform distribution on interval
[0.03, 0.08], µl on [0.02, 0.06], r on [0.01, 0.05], β on [0.04, 0.08], σ on [0.2, 0.5], q on [−4,−1].
We also require the parameters satisfy Assumption 3.1.

Table 1: Comparison between the GCAs and IEM for Example 5.2 (i).

Method
For prime value For optimal strategy

Value Diff. Time (s) Strategy Diff. Time (s)
GCA-I 0.399607 6.75e-5 18.2 0.338528 7.68e-5 3.1
GCA-II 0.399515 1.63e-4 17.4 0.333473 1.50e-2 2.8
IEM 0.399580 – 5637.2 0.338554 – 1842.3

Table 2: Comparison between the GCAs and IEM for Example 5.2 (ii).

Method
For prime value For optimal strategy

Avg. diff. Std. diff. Avg. time (s) Avg. diff. Std. diff. Avg. time (s)
GCA-I 6.73e-5 1.41e-4 18.5 3.59e-3 6.23e-3 3.1
GCA-II 1.43e-4 3.24e-4 18.6 5.34e-3 6.87e-3 3.0
IEM – – 5637.2 – – 1842.3

From the numerics in Tables 1 and 2, we observe that the difference between the GCAs and
IEM optimal values is very small, whereas the computational time for GCAs is much less than
that for IEM. The GCA-I is much more accurate than GCA-II. Compared to the optimal values,
the error for computing the optimal strategies using both the IEM and GCAs is larger. This is
not surprising, as the optimal strategies are involved with the second derivatives of the dual value
functions.
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6 Conclusions

In this paper we have given rigorous analysis on the free boundary for a class of two-dimensional
mixed optimal investment and stopping problems with unobservable random drift of risky asset.
The problem is degenerate and the free boundary is a three-variable function of time, wealth and
initial belief. We have characterized the properties of the free boundary and found it with the
integral equation method and the global closed form approximation method. There remain some
open problems, for example, the current approach can not be extended if the drift coefficient is a
hidden two-state Markov chain. Detailed comments are given as follows. Assume that the drift
coefficient µ is a hidden two-state Markov chain, that is, µ = µ(αt) ∈ {µh, µl}, where the Markov
chain α is characterized by the generator of the form(

−λh λh
λl −λl

)
, λh, λl > 0. (6.1)

As usual, we define the conditional probability process P as (2.2). By Chen et al. (2021), the
Wonham filter P satisfies

dPt = (λl − (λh + λl)Pt) dt+ ΘPt(1− Pt)dB̃t

with innovation process B̃ given by

dB̃s =
1

σ

dSt
St
− E[µ(αt)|FSt ]dt.

It turns out the likelihood ratio process Φ, defined in (3.10), satisfies

dΦt = (λl − λhΦt)(1 + Φt)dt+ ΘΦtdWt

under the measure Q defined by (3.11). Furthermore, if we define Ft := 1+Φt
1+ϕ , then (3.12) does not

hold in this case. Therefore, the dimension reduction technique is not applicable when we consider
the Wonham filter and the nonlinear integral equation (3.9) can not be simplified further. We leave
this and other questions for future research.
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Appendix A Proofs

In this appendix, we shall give the proof of the main results and examples. For convenience,
since X and P are time-homogeneous, we rewrite (2.11) and (2.15) as

Ṽ (t, y, p) = sup
τ∈T0,T−t

E[e−βτ ŨK(Y y,p
τ )],

and
τ∗(t, y, p) := inf

{
s ≥ 0 : (t+ s, Y y,p

s , P ps ) ∈ Sy
}
∧ (T − t),
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respectively. Denote by Lp̃(FT ) (p̃ ≥ 1) the space of FT -measurable random variables ξ with
norm {E[ξp̃]}1/p̃ <∞, L p̃

t the space of continuous Ft-measurable stochastic process X with norm{
E
[ ∫ t

0 |Xs|p̃ds
]}1/p̃

< ∞, W 1,2,2
p̃ (Q) (p̃ ≥ 1) the Sobolev space and W 1,2,2

p̃,loc (Q) (p̃ ≥ 1) the local

Sobolev space, see Friedman (1982) for details of these spaces used extensively in the nonlinear
PDE theory.

A.1 Proof of Proposition 3.1

The main difficulty of the proof lies in the monotonicity of Ṽ (t, y, ·) because the operator LY,P
is degenerate and the traditional method in Friedman (1982) can not be applied directly. To
overcome it, we choose a Brownian motion B̂ independent of B̃ and let B̄t := ρB̃t +

√
1− ρ2B̂t

with correlation coefficient −1 < ρ < 1. We consider the following auxiliary optimal stopping
problem for the moment

V̄ (t, y, p; ρ) = sup
τ∈T0,T−t

E
[
e−βτ ŨK(Ȳ y,p

τ )
]
, (A.1)

where

dȲt = (β − r)Ȳtdt− ϑ(Pt)ȲtdB̄t,

dPt = ΘPt(1− Pt)dB̃t.

The properties of V̄ are summarized in the following lemma.

Lemma A.1. The value function of problem (A.1) satisfies V̄ ∈ W 1,2,2
p̃,loc (Qy) ∩ C(Q̄y) for any

p̃ > 2 and V̄ (t, ·, p; ρ) is strictly convex. Moreover,

∂tV̄ (t, y, p; ρ) ≤ 0, ∂yV̄ (t, y, p; ρ) ≤ 0, ∂pV̄ (t, y, p; ρ) ≥ 0,

lim
ρ→1

V̄ (t, y, p; ρ) = Ṽ (t, y, p).

Proof of Lemma A.1. Let

S̄y :=
{

(t, y, p) ∈ Qy : V̄ (t, y, p; ρ) = ŨK(y)
}
.

We split the proof into four steps.
Step 1. We prove that V̄ ∈W 1,2,2

p̃,loc (Qy)∩C(Q̄y). By dynamic programming principle, V̄ satisfies

min
{
− V̄t − LȲ ,P V̄ + βV̄ , V̄ − ŨK

}
= 0, (t, y, p) ∈ Qy,

V̄ (T, y, p) = ŨK(y), y > 0,

where LȲ ,P is the infinitesimal generator of (Ȳ , P ), given by

LȲ ,P V̄ =
1

2
ϑ2(p)y2∂yyV̄ +

1

2
Θ2p2(1− p)2∂ppV̄ − ρΘp(1− p)ϑ(p)y∂ypV̄ + (β − r)y∂yV̄ .

