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Abstract. In this paper, we propose a general framework for modeling discrete-time default risk where default processes for all
the entities are governed by predictable interacting default probabilities. We give a general formula for the joint distribution of
two important random variables featuring the severity of the crisis: duration of a crisis (T ) and severity of the defaults (WT ). In
particular, we present a two-sector Markovian infectious model, where the default probability is switching over time and depends
on the current number of defaults of both sectors. The central idea of this model is that the causality of defaults of two sectors is
in both directions, which enrich dynamics of the dependent default risk. The Bayesian Information Criterion (BIC) is adopted to
compare the proposed model with the two-sector model in credit literature using real data. Numerical experiments are given to
demonstrate that our proposed model is statistically better.

Keywords: Infectious models, correlated defaults, crisis duration

1. Introduction

Modeling dependent default risk has been a key is-
sue in credit risk modeling. There are two important
approaches to model the dependent default risk. The
structural firm model has its origin in Merton [19] and
Black and Scholes [3], which models the relationship
between the firm’s asset value and the defaults. The
reduced-form intensity-based, proposed by Jarrow and
Turnbull [14], employ the Poisson jump processes to
model the default event.

Copula function has been a very popular tool for
modeling dependent risk. The idea of Copula is to
transform the marginal variables to uniform variables
by a simple transformation. After this is done, a n-

*Corresponding author. E-mail: jwgu.hku@gmail.com.

dimensional function is used to model the dependence
of the uniform variables, which is so called a Copula
function. The Copula function enables one to deal with
a multivariate distribution of uniform variables, with-
out consideration of the original marginal variables.
There are many useful Copula functions in finance, e.g.
the Gaussian Copula, introduced by Li [17], is widely
used in risk modeling and financial assessment.

In addition, conditional independence model is also
a commonly used model in credit risk modeling. Con-
ditional on the systematical common factor, the loss
random variables are independent. For example, the
Bernoulli mixture model is adopted by CreditMetrics
and KMV-model, while the Poisson mixture model is
adopted by CreditRisk+. In a recession, the default of
a company is triggered by the underlying common risk
factor and also by the related company’s defaults. The
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contagion model is used to describe how the credit
event of one company affects the other companies.
Davis and Lo [9] introduce an infectious default model,
where in a portfolio, a bond may be infected by de-
faults of other bonds or default directly. Jarrow and Yu
[15] propose a reduced-form model to describe the de-
faultable bonds of different company, where the con-
cept of counterparty risk is first introduced to the credit
literature. Dong and Wang [10] show the impact of de-
pendent jumps of the firm value and the default thresh-
old on the default probabilities.

Ching et al. [6] introduce an infectious default model
based on the idea of Greenwood’s model considered in
Daley and Gani [8]. This model aims at modeling the
impact of default of a bond on the likelihood of de-
faults of other bonds. The original version of Green-
wood’s model is a one-sector model. It is then ex-
tended to a two-sector model in Ching et al. [5]. Be-
sides, the joint probability distribution function for the
duration of a default crisis, (i.e., the default cycle), and
the severity of defaults during the crisis period was
also derived. Two concepts, namely, Crisis Value-at-
Risk (CRVaR) and Crisis Expected Shortfall (CRES),
are also introduced and applied to assess the impact
of a default crisis. The Greenwood’s model is also ex-
tended to a network of sectors in [5]. Gu et al. [12] pro-
pose a Markovian infectious model to describe the de-
pendent relationship of default processes of credit se-
curities based on [5,6], where the central idea is the
concept of common shocks which is one of the major
approaches to describe insurance risk. In recent years,
Markov model is widely used in credit risk assessment.
Although the Markov model does not use all the histor-
ical data, it can be seen from the literature [1,2,16,18]
that it gives substantially good results. For example, in
the literature [2], they consider a bottom-up Markovian
copula model of portfolio credit risk.

