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Abstract

We consider portfolio optimization problems with expected loss constraints un-

der the physical measure P and the risk neutral measure Q, respectively. Using

Merton’s portfolio as a benchmark portfolio, the optimal terminal wealth of the

Q-risk constraint problem can be easily replicated with the standard delta hedg-

ing strategy. Motivated by this, we consider the Q-strategy fulfilling the P-risk

constraint and compare its solution with the true optimal solution of the P-risk

constraint problem. We show the existence and uniqueness of the optimal solution

to the Q-strategy fulfilling the P-risk constraint, and provide a tractable evalua-

tion method. The Q-strategy fulfilling the P-risk constraint is not only easier to

implement with standard forwards and puts on a benchmark portfolio than the

P-risk constraint problem, but also easier to solve than either of the Q- or P-risk

constraint problem. The numerical test shows that the difference of the values of

the two strategies (the Q-strategy fulfilling the P-risk constraint and the optimal

strategy solving the P-risk constraint problem) is reasonably small.

Keywords: Optimal Portfolio, Expected Loss Constraint, Physical Measure P , Risk-

Neutral Measure Q, Q-Strategy Fulfilling P-Risk Constraint.

1. Introduction

Maximizing expected utility, with the utility function formalized by a constant relative

risk aversion, is a standard approach to portfolio optimization leading to the widely ac-

cepted constant proportion portfolio; see the pioneering work by Merton (1990). Both

financial institutions and individuals often take such a strategy as starting point and
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then make appropriate deviations away from it. Such deviations can be motivated by

e.g. liability considerations, liquidity needs, or tactical overlays. Liability considerations

can be formalized as solvency constraints on the portfolio. Downward portfolio protec-

tion relative to a liability can be obtained, e.g., by the standard Constant Proportion

Portfolio Insurance (CPPI) or Option-Based Portfolio Insurance (OBPI) strategies. They

protect, at least for a continuous asset process, the portfolio fully against a loss relative

to some hedgable liability benchmark. One can loosen the insurance to not protect fully

but instead accept some extent of loss. The VaR constraint allows the investor to limit

the probability of a loss. The expected loss constraint allows the investor to limit the

expectation of the loss. We can motivate both by corresponding external solvency rules.

In this note we focus exclusively on the expected loss constraint.

As a solvency rule, one expresses the expected loss constraint naturally under the

objective probability measure. Nevertheless, the portfolio problem where the constraint

is formulated under the risk-neutral measure is solved first, by Basak and Shapiro (2001),

and has some appeal. The optimal portfolio turns out to be a combination of the following

simple positions: a) A part of the assets in the optimal unconstrained portfolio; b) a long

option position to protect that portfolio from a loss; and c) a short option position to

allow for some loss after all. The options bought and sold are plain vanilla options. We

recover in this paper the result by Basak and Shapiro (2001). We also derive the optimal

portfolio when the expected loss is constrained under the physical measure. We find that

one should replace the short plain vanilla position by a short position in a power option,

i.e. an option that involves the power function of the underlying. We solve both problems

by the martingale method, see Karatzas et al. (1987) and Cox and Huang (1989). One

may also apply the dynamic programming principle to solve problems with constraints,

see Kraft and Steffensen (2013).

The distinctly different solutions to the portfolio problems with different constraints

call for a discussion on which problem and strategy is easier to implement and communi-

cate. The combination of plain vanilla put options appears clearly as the simplest strategy

both to implement and to communicate. However, the problem that it solves, based on

the expected loss under the risk-neutral measure, appears more difficult to understand

and communicate than the problem based on the expected loss under the physical mea-

sure. Note also that the risk-neutral expectation of the uncertain loss is equal to the

financial value of that loss, except for a discount factor. Indeed, one can communicate

that interpretation easily to people who think about risk in terms of the value of holding

or selling it.

We highlight in this short note two key advantages of working with constraints formu-

lated in terms of the risk-neutral measure instead of the objective measure: First, we can

implement the optimal constrained portfolio easily by trading or hedging plain vanilla op-

tions, not non-marketed power options, which shall be appealing to all investors. Second,
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since the risk-neutral expectation is essentially a representation of the value, constraining

it is equivalent to constraining the financial value of the uncertain loss.