We notice that the operator LȲ ,P is non-degenerate. According to standard penalty method (see

Friedman (1982, Theorem 8.2)), it follows that V̄ ∈W 1,2,2
p̃,loc (Qy) ∩ C(Q̄y).

Step 2. It is not difficult to verify that

E
[

sup
0≤t≤T

∣∣ŨK(Ȳt)
∣∣] <∞.
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Standard optimal stopping theory (see Peskir and Shiryaev (2006, Corollary 2.9)) yields that the
optimal stopping time is given by

τ̄∗(t, y, p) := inf
{
s ≥ 0 : (s+ t, Ȳ y,p

s , P ps ) ∈ S̄y
}
∧ (T − t).

Consequently, the convexity of V̄ (t, ·, p) follows from the fact that ŨK(·) is strictly convex and the
affine property of Ȳ y,p

t in y.
Step 3. We prove the monotonicity of V̄ . Indeed, ∂tV̄ ≤ 0 and ∂yV̄ ≤ 0 follow easily by the

definition of V̄ and ŨK is non-increasing .
It remains to show ∂pV̄ ≥ 0. Obviously, we find that ∂pV̄ = 0 if (t, y, p) ∈ S̄y. Assume that

(t, y, p) ∈ Cy. Noting that in Cy, V̄ satisfies

−LȲ ,P V̄ + βV̄ = ∂tV̄

According to Friedman (1964, Theorem 10, p. 72), ∂tV̄ is C1 with Hölder continuous derivatives
with respect to the state variables. By Friedman (1964, Theorem 20, p. 87), we find that the
function (y, p) 7→ V̄ (t, y, p) is C3 in the domain Cy. Differentiating the previous PDE with respect
to p, we obtain ∂pV̄ satisfies

−∂t(∂pV̄ )− Lp
Ȳ ,P

∂pV̄ + β∂pV̄ = Θϑ(p)y2∂yyV̄ ≥ 0,

where

Lp
Ȳ ,P

V̄ := LȲ ,P V̄ + Θ2p(1− p)(1− 2p)∂pV̄ − ρ
[
Θ(1− 2p)ϑ(p) + Θ2p(1− p)

]
y∂yV̄ .

Moreover, Step 1 gives that ∂pV̄ = 0 on ∂C̄y because the Sobolev embedding implies V̄ ∈ C1 and
∂pV̄ = 0 in Sy. We have ∂pV̄ ≥ 0 by maximum principle.

Step 4. We show that lim
ρ→1

V̄ (t, y, p; ρ) = Ṽ (t, y, p). Choosing τ̄∗ as an optimal stopping time

for V̄ (t, y, p; ρ), we deduce that

V̄ (t, y, p; ρ)− Ṽ (t, y, p) ≤ −
J∑
j=1

1

qj
E
[∣∣(Ȳτ̄∗)qj − (Yτ̄∗)

qj
∣∣]+KE

[∣∣Ȳτ̄∗ − Yτ̄∗∣∣]. (A.2)

Furthermore, for any q ∈ R we have

E
[∣∣(Ȳτ̄∗)q − (Yτ̄∗)

q
∣∣]

≤ E
[(

(Ȳτ̄∗)
q + (Yτ̄∗)

q
)∣∣∣(1− ρ)

∫ τ̄∗

0
qϑ(Ps)dB̃s −

√
1− ρ2

∫ τ̄∗

0
qϑ(Ps)dB̂s

∣∣∣]
≤

(∥∥(Ȳτ̄∗)
q
∥∥
L2(FT )

+
∥∥(Yτ̄∗)

q
∥∥
L2(FT )

)(
(1− ρ)

∥∥∥∫ τ̄∗

0
qϑ(Ps)dB̃s

∥∥∥
L2(FT )

+
√

1− ρ2
∥∥∥∫ τ̄∗

0
qϑ(Ps)dB̂s

∥∥∥
L2(FT )

)
≤ −Cq

(
1− ρ+

√
1− ρ2

)
‖ϑ(P )‖L 2

T
, (A.3)

for some appropriate constant C > 0, where the first inequality follows from the inequality |ex−ey| ≤
(ex + ey)|x − y|, the second inequality follows from Hölder’s inequality and Minkowski inequality
and the third inequality follows from (2.14). Thus, combining (A.2) and (A.3), we have

lim
ρ→1

V̄ (t, y, p; ρ)− Ṽ (t, y, p) ≤ 0. (A.4)
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Similarly, choosing τ∗ as optimal stopping time for Ṽ (t, y, p), we have

V̄ (t, y, p; ρ)− Ṽ (t, y, p) ≥ −E
[∣∣ŨK(Ȳτ∗)− ŨK(Yτ∗)

∣∣]
≥

J∑
j=1

1

qj
E
[∣∣(Ȳτ∗)qj − (Yτ∗)

qj
∣∣]−KE

[∣∣Ȳτ∗ − Yτ∗∣∣]→ 0,

as ρ→ 1, which gives that

lim
ρ→1

V̄ (t, y, p; ρ)− Ṽ (t, y, p) ≥ 0. (A.5)

Combining (A.4) and (A.5), we conclude that lim
ρ→1

V̄ (t, y, p; ρ) = Ṽ (t, y, p).

Proof of Proposition 3.1. A similar argument as in the proof of Lemma A.1 shows that Ṽ (t, ·, p)
is strictly convex, Ṽ is non-increasing both in t and y. To show that Ṽ (t, y, ·) is non-decreasing,
choosing 0 < p1 < p2 < 1, thanks to Lemma A.1, we find

Ṽ (t, y, p1) = lim
ρ→1

V̄ (t, y, p1; ρ) ≤ lim
ρ→1

V̄ (t, y, p2; ρ) = Ṽ (t, y, p2).

In the end, we assume that Assumption 3.1 holds and show that Ṽ (t, ·, p) − ŨK(·) is non-
decreasing. Thanks to Dynkin’s formula, for any τ ∈ Tt,T , we deduce that

E[e−βτ ŨK(Yτ )]− ŨK(y) = −E
[ ∫ τ

0
e−βsφ(Ys, Ps)ds

]
. (A.6)

Thus, we have

Ṽ (t, y, p)− ŨK(y) = sup
τ∈Tt,T

−E
[ ∫ τ

0
e−βsφ(Ys, Ps)ds

]
.

By Assumption 3.1 we deduce that φ(·, p) is non-increasing. Since Y y1,p
s < Y y2,p

s for any s ≥ 0 with
y1 < y2, we conclude that Ṽ (t, ·, p)− ŨK(·) is non-decreasing as desired.