If the number of defaults is small, other models in
[20,21] and the theory in the book [22] can be ap-
plied. In literature, Mitra [21] proposed a new risk
management framework and method which allows one
to assess the risk of pension funds in terms of their
value and provides a risk management framework for
decision-making. It was proposed to modeling and
managing pensions as European call options. If the
correlation of default changes over time, one can refer
to the method in [13]. They established a link between
the dynamics of house price changes and the dynam-
ics of default rates in the Gaussian copula framework
by specifying a time series model for a common risk
factor.

In this paper, we propose a general framework for
modeling discrete-time default risk where default pro-
cesses for all the entities are governed by predictable
default probabilities. Existing literature [5,6,12] serve
as our special cases. We give a general formula for the
joint distribution of two important random variables
featuring the severity of the crisis, i.e., the duration
of the crisis and the severity of the defaults. In par-
ticular, we present a two-sector Markovian infectious
model, where the default probability is switching over
time and depends on the current number of defaults of
both sectors. This model is a special case of our gen-
eral framework and compared with the existing work,
this can capture the causality of defaults from both di-
rection. We adopt the maximum likelihood method to
estimate the parameters and the Bayesian Information
Criterion (BIC) to compare the proposed model with
two-sector model considered in Ching et al. [6]. Exper-
imental results show that our proposed model is statis-
tically better1 (i.e., has a lower value of the BIC).

In this paper, the default is modeled as an absorbing
state. There are many research works that regard de-
fault as an absorbing state [4,7,23]. For example, they
employ Copula theory to model the dependence across
default rates in a credit card portfolio of a large UK
bank and to estimate the likelihood of joint high de-
fault rates in [7]. And in [23], they focus on the pre-
dictability of sovereign debt crisis and propose a two-
step procedure centered on the idea of a multidimen-
sional distance-to-collapse point.

The remainder of the paper is structured as follows.
Section 2 presents our general model framework. We
derive a general formula for the joint probability dis-
tribution for the default cycle and the number of de-
faults during the crisis. We also discuss the limiting
case. Section 3, we present a special case of our gen-
eral model, namely the two-sector Markovian model
and derive a recursive formula for the probability law
of the two variables. We also outline the parameter es-
timation procedure. Section 4 presents the ideas of the
CRVaR and the CRES. In Section 5, we present the re-
sults of empirical analysis using our proposed model.
Finally, Section 6 concludes the paper.

2. The general model framework

Let T be the time index set {1, 2, . . .} of our model.
To model the uncertainty, let (�,F, {Ft }t�0, P ) be a

1“Statistically better” means our purposed model has lower
Bayesian information criterion value.

RDA (iosart2x 2017/11/18 v1.1.26) rda131.tex 2017/12/18 9:45 [research-article] p. 2/13



UNCORRECTED  P
ROOF

W.-K. Ching et al. / On infectious model for dependent defaults 3

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

complete filtered probability space, where P is a real-
world probability and {Ft }t�0 is a filtration satisfy-
ing the usual conditions (the right-continuity and P -
completeness). We consider n credit entities, where
each entity may default and the entity will stay at the
default state once it happens. For each i = 1, 2, . . . , n,
let τi be the default time of name i, which is a stop-
ping time with respect to the filtration {Ft }t�0. Write
Ni(t) = 1{τi�t} the default indicator process and
{F i

t }t�0 is the P -complete, natural filtration generated
by Ni . For each t � 0, we write

Ft = F1
t ∨ · · · ∨ Fn

t , (1)

where Ft is the minimal σ -algebra containing infor-
mation about the processes {Ni}ni=1 up to and includ-
ing time t . That is, Ft contains information about the
common factor process and the defaults of the n credit
entities up to time t . It represents the observed market
information up to time t .

We assume that for each i = 1, 2, . . . , n, Ni pos-
sesses a nonnegative, {Ft }t�0-predictable process pi

2

satisfying

E
[
Ni(t) | Ft−1

] = pi(t), t � 0.

To determine the impact of a default crisis, we define
the duration of the default crisis (T ), namely, the de-
fault cycle, and the severity of the defaults (WT ) dur-
ing the crisis period. We give a precise definition of the
default cycle as a stopping time:

T := inf{t ∈ T | Wt = Wt−1}, (2)

where Wt represents the number of defaults over the
time duration [1, t].