Two concerns about the specific model arise: First, the interpretation of constraining

the value of the loss is true only for its theoretical value (arbitrage-free price within

the model). However, a constraint under the physical measure is also a model-based

theoretical constraint so that argument does not favor one measure over the other. Second,

the optimal portfolios we find for given constraints, are optimal within the model only.

Truly, both our qualitative and quantitative results hinge upon our market assumption

and may not hold fully outside the model. However, the purpose of the note is to derive

some structural insight and structural insight within a simple model is valuable in itself.

Even though the optimal portfolio constrained under the risk-neutral measure is eas-

ier to implement and communicate, one naturally formulates solvency rules as constraints

under the physical measure, which leads to some important questions: 1) How do we

construct the best portfolio, among the simple portfolios based on plain vanilla put op-

tions, such that the constraint under the physical measure is fulfilled? This is clearly

not the optimal portfolio solving the constraint under the physical measure but it may

be preferred due to its tractability. 2) If we, for simplicity, constrain the portfolio under

the risk neutral measure instead of the physical measure, by the same upper level, what

is the precision with which we actually fulll the constraint under the physical measure?

3) What is the error we make? Does it, e.g., always have the same sign such that we

know beforehand whether we are on the safe side, or unsafe side, if we simply replace a

physical constraint by a risk-neutral constraint? Along with the derivation of the various

strategies, these are the questions we address in this note.

The main contribution of this short paper is to clarify the relation between the opti-

mal solutions with loss constraints under different measures. We show that the strategy

solving the risk-neutral constraint is efficient in certain ways: a) it is easy and fast to

implement; b) there exists a unique risk-neutrally constrained strategy that fulfills the

objective constraint; c) the approximation is reasonably accurate by numerical tests.

The outline of the paper is as follows. In Section 2, we present the problems and derive

the solutions. In Section 3, we find the risk-neutrally constrained strategy that fulfills the

objective constraint and perform numerical tests. Section 4 concludes.

2. Q- and P-Expected Loss Constraints

We consider a continuous-time economy with finite horizon [0, T ], which is built on a

filtered probability space (Ω,F , (Ft),P) on which a one-dimensional Brownian motion W

is defined. Financial investment opportunities are given by an instantaneously risk-free

money market account and a risky stock as in the Black-Scholes model. We suppose that

the money market provides a constant interest rate r. The stock price S is represented
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by a geometric Brownian motion (GBM) as

dSt = St(µdt+ σdWt),

where the drift µ and the volatility σ are constants. We assume that a portfolio manager

in this economy is endowed at time 0 with an initial wealth x0. He chooses a self-financing

investment strategy π, where πt denotes the proportion of wealth invested in the stock at

time t. The wealth process X follows a controlled stochastic differential equation (SDE):

(2.1) dXt = rXtdt+ πtXtσ(θdt+ dWt), X0 = x0 > 0,

where θ = (µ−r)/σ is the market price of risk and π is a progressively measurable, square

integrable control process to be decided. The manager aims at maximizing his expected

utility of the wealth at time T , i.e.,

max
π

E(U(XT )),

where U(x) = 1
γ
xγ, 0 < γ < 1, with a risk constraint on its expected loss. Denote by P

and Q the physical measure and the risk neutral measure, respectively, and E and EQ

the expectations under P and Q, respectively. The risk constraint can then be given by

P-expected loss: E((K −XT )+) ≤ ε,

or

Q-expected loss: EQ((K −XT )+) ≤ ε,

where K is a constant benchmark and ε is a positive constant.

Note that the GBM asset price process and the power utility are the simplest setting

for utility maximization. For practical portfolio optimization, it is desirable to have more

general asset price processes such as Lévy process and more general utility functions such

as S-shaped utility, but then the problem is much more complicated and is very difficult

to solve and any insights from the model may be hidden due to the technicality of the

model. We choose the GBM asset price process and power utility in this paper, not only

they are well known and commonly used, but also they provide clear insights and relations

for two different risk measure constraints, which might not have been possible if general

asset price processes and utility functions were used.