A.2 Proof of Proposition 3.2

Proof of Proposition 3.2. Under Assumption 3.1, due to the variational inequality (2.12), we know
that

Sy ⊂
{

(t, y, p) ∈ Qy : y ≤ `(p)
}
,

where `(p) is the unique solution to φ(y, p) = 0 for any p ∈ (0, 1). By Proposition 3.1, the stopping
region is downward connected and the continuation region is upward connected. Hence, there exists
a function b defined by (3.4) such that (3.5) holds.

To show the monotonicity of b, we denote the t−section of the stopping region by

Sty =
{

(y, p) : y ≤ b(t, p)
}
.

Since Ṽ (·, y, p) is non-increasing, the t−section of Sy satisfies St1y ⊂ St2y for t1 < t2. That is, b(·, y)
is non-decreasing. Similarly, define the p−section of Sy by

Spy =
{

(t, y) : y ≤ b(t, p)
}
.

Then Sp2y ⊂ Sp1y for p1 < p2 as Ṽ (t, y, ·) is non-decreasing, i.e. b(t, ·) is non-increasing.
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A.3 Proof of Proposition 3.4

Proof of Proposition 3.4. We borrow some ideas from De Angelis (2020, Proposition 5.2) and divide
the proof into four steps.

Step 1. We prove that b(·, p) is right continuous and b(t, ·) is left continuous. Let {tn}n≥1 be a
sequence such that tn ↓ t0 as n → ∞. Then the sequence {b(tn, p)}n≥1 is non-increasing. So the
lim
n→∞

b(tn, p) exists and lim
n→∞

b(tn, p) ≥ b(t0, p). On the other hand, since

Ṽ
(
tn, b(tn, p), p

)
= ŨK

(
b(tn, p)

)
, n ≥ 1,

the continuity of Ṽ and ŨK implies

Ṽ
(
t0, lim

n→∞
b(tn, p), p

)
= ŨK

(
lim
n→∞

b(tn, p)
)
.

The definition of b(t0, p) yields lim
n→∞

b(tn, p) ≤ b(t0, p), which means that b(·, p) is right continuous.

Analogously, a symmetric argument also shows that b(t, ·) is left continuous.
Step 2. We prove that b(t, ·) is right continuous. We pick t0 ∈ (0, T ) and p0 ∈ (0, 1). As b(t0, ·)

is non-increasing, it follows that b(t0, p0) ≥ b(t0, p0+). Indeed, we claim that the equality holds and
argue by contradiction. Suppose that b(t0, p0) > b(t0, p0+), then we can pick y1, y2 > 0 such that
b(t0, p0) > y2 > y1 > b(t0, p0+). Denote N := (y1, y2)× (p0, 1). It follows that for any (y, p) ∈ N ,

y > b(t0, p0+) ≥ b(t0, p),

where the second inequality follows from the fact that b(t0, ·) is non-increasing. That is,

(t0, y, p) ∈ Cy for (y, p) ∈ N . (A.7)

Moreover, from the definition of b, we know that

(t0, y, p0) ∈ Sy for y ∈ (y1, y2). (A.8)

Letting

v(t, y, p) := Ṽ (t, y, p)− ŨK(y), (A.9)

then in the region Cy, we have
(∂t + LY,P )v − βv = φ(y, p). (A.10)

By (A.7), we see that in region N , v(t0, ·, ·) satisfies

LY,P v(t0, y, p)− βv(t0, y, p) = φ(y, p)− ∂tv(t0, y, p).

Letting u = ∂yv, we find that u(t0, ·, ·) satisfies

L u(t0, y, p)− βu(t0, y, p) = −∂tu(t0, y, p) + ∂yφ(y, p) in N , (A.11)

where
L = LY,P + yϑ2(p)∂y −Θp(1− p)ϑ(p)∂p + β − r.

We pick a positive function ψ̄(y) ∈ C∞c (y1, y2) and define

G(p) :=

∫ y2

y1

∂ppu(t0, y, p)ψ̄(y)dy. (A.12)
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By (A.11), we deduce that

1

2
Θ2p2(1− p)2G(p) = −

∫ y2

y1

∂tu(t0, y, p)ψ̄(y)dy +

∫ y2

y1

∂yφ(y, p)ψ̄(y)dy

−
∫ y2

y1

[
L u− βu− 1

2
Θ2p2(1− p)2∂ppu

]
(t0, y, p)ψ̄(y)dy.

Since ∂yφ < 0 by the Assumption 3.1, integrating by parts and letting p → p0 in the previous
equation, then using the C1 continuity of Ṽ (see Proposition 3.3) and (A.8), we have

lim
p→p0

1

2
Θ2p2(1− p)2G(p) = −

∫ y2

y1

(u ·L1ψ̄)(t0, y, p0)dy −
∫ y2

y1

(∂pv ·L2ψ̄)(t0, y, p0)dy

− lim
p→p0

∫ y2

y1

∂tu(t0, y, p)ψ̄(y)dy +

∫ y2

y1

∂yφ(y, p0)ψ̄(y)dy

= lim
p→p0

∫ y2

y1

∂tv(t0, y, p)ψ̄
′(y)dy +

∫ y2

y1

∂yφ(y, p0)ψ̄(y)dy

=

∫ y2

y1

∂yφ(y, p0)ψ̄(y)dy

< 0,

where the last inequality follows from φ(·, p) is strictly decreasing, and

L1 =
1

2
ϑ2(p)y2∂yy + (ϑ2(p)− β + r)y∂y − β,

L2 = −Θp(1− p)ϑ(p)y∂yy −Θp(1− p)ϑ(p)∂y.

This implies
lim
p→p0

G(p) < 0.

Thus, there exists small ε > 0 such that

0 >

∫ p0+ε

p0

∫ z

p0

G(p)dpdz

= −
∫ p0+ε

p0

∫ z

p0

∫ y2

y1

∂ppv(t0, y, p)ψ̄
′(y)dydpdz

= −
∫ y2

y1

∫ p0+ε

p0

[
∂pv(t0, y, z)− ∂pv(t0, y, p0)

]
ψ̄′(y)dzdy

= −
∫ y2

y1

[
v(t0, y, p0 + ε)− v(t0, y, p0)

]
ψ̄′(y)dy

=

∫ y2

y1

∂yv(t0, y, p0 + ε)ψ̄(y)dy,

where the first equality follows from integrating by parts and (A.12), the second equality follows
from Fubini’s theorem, the third and the final equality follow from that v ∈ C1, (A.8), and integrat-
ing by parts. However, ∂yv = ∂yṼ − Ũ ′K ≥ 0 by Proposition 3.1. This forces the integration above
to be non-negative and provides a contradiction. Hence, b(t0, ·) is right continuous as claimed.