We let

I(t) = (
N1(t), N2(t), . . . , Nn(t)

)
.

It can be verified that I(t) is a Markov chain with state
space S of size 2n. We let Q(t) denote the transition
matrix of Markov chain I from time t to t + 1 and
Q∗(t) the matrix that results from replacing the diago-
nal entries by 0 in Q(t).

Proposition 1. The joint distribution of (T ,WT ) is
given by

2For a {Ft }t�0-predictable process pi , we have pi(t) is Ft−1-
measurable.

P
(
(T ,WT ) = (t, w)

)
=

∑
x∈S,‖x‖=w

Q̄(t − 2)(0, x) · Q(t − 1)(x, x)

for t ∈ T , w ∈ N, where

Q̄(t − 2) =
t−2∏
s=0

Q∗(s),

‖x‖ = xT x and 0 = (0, . . . , 0).

The main idea of the proof is to sum up all the possi-
ble paths of the chain to stop at time t with w defaults.
However, the computation cost can be huge when n be-
comes large as the matrix size grows very quickly. In
Section 3, we shall consider a special case of practi-
cal value where the default probability of each name is
time-homogeneous and is assigned by some rules.

In what follows, we consider the simplest case that
the default probability for each name is a constant, i.e.,
pi(t) = p ∈ (0, 1). The process Wt then becomes
a Markov chain, with transition probability matrix P

where P(i, j) = 0 if i > j and

P(i, j) =
(

n − i

j − i

)
pj−i (1 − p)n−j , if i � j.

We let P ∗ denote the matrix that results from replacing
the diagonal entries by 0 of P . We can obtain the prob-
ability law of (T ,WT ) by summing up all the possible
paths for the chain to stop at time t with w defaults.

Proposition 2. The joint distribution of (T ,WT ) is
given by

P
(
(T ,WT ) = (t, w)

) = P̄ (0, w) · P(w,w)

for t ∈ T , w ∈ N, where P̄ = (P ∗)t−1.

3. The two-sector model

In this section, we assume all the names are divided
into two sectors, namely Sector A and Sector B. To ap-
ply the concepts of default cycle and the severity of the
defaults to our proposed two-sector model, we write
W 1

t1
and W 2

t2
to represent the number of defaults in Sec-

tor A and Sector B, respectively, in (0, t1] and (0, t2].
We denote
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T1 := inf
{
t ∈ T | W 1

t = W 1
t−1

}
and

T2 := inf
{
t ∈ T | W 2

t = W 2
t−1

}
.

To model the default probability, we define

X := {Xt }t∈T and Y := {Yt }t∈T
to denote two stochastic processes on (�,F, P ),
where Xt = (X1

t , X
2
t ) represent the numbers of sur-

viving bonds at t ∈ T in Sector A and Sector B, re-
spectively, while Yt = (Y 1

t , Y 2
t ) represent the numbers

of defaulted bonds at t ∈ T in Sector A and Sector B,
respectively, e.g., Y i

t = Wi
t , i = 1, 2. We assume that

the initial conditions are given as follow:

X0 = (
x1

0 , x2
0

)
, Y0 = (

y1
0 , y2

0

)
and

x1
0 + y1

0 = n1, x2
0 + y2

0 = n2,

where n1, n2 represent the number of names in Sector
A and Sector B, respectively. Note that for each t ∈ T ,
the sum of the numbers of the defaulted bonds and the
surviving bonds at the time epoch t + 1 must equal the
number of surviving bonds at time t in every sector,
i.e.,

X1
t+1 + Y 1

t+1 = X1
t and

X2
t+1 + Y 2

t+1 = X2
t .