With a risk constraint on the Q-expected loss, the optimization problem is solved in

Basak & Shapiro (2001), see also Kraft & Steffensen (2013). The martingale method is

used to transform the problem to a static optimization problem. Define the pricing kernel

ξt by

ξt = exp

(
−θWt −

1

2
θ2t

)
, 0 ≤ t ≤ T,

and the measure Q by

Q(A) = E(ξT1A), A ∈ FT ,
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where 1A is the indicator that equals 1 if A happens and 0 otherwise. Then the dis-

counted wealth process (e−rtXt)0≤t≤T is a super-martingale under Q. Since the market is

complete, we may first find the optimal terminal wealth XQ
T and then use the martingale

representation theorem to derive the optimal control πQ. To find the optimal terminal

wealth XQ
T , the static optimization problem becomes (note XT is an FT measurable

random variable)

maxXT E[U(XT )]

subject to EQ(e−rTXT ) ≤ x0 (budget constraint),

EQ((K −XT )+) ≤ ε (risk constraint),

which is equivalent to

(2.2)

maxXT E[U(XT )]

subject to E(ξTXT ) ≤ erTx0,

E(ξT (K −XT )+) ≤ ε.

Note that there is no impact from the constraint on the formation of the pricing kernel

ξ that reflects the risk attitude of a representative agent (different from the marginal

investor we consider) in equilibrium. Given that pricing kernel, our marginal investor

makes marginal decisions and introduces the Q measure in the constraint only to express

his preferences. There is not feedback effect from our marginal investor on the formation

of Q. It is beyond the scope of the paper to consider the fixed-point impact that arises if

the representative agent specifies preferences in terms of the measure Q he forms himself.

To avoid triviality, we make the following assumption:

Assumption 1 The risk constraint in problem (2.2) is binding, i.e.,

E[ξT (K − I(λ0ξT ))+] > ε,

where I is the inverse function of U ′, λ0 is determined by

(2.3) E(ξT I(λ0ξT )) = erTx0.

Remark 2.1 Assumption 1 is to remove the trivial case that the risk constraint is re-

dundant. This can be seen as follows. If we solve problem (2.2) with only the budget

constraint, then the optimal solution is XQ
T = I(λ0ξT ) and λ0 is determined by (2.3). If

E[ξT (K − X∗T )+] ≤ ε, then the risk constraint is automatically satisfied, and XQ
T is the

optimal solution to problem (2.2).

The general scheme starts by taking the budget and risk constraints into account via

Lagrange multipliers λ, ω ≥ 0. Consider the following problem:

(2.4) max
XT

E[U(XT )− λ(ξTXT − erTx0)− ω(ξT (K −XT )+ − ε)].
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Under Assumption 1, the optimal solution to Problem (2.2) is given by (see also Basak

and Shapiro, 2001)

(2.5) XQ
T =


I(λξT ), ξT < U ′(K)/λ,

K, ξT ∈ [U ′(K)/λ, U ′(K)/(λ− ω)],

I((λ− ω)ξT ), ξT > U ′(K)/(λ− ω),

where λ, ω ≥ 0. Furthermore, we can argue that λ > 0 and ω > 0. If λ = 0, then

XQ
T = I(0) = ∞ (since u′(0) = ∞), which violates the budget constraints, so λ > 0.

If ω = 0, then XQ
T = I(λ0ξT ) and λ0 is determined from equation (2.3). Assumption 1

implies that the loss constraint E(ξT (K − XQ
T )) ≤ ε is not satisfied, so ω > 0. We can

determine λ, ω > 0 by solving the following coupled nonlinear equations:

(2.6)

{
E(ξTX

Q
T ) = erTx0,

E(ξT (K −XQ
T )+) = ε.

Since the equality in the budget constraint holds, e−rT ξtX
Q
t is a martingale under P and

the optimal wealth process is given by

(2.7) XQ
t = E

(
XQ
T

ξT e
−rT

ξte−rt

∣∣∣∣ Ft) , 0 ≤ t ≤ T.

Let YT = I(λξT ) and Yt = E
(
YT

ξT e
−rT

ξte−rt
| Ft
)

for 0 ≤ t ≤ T . Then Y satisfies the SDE

(2.8) dYt = Yt

((
r +

θ2

1− γ

)
dt+

θ

1− γ
dWt

)
,

which is a Merton’s portfolio value process, with the initial value

Y0 = λ
1

γ−1 exp

[(
1

2

γ

(γ − 1)2
θ2 − r

)
T

]
.