Step 3. We prove that b(·, p) is left continuous. As in step 2, we pick t0 ∈ (0, T ) and p0 ∈ (0, 1).
Since b(·, p) is non-decreasing, we have lim

t↑t0
b(t, p0) ≤ b(t0, p0). Suppose that lim

t↑t0
b(t, p0) < b(t0, p0).

We pick y1, y2 > 0 such that
lim
t↑t0

b(t, p0) < y1 < y2 < b(t0, p0). (A.13)
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Since b(·, p) is non-decreasing and b(t, ·) is non-increasing, we have

lim
p↓p0

lim
t↑t0

b(t, p) = lim
t↑t0

lim
p↓p0

b(t, p) = lim
t↑t0

b(t, p0). (A.14)

Combining (A.13) and (A.14), we have there exists some δ > 0 such that

lim
t↑t0

b(t, p) < y1 < y2 < b(t0, p) (A.15)

for any p ∈ (p0, p0 + δ) as we have already shown b(t, ·) is right continuous in step 2. Denote
U := (0, t0) × (y1, y2) × (p0, p0 + δ). Then for any (t, y, p) ∈ U , since b(·, p) is non-decreasing, we
deduce that

y > y1 > lim
t↑t0

b(t, p) ≥ b(t, p),

which implies (t, y, p) ∈ Cy. We must have U ⊂ Cy and u satisfies (A.11) with t0 replaced by t.
Moreover, (A.15) means that

v(t0, y, p) = 0, (y, p) ∈ (y1, y2)× (p0, p0 + δ). (A.16)

We pick positive functions ψ̄(y) ∈ C∞c (y1, y2) and χ(p) ∈ C∞c (p0, p0 + δ) with
∫ y2
y1
ψ̄(y)dy =∫ p0+δ

p0
χ(p)dp = 1, and denote

G(t) :=

∫ p0+δ

p0

∫ y2

y1

∂tu(t, y, p)ψ̄(y)χ(p)dydp.

By (A.11) , we deduce that

G(t) = −
∫ p0+δ

p0

∫ y2

y1

(L u− βu)(t, y, p)ψ̄(y)χ(p)dydp+

∫ p0+δ

p0

∫ y2

y1

∂yφ(y, p)ψ̄(y)χ(p)dydp.

Integrating by parts, we derive

G(t) = −
∫ p0+δ

p0

∫ y2

y1

u(t, y, p)(L ∗ − r)(ψ̄ · χ)(y, p)dydp

+

∫ p0+δ

p0

∫ y2

y1

∂yφ(y, p)ψ̄(y)χ(p)dydp

=

∫ p0+δ

p0

∫ y2

y1

v(t, y, p)
∂

∂y

(
(L ∗ − r)(ψ̄ · χ)

)
(y, p)dydp

+

∫ p0+δ

p0

∫ y2

y1

∂yφ(y, p)ψ̄(y)χ(p)dydp

≤
∫ p0+δ

p0

∫ y2

y1

v(t, y, p)
∂

∂y

(
(L ∗ − r)(ψ̄ · χ)

)
(y, p)dydp− rK, (A.17)

where L ∗ is the adjoint of the operator L −β+ r, and the last inequality holds as Assumption 3.1
implies ∂yφ ≤ −rK. Letting t→ t0 in (A.17), (A.16) gives

lim
t→t0

G(t) ≤ −rK < −rK
2
.

24



So there exists some 0 < ε1 < ε2 such that

−rK
2

(ε2 − ε1) >

∫ ε2

ε1

G(t0 + s)ds

=

∫ ε2

ε1

∫ p0+δ

p0

∫ y2

y1

∂tu(t0 + s, y, p)ψ̄(y)χ(p)dydpds

=

∫ p0+δ

p0

∫ y2

y1

(
u(t0 + ε2, y, p)− u(t0 + ε1, y, p)

)
ψ̄(y)χ(p)dydp

=

∫ p0+δ

p0

∫ y2

y1

u(t0 + ε2, y, p)ψ̄(y)χ(p)dydp

+

∫ p0+δ

p0

∫ y2

y1

v(t0 + ε1, y, p)ψ̄
′(y)χ(p)dydp, (A.18)

where the second equality follows from Fubini’s theorem and the last equality follows from inte-
grating by parts. Using the fact that u = ∂yṼ − Ũ ′K ≥ 0 (see Proposition 3.1) and (A.16), letting
ε1 → 0 in (A.18), we have

0 > −rK
2
ε2 ≥

∫ ε2

ε1

G(t0 + s)ds ≥ 0,

which provides a contradiction. The claim follows.
Step 4. Since b(·, p) is non-decreasing for any fixed 0 < p < 1, the continuity of b in t and p

separately implies that b is continuous in (0, T )× (0, 1) (see Kruse and Deely (1969)).

A.4 Proof of Proposition 3.5

Proof of Proposition 3.5. Since b(·, p) is non-decreasing and

Sy ⊂
{

(t, y, p) ∈ Qy : y ≤ `(p)
}

implied by the variational inequality (2.12), we deduce that

lim
t↑T

b(t, p) ≤ `(p).

We fix p = p0 and argue by contradiction. Assume lim
t↑T

b(t, p0) < `(p0). Then we can pick y1, y2

such that lim
t↑T

b(t, p0) < y1 < y2 < `(p0). Thus, there exists some t′ < T and δ′ > 0 such that

b(t, p0) < y1, y2 < `(p) for (t, p) ∈ (t′, T )× (p0, p0 + δ′). (A.19)

Denote D := (t′, T )× (y1, y2)× (p0, p0 + δ′). Since b(t, ·) is non-increasing, for any (t, y, p) ∈ D, we
have

y > y1 > b(t, p0) ≥ b(t, p), (A.20)

which means that D ⊂ Cy.
Let ψ̃(y) ∈ C∞c (y1, y2) and χ̃(p) ∈ C∞c (p0, p0 + δ′) with ψ̃(y) ≥ 0 and χ̃(p) ≥ 0. We introduce

G̃(t) :=

∫ p0+δ′

p0

∫ y2

y1

∂tv(t, y, p)ψ̃(y)χ̃(p)dydp,
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where v is defined in (A.9). Recall that v satisfies (A.10). Then integrating by parts, we deduce
that

lim
t↑T
G̃(t) = lim

t↑T

∫ p0+δ′

p0

∫ y2

y1

(
− LY,P v + βv + φ

)
(t, y, p)ψ̃(y)χ̃(p)dydp

= lim
t↑T

∫ p0+δ′

p0

∫ y2

y1

v(t, y, p)
(
− L∗Y,P + β

)(
ψ̃(y)χ̃(p)

)
+ φ(y, p)ψ̃(y)χ̃(p)dydp

=

∫ p0+δ′

p0

∫ y2

y1

φ(y, p)ψ̃(y)χ̃(p)dydp, (A.21)

where L∗Y,P is the adjoint of the operator LY,P and we have used the terminal condition v(T, y, p) = 0
in the last equality.

For any y ∈ (y1, y2), since y < y2 < `(p) for p ∈ (p0, p0 + δ′) (see (A.19)) , we deduce that
φ(y, p) > 0 for (y, p) ∈ (y1, y2) × (p0, p0 + δ′). Hence, we must have lim

t↑T
G̃(t) > 0 by (A.21), which

further gives there exists some 0 < δ̄ < T − t′ such that

0 <

∫ T

T−δ̄
G̃(t)dt =

∫ T

T−δ̄

∫ p0+δ′

p0

∫ y2

y1

∂tv(t, y, p)ψ̃(y)χ̃(p)dydpdt

=

∫ p0+δ′

p0

∫ y2

y1

[
v(T, y, p)− v(T − δ̄, y, p)

]
ψ̃(y)χ̃(p)dydp

= −
∫ p0+δ′

p0

∫ y2

y1

v(T − δ̄, y, p)ψ̃(y)χ̃(p)dydp < 0,

where the last inequality follows from (T − δ̄, y, p) ∈ D ⊂ Cy by (A.20). This is a contradiction.
The proof is complete.

A.5 Proof of Proposition 3.7

Proof of Proposition 3.7. Letting Yt := FtYt and applying Itô’s lemma to Y, we deduce that

dYt = (β − r)Ytdt− θlYtdWt

with Y0 = y. Now (A.6) yields

Ṽ (t, y, p)− ŨK(y) = sup
τ∈T0,T−t

E
[
−
∫ τ

0
e−βsφ(Ys, Ps)ds

]
=

1

1 + ϕ
sup

τ∈T0,T−t
EQ
[
−
∫ τ

0
e−βs(1 + Φs)φ

(Ys(1 + ϕ)

1 + Φs
,

Φs

1 + Φs

)
ds
]
,

where the second equality follows from measure change and Ys = YsFs, Ps = Φs/(1 + Φs). Since Y
and Φ are driven by the same Brownian motion W , we have

Yt = yeςt
(Φt

ϕ

)$
with ς = β − r − 1

2θ
2
l −

1
2Θθl and $ = − θl

Θ < 0. The proposition follows from the transformation

z = y(1+ϕ)
ϕ$ e−ςt and the fact that Φ is time-homogeneous.
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A.6 Proof of Proposition 3.8

To prove the proposition, we need the following lemma.

Lemma A.2. The function Ṽ(t, z, ϕ) is non-increasing in ϕ and non-decreasing in z.

Proof of Lemma A.2. Firstly, we claim that ψ(t, z, ·) is non-increasing. Recalling the relation that

y = zeςtϕ$

1+ϕ and p = ϕ
1+ϕ , we deduce that

∂ψ

∂ϕ
=

J∑
j=1

(
−Aj −Ajqj

$

p
+Ajqj + ϑ(p)Θ(1− p)(1− qj)

)
yqj +

rK$

p
y.

Consider the auxiliary function

F̄j(p) := −Aj(p)−Aj(p)qj
$

p
+Aj(p)qj + ϑ(p)Θ(1− p)(1− qj), 0 < p < 1.

Under Assumption 3.1, we have Aj > 0. It follows that lim
p↓0

F̄j(p) = −∞ and lim
p↑1

F̄j(p) < 0.

Furthermore,

F̄ ′j(p) = ϑ(p)Θ(1− qj)qj
$

p
+
Ajqj$

p2
− ϑ(p)Θ(1− qj)qj + Θ2(1− p)(1− qj)

> 0,

which gives F̄j(p) < 0. Noting that $ < 0, we have ∂ψ
∂ϕ < 0. The claim now follows.

Using ψ(t, z, ·) is strictly decreasing, we have for any ϕ1 < ϕ2,

Ṽ(t, z, ϕ1) = sup
τ∈T0,T−t

EQ
[ ∫ τ

0
e−βsψ

(
t+ s, z,Φϕ1

s

)
ds
]

≥ sup
τ∈T0,T−t

EQ
[ ∫ τ

0
e−βsψ

(
t+ s, z,Φϕ2

s

)
ds
]

= Ṽ(t, z, ϕ2).

That is, Ṽ(t, z, ·) is non-increasing. Similarly, the Assumption 3.1 means that ψ(t, ·, ϕ) is strictly
increasing, which further gives that Ṽ(t, ·, ϕ) is non-decreasing.

Proof of Proposition 3.8. (3.16) implies that

Sz ⊂ {(t, z, ϕ) ∈ Qz : ψ(t, z, ϕ) ≤ 0}.

Since lim
ϕ→0

ψ(t, z, ϕ) = +∞, lim
ϕ→+∞

ψ(t, z, ϕ) = −∞, ∂ϕψ(t, z, ϕ) < 0 (see Lemma A.2), we deduce

that there exists a function (t, z) 7→ Υ(t, z) such that

Sz ⊂ {(t, z, ϕ) ∈ Qz : ϕ ≥ Υ(t, z)}.

We pick some ϕ0 > 0 such that (t, z, ϕ0) ∈ Sz. As Ṽ(t, z, ·) is non-increasing (see Lemma A.2), it
follows that (t, z, ϕ) ∈ Sz for any ϕ > ϕ0. Thus, the stopping region is upward connected, i.e. there
exists a unique free boundary b̂ such that (3.17) holds.

Since Ṽ(t, ·, ϕ) is non-decreasing (see Lemma A.2), we have b̂(t, ·) is non-decreasing. Thus, we
can define the generalized inverse function of b̂(t, ·) as follows

b̂−1(t, ϕ) := inf{z ∈ R+ : b̂(t, z) > ϕ}
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for any ϕ > 0. Then the stopping region defined in the (t, y, p)−coordinate can be rewritten as

Sy =
{

(t, y, p) ∈ Qy : y ≤ p$

(1− p)$−1
eςtb̂−1

(
t,

p

1− p

)}
.