The optimal terminal wealth XQ
T can be represented as a piecewise linear function of YT

by

XQ
T =


YT , YT > K,

K, K0 ≤ YT ≤ K,
K
K0
YT , YT < K0,

where K0 = I
(
λU ′(K)
λ−ω

)
. Figure 2.1 gives the one-to-one correspondence of XQ

T and YT .

Note that XQ
T can be expressed as

(2.9) XQ
T = YT + (K − YT )+ − K

K0

(K0 − YT )+.

Remark 2.2 If Merton’s portfolio Y is a benchmark portfolio (see Platen & Heath, 2009)

and there exist European put options on YT with exercise prices K and K0 at exercise time

T , then we can replicate the optimal terminal wealth XQ
T by holding a forward contract

YT , a long put position with exercise price K and K/K0 units of short put positions with

exercise price K0.
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Figure 2.1: Final payoff XQ
T

The value of the optimal wealth XQ
t at any time t ∈ [0, T ] can easily be computed as

XQ
t = Yt + Put

(
Yt, K, r,

θ

1− γ
, T − t

)
− K

K0

Put

(
Yt, K0, r,

θ

1− γ
, T − t

)
,

where Put (y,K, r, σ, τ) represents the European put price with the current stock price

y, strike price K, riskless interest rate r, stock volatility σ, and time to expiry τ . The

optimal control XQ
t can also be easily derived with the standard delta hedging strategy.

Now consider Problem (2.2) with the Q-expected loss replaced by a P-expected loss:

(2.10)

maxXT E[U(XT )]

subject to E(ξTXT ) ≤ erTx0 (budget constraint),

E((K −XT )+) ≤ ε (risk constraint).

Again, to ensure the risk constraint is not redundant, we assume the following condition

(see Remark 2.1):

Assumption 2 The risk constraint in problem (2.10) is binding, i.e.,

E[(K − I(λ0ξT ))+] > ε,

where λ0 is determined by (2.3).

Assumption 2 ensures that the risk constraint in (2.10) is not already fulfilled by

the optimal solution to the unconstrained problem. From a practical point of view,

consider the case of an asset manager choosing an asset strategy that violates a possible

solvency rule expressed in terms of the risk constraint. The solvency rule is a VaR-based

solvency rule where the asset manager has the obligation to pay K to a third party upon
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termination but he is only solvent at time 0 if he can live up to his obligation with a

certain probability. If the constraint is binding, this means that he has to adapt his

strategy to obey the solvency rule (risk constraint), since the asset strategy he would use

in a regime with no solvency rule, does not live up to the solvency rule in a regime where

the solvency rule is VaR-based.

Under Assumption 2, the optimal solution to problem (2.10) is given by

(2.11) XP
T =


I(λξT ), ξT < U ′(K)/λ,

K, ξT ∈ [U ′(K)/λ, (U ′(K) + ω)/λ],

I(λξT − ω), ξT > (U ′(K) + ω)/λ,

where λ, ω > 0 are determined by

(2.12)

{
E(ξTX

P
T ) = erTx0,

E((K −XP
T )+) = ε.

The optimal wealth process (XP
t )0≤t≤T is given by inserting (2.11) in (2.7) and the

optimal terminal wealth XP
T can be written as

XP
T =


YT , YT > K,

K, K0 ≤ YT ≤ K,

I(U ′(YT )− ω), YT < K0,

where K0 = I(ω + U ′(K)) and YT is Merton’s portfolio at time T , see (2.8). Figure

2.2 gives the one-to-one correspondence of XP
T and YT . In contrast to the case for the

Q-strategy, XP
T cannot be replicated by simple forward and puts with the benchmark

portfolio Y .

To compare the optimal solutions with P- and Q-risk constraint, respectively, we have

the following result.

Proposition 2.1 Let

X∗T = arg max{E[U(XT )] : E(ξTXT ) ≤ erTx0, E
Q((K −XT )+) ≤ ε},

then we have E((K −X∗T )+) ≤ ε.

Proof: It is sufficient to prove

E((K −X∗T )+) ≤ EQ((K −X∗T )+),

which is equivalent to

E((K0 − YT )+) ≤ EQ((K0 − YT )+).

We have

EQ((K0 − YT )+) = erTPut

(
Y0, K0, r,

θ

1− γ
, T

)
= E((K0 − ỸT )+),
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Figure 2.2: Final payoff XP
T

where Ỹ satisfies the SDE

dỸt = Ỹt

(
rdt+

θ

1− γ
dWt

)
, 0 ≤ t ≤ T,

with the initial condition Ỹ0 = Y0. Since Yt ≥ Ỹt for 0 ≤ t ≤ T , we have E((K0−YT )+) ≤
EQ((K0 − YT )+).

Proposition 2.1 says that the Q-optimal solution is a P-feasible solution. Therefore,

the P-optimal value is always greater than or equal to the Q-optimal value.

3. Fulfilling the P-Risk Constraint by the

Q-Strategy

In Section 2 we find that the Q-strategy is piecewise linear in Merton’s portfolio while

the P-strategy fails to admit this property. Hence the optimal terminal wealth of the

Q-strategy can easily be replicated with the standard delta hedging strategy while the P-

strategy cannot. This motivates us to work one step forward, that is, we aim at fulfilling

the P-risk constraint by utilizing the Q-strategy.

There is another subtle but deep reason motivating us fulfilling the P-risk constraint

by the Q-strategy as explained next. In solving the P-risk constraint problem, we need

to find Lagrange multipliers λ, ω which are positive solutions of Equation (2.12). The

existence and uniqueness of the solution are not clear upfront. Bielecki et al. (2005)

discuss a mean-variance problem with a nonnegative terminal wealth constraint. They

show the Lagrange multipliers λ, ω for their problem must satisfy

(3.1) E[(λ− ωξT )+] = z and E[(λ− ωξT )+ξT ] = x0
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for some z and x0 (see (5.1) in Bielecki at al. (2005)). To solve Equation (3.1), they define

a new variable η = λ/ω, divide the two equations in (3.1) to get

(3.2)
E[(η − ξT )+ξT ]

E[(η − ξT )+]
=
x0

z
,

and then show that there exists a unique solution η∗ to (3.2). The relation λ = η∗ω helps

to find the Lagrange multipliers λ and ω. The success of that approach in reducing dimen-

sionality crucially depends on the special structure of Equation (3.1). For our problem,

with a power utility objective, Equation (2.12) is much more complicated and cannot be

reduced into an equation with a scalar variable as in Bielecki et al. (2005) considering a

mean-variance objective, so the existence and uniqueness of Lagrange multipliers λ, ω for

our P-risk constraint problem are not clear. We will now show that this is guaranteed if

we use a Q-strategy to fulfill the P-risk constraint.

We work on the following sub-optimization problem (SOP),

(3.3)

maxY0≥0,0≤K0≤K E[U(X̄T )]

subject to E(ξT X̄T ) = erTx0 (budget constraint),

E((K − X̄T )+) ≤ ε (risk constraint),

where

X̄T =


YT , YT > K,

K, K0 ≤ YT ≤ K,
K
K0
YT , YT < K0,

and YT is the value of a Merton’s portfolio at time T with Y satisfying the SDE (2.8).

This sub-optimization problem is also much easier to implement in practical asset

management. This can be seen from the structure of X̄T and Remark 2.2. This sub-

optimization problem takes the structure of the Q-strategy by formalizing that strategy

in terms of the pieces and slopes, via Y0 and K0, of the claim one is to optimally hedge

under theQ-constraint. Y0 defines the unit of the 1. axis in describing the optimal position

as a contingent claim on YT . The flat piece goes from K0 to K and that implicitly defines

the slope for Y < K0 to be K/K0. Thus the optimization problem is reduced to a static

problem of optimizing the parameters of the claim inherited from the Q-constraint. Doing

that optimization under a P-constraint in (3.3) is the very rationale of this section. This

is a sub-optimization in the sense that we look for the optimum in a limited class of claims

and we know from before that the optimal claim does not belong to that class. However,

within that limited class we actually perform a true optimization. The purpose of the

following Theorem 3.1 is now to show that this sub-optimization problem has a unique

solution and to describe a tractable algorithm for finding that solution. The proof of

Theorem 3.1 can be found in the Appendix.
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Theorem 3.1 Assume that the SOP admits a feasible solution. If the equation

(3.4) ε = K exp

((
r +

θ2

1− γ

)
T

)
Put

(
y, 1, r +

θ2

1− γ
,

θ

1− γ
, T

)
admits a nonnegative solution y, then let C ≥ 0 be its unique solution; otherwise, let

C = 0. We have the following assertions:

• There exists a unique solution L∗ to the equation

(3.5)
x0

K
= L+ Put

(
L, 1, r,

θ

1− γ
, T

)
− Put

(
L0, 1, r,

θ

1− γ
, T

)
with L0 = L∗0 := max{C, x0/K} and 0 ≤ L∗ ≤ x0/K.