This implies that (3.18) holds. Furthermore, the relation (3.18) and Proposition 3.4 imply that
b̂−1(t, ϕ) is a continuous function. Consequently, b̂(t, ·) is strictly increasing. The proof is completed.

A.7 Proof of Proposition 3.9

Proof of Proposition 3.9. Recalling that

Φt =
Pt

1− Pt
, Yt = yeςt

(Φt

ϕ

)$
, Yt = YtFt,

Ṽ(t, z, ϕ) = (1 + ϕ)(Ṽ (t, y, p)− ŨK(y)), z =
(1− p)$−1

p$
ye−ςt,

{Y t,y,p
s > b(s, P t,ps )} = {Φs < b̂(t+ s, z)},

(3.8) yields

Ṽ(t, z, ϕ) = EQ
[ ∫ T−t

0
e−βsψ(t+ s, z,Φs)1{Φs<b̂(t+s,z)}ds

]
=

∫ T−t

0
e−βs

∫ d(s,b̂(t+s,z),ϕ)

−∞
ψ(t+ s, z, ϕe−

1
2

Θ2s+Θ
√
sη)n(η)dηds

where n(η) = 1√
2π
e−

η2

2 , and d(s, b̂(t+ s, z), ϕ) =
log(b̂(t+s,z)/ϕ)+ 1

2
Θ2s

Θ
√
s

. Since Ṽ is continuous, the free

boundary b̂(t, z) satisfies (3.19).

Finally, we show that the terminal condition (3.20) holds. For this, letK(p) := `(p) (1−p)$−1

p$ e−ςT .

By Proposition 3.5, recalling that b(t, p) = p$

(1−p)$−1 e
ςtb̂−1

(
t, p

1−p

)
and b̂(t, ·) is strictly increasing

(Proposition 3.8), we deduce that

b̂(T,K(p)) =
p

1− p
.

It remains to show that K(p) = z0 has a unique solution for any fixed z0 > 0. The existence follows
from lim

p→0
K(p) = 0 and lim

p→1
K(p) = +∞. To prove the uniqueness, we argue by contradiction. If

there exist p1 < p2 such that K(p1) = z0 = K(p2), then it follows that

b̂(T,K(p1)) =
p1

1− p1
= b̂(T,K(p2)) =

p2

1− p2
.

This provides a contradiction.

A.8 Proof of Proposition 3.11

Proof of Proposition 3.11. We only need to prove the first limit in (3.26). The other limit can be
proved in a similar way. Firstly, under Assumption 3.1, we claim that

lim
p↓0

Ṽ (t, y, p) = Ṽ (t, y; 0). (A.22)
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Choosing τ l∗(t, y) as optimal stopping time for Ṽ (t, y; 0), then we deduce

Ṽ (t, y, p)− Ṽ (t, y; 0) ≥ E
[
e−βτ

l
∗
(
ŨK(Yτ l∗)− ŨK(Ỹτ l∗)

)]
≥

J∑
j=1

1

qj
E
[∣∣(Yτ l∗)qj − (Ỹτ l∗)

qj
∣∣]−KE

[∣∣Yτ l∗ − Ỹτ l∗∣∣]. (A.23)

Since lim
p→0

P pt = 0 (see Décamps et al. (2005, Lemma 4.3)), it follows that ϑ(P pt ) → θl = ϑ(0) as

p→ 0. Also, it is not difficult to see that for any q ∈ R

E
[

sup
0≤s≤T

(Ỹs)
q
]
≤ C,

for some appropriate constant C. Now, letting p→ 0 in (A.23), in exactly the same way as in (A.2)
- (A.4), we deduce that

lim
p↓0

Ṽ (t, y, p)− Ṽ (t, y; 0) ≥ 0.

Moreover, a symmetric argument by choosing τ∗ as optimal stopping time for Ṽ (t, y, p) also shows
that

lim
p↓0

Ṽ (t, y, p)− Ṽ (t, y; 0) ≤ 0.

Thus, the claim now follows.
Furthermore, applying dynamic programming principle, Ṽ (t, y; 0) satisfies the following varia-

tional inequality
min

{
− ∂tṼ − LỸ Ṽ + βṼ , Ṽ − ŨK

}
= 0, (A.24)

where Ỹ satisfies
dỸs = (β − r)Ỹsds− θlỸsdB̃s, Ỹt = y

with LỸ being the infinitesimal generator of Ỹ.
Suppose that lim

p↓0
b(t, p) := g̃(t). Taking limit p → 0 in (3.8), noting that P(Ỹt,ys = g̃(s)) = 0,

(A.22) yields

Ṽ (t, y; 0)− ŨK(y) = −E
[ ∫ T

t
e−β(s−t)φ(Ỹt,ys , 0)1{Ỹt,ys >g̃(s)}ds

]
Applying Feynman-Kac formula, Ṽ (t, y; 0)− ŨK(y) satisfies

(∂t + LỸ − β)(Ṽ (t, y; 0)− ŨK(y)) = φ(y, 0)1{y>g̃(t)}.

It follows that if y > g̃(t), then Ṽ satisfies

(∂t + LỸ − β)Ṽ (t, y; 0) = 0;

if y < g̃(t), then V satisfies

(∂t + LỸ − β)Ṽ (t, y; 0) = −φ(y, 0) < 0

as y < g̃(t) ≤ `(0). By the variational inequality (A.24), we find that (t, y) ∈ S̃ 0c
y for y > g̃(t) and

(t, y) ∈ S̃ 0
y for y < g̃(t), i.e. g̃(t) = b̃(t; 0) is the free boundary that split the whole region into two

parts. The proof is completed.
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A.9 Proof of Example 4.1

Proof of Example 4.1. Firstly, note that

Sy ⊂ {(t, y, p) : φ(y, p) ≥ 0}. (A.25)

(i) If K > 0, then (i) follows from Proposition 3.2. Suppose that K = 0, then we have φ(y, p) ≥ 0
in R+ × (0, 1). Using (A.6) and choosing τ∗ as the optimal stopping time for Ṽ (t, y, p), we have

0 ≤ Ṽ (t, y, p)− ŨK(y) = −E
[ ∫ τ∗

0
e−βsφ(Ys, Ps)ds

]
≤ 0,

which means that the optimal stopping time τ∗ = 0.
(ii) The assumption implies that A1(1) ≤ 0, A1(0) > 0 and A1(·) is strictly decreasing, from

which we deduce that

Sy ⊂ {(t, y, p) : φ(y, p) ≥ 0} = {(t, y, p) : A1(p)yq1−1 ≥ rK}

= {(t, y, p) : p ≤ A−1
1

( rK

yq1−1

)
}

⊂ {(t, y, p) : 0 < p ≤ p0}

with p0 ∈ (0, 1] being the unique solution to A1(p) = 0. Since Ṽ (t, y, ·) is non-decreasing (see
Proposition 3.1), it follows that Sy is downward connected, i.e. there exists a positive function
g(t, y) ≤ p0 such that (4.1) holds.