• The optimal solution to the SOP is given by

Y ∗0 = L∗K and K∗0 =
Y ∗0
L∗0
.

Remark 3.1 If ε < K then there exists a unique C > 0 to equation (3.4) and if ε ≥ K

(the risk constraint is redundant) then C = 0. A sufficient condition for the existence of a

feasible solution to the SOP is x0 ≥ Ke−rT , which makes g(0) = −x0/K+e−rT−G(L∗0) ≤ 0

and, together with g(x0/K) ≥ 0, there exists a solution L∗ ∈ [0, L∗0] to the equation

g(L) = 0. If we consider the SOP without a risk constraint, the solution is attained when

(L∗, L∗0) = (x0
K
, x0
K

), i.e., K0 = K, Y0 = x0, which indeed gives Merton’s portfolio.

When considering the Q- or P-expected loss constrained problem, to obtain the optimal

solution (2.5) or (2.11), we need to find parameters λ, ω (Lagrange multipliers), which are

solutions of the two coupled nonlinear equations in (2.6) or (2.12), and solving them can

be computationally expensive. In contrast, a Q-strategy fulfilling the P-risk constraint

can be computationally efficient due to the linear structure of the optimal solution (2.5)

and the reduced requirement of solving two decoupled one variable equations (3.4) and

(3.5) only.

We now do a numerical test to investigate the difference between the two strate-

gies. For fixed ε and K, we develop a pricing engine for the optimal terminal wealth

of the P-expected loss P (x0, ε,K) = E(U(X∗T )) and that of the Q-strategy fulfilling the

P-risk constraint P̄ (x̄0, ε,K) = E(U(X̄∗T )). We are interested in finding the implicit

relationship between x0 and x̄0 if the same final utility is required, i.e., P (x0, ε,K) =

P̄ (x̄0, ε,K). Fixing an initial wealth x0, we aim to compute x̄0 such that P (x0, ε,K) =

P̄ (x̄0, ε,K). If ε is large enough, that is, the two constraints are not binding, see As-

sumptions 1 and 2, we know that x̄0 = x0. If ε is smaller than a particular number

ε0 = K exp
((
r + θ2

1−γ

)
T
)
Put

(
x0
K
, 1, r + θ2

1−γ ,
θ

1−γ , T
)

, the two constraints are binding,

as the Q-strategy fulfilling the P-risk constraint is a suboptimal solution to Problem
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(2.10), we have x̄0 > x0. We can find x̄0 with the bisection method with linear conver-

gence.

We conduct numerical tests to find the pricing engines P and P̄ . To find P , we

do 100,000 simulations for computing the expectations of the nonlinear dependence of

Merton’s portfolio in (2.12) and apply the iterated bisection method to solve two coupled

nonlinear equations, which takes average computation time 2.5×104 seconds by MATLAB

on a computer with an Intel 2.80 GHz CPU. To find P̄ , we apply the bisection method

to solve two decoupled one variable equations (3.4) and (3.5), respectively, which takes

average computation time 0.016 seconds. So computing under P̄ is more than 1.5 × 106

times faster than under P .

We set µ = 0.08, σ = 0.2, γ = 0.5, r = 0.04, K = 1, T = 1 and x0 = 1. Under this set

of parameter, ε0 = 7.52× 10−2 and for those ε is greater than ε0, diff value is zero. With

varying ε, we present the value for diff = x̄0 − x0 in Table 3.1. With a fixed ε = 0.001,

and varying γ and T , we report the diff value in Table 3.2. From the tables, we conclude

that the diff value is reasonably small.

Table 3.1: Diff value with varying ε.

ε (×10−3) 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

diff (×10−3) 1.5 1.2 4.6 1.7 0.8 0.1 2.8 0.5 0.0 0.3 0.15

Table 3.2: Diff value with varying γ and T .

T

γ
0.3 0.5 0.8

diff (×10−3)

1 2.1 1.5 0.8

5 1.7 0.9 0.0

10 1.4 0.5 0.0

We have here numerically compared two strategies: The first exercise was the, compli-

cated and slow to implement and complicated to understand, optimal strategy fulfilling

the P-constraint. The second exercise, simple and fast to implement and simple to un-

derstand, is that of fulfilling the P-constraint via the structure of the solution to the

Q-constraint strategy. The latter is obviously performing inferior to the first. The tables

show how much in terms of certainty equivalence. The quantity diff calculated how much

extra initial capital is needed to obtain the same utility in the sub-optimization problems

compared to the optimization problem. The tables show that, varying over the level of

the constraint, epsilon, the risk aversion, and the time horizon, this extra capital is of the
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order of magnitude 0-2 permille of the initial capital. For all practical purposes, this is a

very small certainty equivalence. Taking model and risk aversion uncertainty in real life

into account, we feel safe to say that the “price” of sub-optimizing instead of optimizing

in terms of capital is almost zero, whereas the gain in terms of implementability and

understanding is substantial.

4. Conclusions

By relating the optimal terminal wealth with Merton’s portfolio, the optimal terminal

wealth under the Q-expected loss constraint can be represented as a piecewise linear

function of Merton’s portfolio, while the P-optimal terminal wealth fails to admit this

property. We consider the Q-strategy fulfilling the P-risk constraint and identify two

major advantages: First, we have an efficient algorithm with linear convergence to find its

solution, and second, we can replicate the optimal terminal wealth with the standard delta

hedging strategy due to its piecewise linear dependence of Merton’s portfolio. We show

in numerical examples that the approximation error is reasonably small. There remain

many open questions. For example, do we still have a similar conclusion If we replace the

GBM asset price process and power utility by general Lévy process and utility? What

would be the impact on practical portfolio optimization and empirical analysis? We leave

these and other questions for our future research.
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5. Appendix

5.1 Proof to Theorem 3.1

Assume X̄T is any feasible solution. We can rewrite X̄T = YT +(K−YT )+− K
K0

(K0−YT )+.

Combining this and the budget constraint x0 = e−rTE(ξT X̄T ), we have

x0 = Y0 + Put

(
Y0, K, r,

θ

1− γ
, T

)
− K

K0

Put

(
Y0, K0, r,

θ

1− γ
, T

)
.

Dividing both sides by K and denoting L = Y0
K

and L0 = Y0
K0

, we have (3.5).

Noting that 0 ≤ L ≤ L0 and that the put price is a decreasing function of the current

stock price, we have

Put

(
L, 1, r,

θ

1− γ
, T

)
≥ Put

(
L0, 1, r,

θ

1− γ
, T

)
,
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which gives

(5.1) 0 ≤ L ≤ x0

K
.

Equation (3.5) gives an implicit one-to-one correspondence between L0 and L, and we

may write

L0 = f(L).

Denote by

(5.2) G(y) := Put

(
y, 1, r,

θ

1− γ
, T

)
.

Equation (3.5) can be rewritten as

(5.3)
x0

K
= L+G(L)−G(L0).

Taking derivatives with respect to L, bearing in mind L0 is a function of L, we have

(5.4) 0 = 1 +G′(L)−G′(L0)f ′(L).

Since the Delta of a put ranges from −1 to 0, we have G′(L), G′(L0) ∈ (−1, 0), which

implies from (5.4) that

(5.5) f ′(L) < 0.

If we set L = x0
K

in equation (3.5), then we must have L0 = L = x0
K

. In other words, x0
K

is

a fixed point of function f . Combining (5.1) and (5.5), we conclude that

(5.6) L0 = f(L) ≥ f(
x0

K
) =

x0

K
.