(iii) Notice that φ(y, p) ≤ 0 in R+ × (0, 1) in this case. Using (A.27), we have Sy = ∅, which
means that the optimal stopping time τ∗ = T .

A.10 Proof of Example 4.2

We first state a lemma that would help us connect β with the free boundary.

Lemma A.3. For non-HARA utility function (3.2), let ∆̃(p) := A2
2(p)+4rKA1(p) and assume

K > 0. We have the following cases and results.

(i) If A1(1) > 0, then there exists a unique continuous free boundary b(t, p) defined by (3.4).

(ii) If A1(0) ≤ 0, then

(a) If A2(1) ≥ 0 and ∆̃(0) > 0, then there exist two positive functions b1(t, p) and b2(t, p)
such that

Sy = [t∗, T )× [b1, b2]× (0, p̃0], (A.26)

where t∗ ∈ [0, T ) and p̃0 = 1 if ∆̃(1) ≥ 0 and p̃0 is the unique solution to ∆̃(p) = 0 if
∆̃(1) < 0.

(b) If A2(1) ≥ 0 and ∆̃(0) ≤ 0, then it is not optimal to stop the investment before the
maturity T .

(c) If A2(1) < 0, A2(0) > 0, ∆̃(0) > 0, then there exist two positive functions b1(t, p) and
b2(t, p) such that

Sy = [t∗, T )× [b1, b2]× (0, p̃0],

where t∗ ∈ [0, T ) and p̃0 is the unique solution to ∆̃(p) = 0 on (0, p̃2) with p̃2 being the
unique solution to A2(p) = 0.
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(d) If A2(1) < 0, A2(0) ≤ 0 or A2(1) < 0, A2(0) > 0, ∆̃(0) ≤ 0, then it is not optimal to
stop the investment before the maturity T .

(iii) If A1(1) ≤ 0 < A1(0), then

(a) If A2(1) < 0, then there exists a positive function g(t, y) such that

Sy = [0, T )× (0, ỹ0]× (0, g],

with ỹ0 being the unique positive solution to φ(y, 0) = 0.

(b) If A2(1) ≥ 0, then there exist two positive function b1(t, p) and b2(t, p) such that

Sy = [0, T )× (0, b2]× (0, p̃1] ∪ [t∗, T )× [b1, b2]× (p̃1, p̃0),

where t∗ ∈ [0, T ), p̃1 is the unique solution to A1(p) = 0, and p̃0 = 1 if ∆̃(1) ≥ 0 and p̃0

is the unique solution to ∆̃(p) = 0 if ∆̃(1) < 0.

Proof of Example 4.2. We now use Lemma A.3 to prove the results of Example 4.2. Denote by

β4,i := β2,i −
√
rK(

4

3
θ2
i +

1

3
r) +

4

9
r2K2 − 2

3
rK, i = h, l.

We have β4,i < β2,i < β3,i < β1,i for i = h, l, where β1,i, β2,i, β3,i are defined in Example 4.2. Using
the notations above, we find that Ai(0) > 0 is equivalent to β > βi,l for i = 1, 2; Ai(1) > 0 is
equivalent to β > βi,h for i = 1, 2; ∆̃(0) > 0 is equivalent to β < β4,l or β > β3,l; ∆̃(1) > 0 is
equivalent to β < β4,h or β > β3,h.

We can now translate the results of Lemma A.3 in terms of β. To determine specific intervals
for β, we need to discuss β2,h > β3,l and β2,h ≤ β3,l separately and use the assumption β2,h < β1,l.
We only prove the results for β2,h > β3,l, the results for β2,h ≤ β3,l can be proved similarly and
omitted here.

(i) A1(1) > 0 or, equivalently, β > β1,h, there exists one free boundary.

(ii)(a) A1(0) ≤ 0, A2(1) ≥ 0, ∆̃(0) > 0 or, equivalently, β ≤ β1,l, β ≥ β2,h, β > β3,l (the case β < β4,l

can not happen as it contradicts to other conditions on β), which gives β2,h ≤ β ≤ β1,l, there
exist two free boundaries.

(ii)(b) A1(0) ≤ 0, A2(1) ≥ 0, ∆̃(0) ≤ 0 or, equivalently, β ≤ β1,l, β ≥ β2,h, β ≤ β3,l, which is
impossible as β2,h > β3,l.

(ii)(c) A1(0) ≤ 0, A2(1) < 0, A2(0) > 0, ∆̃(0) > 0 or, equivalently, β ≤ β1,l, β < β2,h, β > β2,l, β >
β3,l (the case β < β4,l can not happen as it contradicts to other conditions on β), which gives
β3,l < β < β2,h, there exist two free boundaries.

(ii)(d) Case 1: A1(0) ≤ 0, A2(1) < 0, A2(0) ≤ 0 or, equivalently, β ≤ β1,l, β < β2,h, β ≤ β2,l, which
gives β ≤ β2,l, there is no free boundary. Case 2: A1(0) ≤ 0, A2(1) < 0, A2(0) > 0, ∆̃(0) ≤ 0
or, equivalently, β ≤ β1,l, β < β2,h, β > β2,l, β ≤ β3,l, which gives β2,l < β ≤ β3,l, there is no
free boundary.

(iii)(a) A1(1) ≤ 0 < A1(0), A2(1) < 0 or, equivalently, β ≤ β1,h, β > β1,l, β < β2,h, which is impossible
as β2,h < β1,l.

31



(iii)(b) A1(1) ≤ 0 < A1(0), A2(1) ≥ 0 or, equivalently, β ≤ β1,h, β > β1,l, β ≥ β2,h, which gives
β1,l < β ≤ β1,h, there exist two free boundaries.

Combining (ii)(a), (ii)(c), (iii)(b) shows that for β3,l < β ≤ β1,h there exist two free boundaries.
Combining (ii)(d) Cases 1 and 2 shows that for β ≤ β3,l there is no free boundary. This completes
the proof of Example 4.2.

Proof of Lemma A.3. To study the shape of the stopping region Sy, differentiating ∆̃, we have

∆̃′(p) = −4Θϑ(p)A2(p)− 16ΘrKϑ(p) = 4Θϑ(p)(−A2(p)− 4rK).