Note that

E((K − X̄T )+) = KE((1− YT
K0

)+)

= K exp
((
r + θ2

1−γ

)
T
)
Put

(
L0, 1, r + θ2

1−γ ,
θ

1−γ , T
)
,

which is strictly decreasing in L0. If the budget constraint is not binding, then equation

(3.4) does not admit a solution, and C is set to be 0; otherwise letting C be the unique

solution to (3.4), we have that E((K − X̄T )+) ≤ ε is equivalent to L0 ≥ C. With the

requirement that L0 ≥ x0/K, we conclude L0 ≥ L∗0 := max{C, x0/K}.
Next we prove that there exists a unique solution L∗ ∈ [0, x0/K] to equation (3.5) with

L0 = L∗0. Since the SOP is assumed to have a feasible solution, there exist L′ ∈ [0, x0/K]

and L′0 ≥ L∗0 such that
x0

K
= L′ +G(L′)−G(L′0).

Define

g(L) := −x0

K
+ L+G(L)−G(L∗0).
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Then g is a strictly increasing continuous function. SinceG is a strictly decreasing function

and L∗0 ≥ x0/K and L′0 ≥ L∗0, we have

g(
x0

K
) = G(

x0

K
)−G(L∗0) ≥ 0

and

g(L′) = −x0

K
+ L′ +G(L′)−G(L∗0) = G(L′0)−G(L∗0) ≤ 0.

The Intermediate Value Theorem tells us that there exists a unique L∗ ∈ [L′, x0/K] ⊂
[0, x0/K] such that g(L∗) = 0. The first assertion is proved.

The proof of the second assertion is as follows. We first compute E(U(X̄T )). Since

U(X̄T ) =
Kγ

γ

((
YT
K

)γ
+

(
1−

(
YT
K

)γ)+

−
(

1−
(
YT
K0

)γ)+
)

and

dY γ
t = Y γ

t

[
γ

(
r +

1

2

θ2

1− γ

)
dt+

θγ

1− γ
dWt

]
,

we have

E(U(X̄T )) = c̃
γ

[(
Y0
K

)γ
+ Put

((
Y0
K

)γ
, 1, γ

(
r + 1

2
θ2

1−γ

)
, θγ

1−γ , T
)

− Put
((

Y0
K0

)γ
, 1, γ

(
r + 1

2
θ2

1−γ

)
, θγ

1−γ , T
)]

= c̃
γ

[
Lγ + Put

(
Lγ, 1, γ

(
r + 1

2
θ2

1−γ

)
, θγ

1−γ , T
)

− Put
(
Lγ0 , 1, γ

(
r + 1

2
θ2

1−γ

)
, θγ

1−γ , T
)]
,

where c̃ = Kγ exp
((
γr + 1

2
γ

1−γ θ
2
)
T
)

. Denote by

(5.7) H(y) := Put

(
yγ, 1, γ

(
r +

1

2

θ2

1− γ

)
,
θγ

1− γ
, T

)
.

Taking derivativs of G and H and doing some calculations, we have

(5.8) H ′(y) = G′(y)γyγ−1.

E(U(X̄T )) can also be rewritten as

E(U(X̄T )) =
c̃

γ
[Lγ +H(L)−H(L0)].

Taking derivatives with respect to L, we obtain

(5.9)

∂E(U(X̄T ))
∂L

= c̃
γ
[γLγ−1 +H ′(L)−H ′(L0)f ′(L)]

= c̃
γ
[γLγ−1 +G′(L)γLγ−1 −G′(L0)f ′(L)γLγ−1

0 ]

= c̃[Lγ−1 +G′(L)Lγ−1 − (1 +G′(L))Lγ−1
0 ]

= c̃(Lγ−1 − Lγ−1
0 ) (1 +G′(L))

≥ 0.
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Here the second equality holds due to (5.8), the third equality due to (5.4) and the last

inequality due to c̃ > 0, G′(L) ∈ (−1, 0), L ≤ L0 and γ < 1. Combining (5.5) with (5.9),

we also obtain
∂E(U(X̄T ))

∂L0

≤ 0,

which implies that we need to choose L0 as small as possible. Since L0 ≥ L∗0, the smallest

L0 we may choose, is L∗0. The maximum of E(U(X̄T )) is therefore attained at L0 = L∗0.

When C < x0
K

, the solution to the SOP and the P-expected loss constraint problem

coincide, i.e., the risk constraint is not active. When C ≥ x0
K

, the solution to the SOP

attains the maximum when the risk constraint is binding.
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