(i) Under Assumption 3.1, the shape of the stopping region follows from Proposition 3.2.
(ii) (a) Firstly, we assume that ∆̃(1) ≥ 0. In this case, we have ∆̃(p) > 0. It follows that there

exists two positive functions `1(p) and `2(p) such that{
(t, y, p) ∈ Qy : φ(y, p) ≥ 0

}
=
{

(t, y, p) ∈ Qy : `1(p) ≤ y ≤ `2(p)
}
,

with `1 and `2 defined by

`1(p) :=
(−A2(p)−

√
A2

2(p) + 4rKA1(p)

2A1(p)

)−1/2
, (A.27)

`2(p) :=
(−A2(p) +

√
A2

2(p) + 4rKA1(p)

2A1(p)

)−1/2
. (A.28)

We now prove (A.26) holds. Note that (A.27) implies

Sy ⊂M :=
{

(t, y, p) ∈ Qy : `1(p) ≤ y ≤ `2(p)
}
. (A.29)

Sy is not empty. Otherwise, in Qy,

−∂tṼ − LY,P Ṽ + βṼ = 0,

from which we deduce that ∂tṼ (T, y, p) = φ(y, p) > 0 for `1(p) < y < `2(p). This is contradict with
∂tṼ ≤ 0 by Proposition 3.1.

Also, the monotonicity of Ṽ (·, y, p) yields that if there exists some t0 ∈ (0, T ) such that {t0} ×
(0,+∞) × (0, 1) ⊂ Cy, then [0, t0) × (0,+∞) × (0, 1) ⊂ Cy. Thus, thanks to (A.29), there exists
some t∗ ∈ [0, T ) such that we can define

b1(t, p) := inf
{
y ∈ R+ : Ṽ (t, y, p) = ŨK(y)

}
,

b2(t, p) := sup
{
y ∈ R+ : Ṽ (t, y, p) = ŨK(y)

}
,

for t ∈ [t∗, T ). Moreover, (t, y, p) ∈ (0, t∗)× (0,+∞)× (0, 1) ⊂ Cy if t∗ > 0.
Denote Λ :=

{
(t, y, p) ∈ [t∗, T ) × (0,+∞) × (0, 1) : b1(t, p) ≤ y ≤ b2(t, p)

}
and recall that

v = Ṽ − ŨK in (A.9). Obviously, we see that Sy ⊂ Λ. It suffices to show Λ ⊂ Sy. Otherwise, the
region M̃ := Cy ∩ Λ is nonempty and in this region,

∂tv + LY,P v − βv = φ(y, p) ≥ 0,

since M̃ ⊂ Λ ⊂ {(t, y, p) ∈ Qy : φ(y, p) ≥ 0}. Moreover, v = 0 on ∂M̃. The maximum principle
gives v ≤ 0 in M̃. This provides a contradiction as v > 0 in M̃. Hence, Λ = Sy, i.e. (A.26) holds.
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If ∆̃(1) < 0, noting that

{(t, y, p) : φ(y, p) ≥ 0} = {(t, y, p) : `1(p) ≤ y ≤ `2(p), p ≤ p̃0}

where `i (i = 1, 2) is defined in (A.27) and (A.28) and p̃0 is the unique solution to ∆̃(p) = 0, the
rest of the proof can be carried out in exactly the same way as the case ∆̃(1) ≥ 0.

(ii)(c) The assumption implies that A1(p) < 0 on (0, 1), A2(p) > 0 on (0, p̃2) and A2(p) < 0 on
(p̃2, 1) for some p̃2 ∈ (0, 1). Moreover, ∆̃(p̃2) < 0, ∆̃(0) > 0, ∆̃′(p) < 0 on (0, p̃2). Then ∆̃(p) > 0
on (0, p̃0) and ∆̃(p) < 0 on (p̃0, p̃2). Thus,

{(t, y, p) : φ(y, p) ≥ 0} = {(t, y, p) : `1(p) ≤ y ≤ `2(p), 0 < p ≤ p̃0}

for some positive functions `i (i = 1, 2) defined in (A.27) and (A.28), the rest of the proof can be
carried out in exactly the same way as (ii)(a).

In the cases (ii)(b) and (ii)(d), we immediately have φ < 0, which gives Sy = ∅ by (A.27), i.e.
it is optimal to hold the risky asset until terminal time T .

(iii)(a) Suppose A1(0) > 0, A1(1) ≤ 0, A2(1) < 0. Let ỹ0 be the unique solution to φ(y, 0) = 0.
It follows that φ(y, 1) < 0 for y > 0, φ(y, 0) < 0 for y > ỹ0 and φ(y, 0) > 0 for y < ỹ0. Since
∂pφ(y, p) < 0, there exists a unique solution h1(y) such that φ(y, p) > 0 if p < h1(y) and φ(y, p) < 0
if p > h1(y) for y < ỹ0, i.e.

{(t, y, p) : φ ≥ 0} = {(t, y, p) : p ≤ h1(y)}.

Since Ṽ is non-decreasing in p, it follows that Sy is downward connected. Consequently, (a) in (iii)
holds.

(iii)(b) Suppose A1(0) > 0, A1(1) ≤ 0, A2(1) ≥ 0. Consider the following function defined by

˜̀
2(p) :=

{
( rK
A2(p))−1/2, p = p̃1,

`2(p), p 6= p̃1.

Let p̃1 be the unique solution to A1(p) = 0. Clearly, A1(p) ≥ 0 on (0, p̃1], A1(p) < 0 on (p̃1, 1) and
A2(p) > 0 on (0, 1). Thus, φ(y, p) ≥ 0 is equivalent to y ≤ ˜̀

2(p) on (0, p̃1].
On the other hand, we notice that ∆̃(p̃1) = A2

2(p̃1) > 0, and ∆̃′(p) < 0. Thus, if ∆̃(1) < 0, then
there exists some p̃0 ∈ (p̃1, 1) such that ∆̃(p) > 0 for p ∈ (p̃1, p̃0). Then it follows that φ(y, p) ≥ 0
is equivalent to `1(p) ≤ y ≤ `2(p) on (p̃1, p̃0). In conclusion,

{(t, y, p) : φ ≥ 0} = {(t, y, p) : 0 < p ≤ p̃1, y ≤ ˜̀
2(p) or p̃1 < p < p̃0, `1(p) ≤ y ≤ `2(p)}. (A.30)

Similarly, we can show that if ∆̃(1) ≥ 0, then (A.30) holds with p̃0 = 1. The rest of the proof
follows from almost the same argument as (ii)(a).
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