(3)

For each t ∈ T , let αt and βt be the probabilities
that the default of a surviving bond is infected by
the defaulted bonds at time t in Sector A and Sec-
tor B, respectively. The joint probability distribution of
{Xt+1, Yt+1} given {Xt, Yt } is given by the following
Binomial probability:

p(xt ,yt )(xt+1, yt+1)

= P
{
(Xt+1, Yt+1) = (xt+1, yt+1) |

(Xt , Yt ) = (xt , yt )
}

=
(

x1
t

y1
t+1

)
(αt )

y1
t+1(1 − αt )

x1
t+1

×
(

x2
t

y2
t+1

)
(βt )

y2
t+1(1 − βt )

x2
t+1 . (4)

We consider here the situation that the joint future de-
fault probability depends on the current number of de-

faulted bonds in both industrial sectors. We assume
that

αt = a(yt )

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a0 if y1
t = y2

t = 0,

a1 if y1
t > 0, y2

t = 0,

a2 if y1
t = 0, y2

t > 0,

a3 if y1
t > 0, y2

t > 0

= a0h0
(
y1
t , y2

t

) + a1h1
(
y1
t , y2

t

)
+ a2h2

(
y1
t , y2

t

) + a3h3
(
y1
t , y2

t

)
(5)

and

βt = b(yt )

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b0 if y1
t = y2

t = 0,

b1 if y1
t = 0, y2

t > 0,

b2 if y1
t > 0, y2

t = 0,

b3 if y1
t > 0, y2

t > 0

= b0h0
(
y2
t , y1

t

) + b1h1
(
y2
t , y1

t

)
+ b2h2

(
y2
t , y1

t

) + b3h3
(
y2
t , y1

t

)
,

(6)

where

h0(x, y) =
{

1 if x = y = 0,

0 otherwise,

h1(x, y) =
{

1 if x > 0, y = 0,

0 otherwise

and

h2(x, y) =
{

1 if x = 0, y > 0,

0 otherwise,

h3(x, y) =
{

1 if x > 0, y > 0,

0 otherwise.

As it is shown in Eq. (3) and Eq. (4), one can see
that {Xt, t = 0, 1, 2, . . .} is a second-order Markov
chain process. We remark that this two-sector model
provides a novel and flexible dependent structure for
correlated defaults of two different industrial sectors.
First, an infectious default within one time period is
modeled by a Binomial distribution, which has been
widely used in modeling the spread of epidemics
whose situation seems similar to that of a financial
crisis. The causality of the infection is supposed to
be in both direction, i.e., a “looping default”. Sec-
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ond, the process (Xt , Yt ) has the Markov property,
where the probabilistic structure of future states only
depends on the current state. Third, conditioning on
the current state (Xt , Yt ), the future state of two sec-
tors (X1

t+1, Y
1
t+1) and (X2

t+1, Y
2
t+1) are stochastically

independent. The step functions hi(x, y) are used to
describe the dependence of the default probabilities on
the state of previous time epoch. This method provides
a tractable and analytic solution for parameter estima-
tion from empirical data.

3.1. Default cycle and severity

In this subsection, we proceed to derive the joint
probability distribution function for the duration of the
default crisis (T ), namely, the default cycle, and the
severity of the defaults (WT ) during the crisis period.
These two concepts are essential in determining the
impact of a default crisis [6]. Under the two-sector
Markovian model, we obtain

T1 := inf
{
t ∈ T | Y 1

t = 0
}

and

T2 := inf
{
t ∈ T | Y 2

t = 0
}
.

To obtain the joint distribution of (Wi
Ti

, Ti) for i =
1, 2, we assume that (X0, Y0) = (x0, y0) with y1

0 > 0,
y2

0 > 0. Let

Pn(x1, x2, h) =P
{
T1 � n + 1, X1

n = x1,

X2
n = x2, I{Y 2

n >0} = h
}
.

The following lemma gives a recursive formulas for
Pn(x1, x2, h) and the proof can be found in the Ap-
pendix.

Lemma 1.

Pn(x1, x2, 0)

=
∑

s1>x1

(
s1

x1

)[
Pn−1(s1, x2, 0)

× (a1)
s1−x1(1 − a1)

x1(1 − b2)
x2

+ Pn−1(s1, x2, 1)

× (a3)
s1−x1(1 − a3)

x1(1 − b3)
x2

]
× Pn(x1, x2, 1)

=
∑

s1>x1

∑
s2>x2

(
s1

x1

)(
s2

x2

)[
Pn−1(s1, s2, 0)

× (a1)
s1−x1(1 − a1)

x1(b2)
s2−x2(1 − b2)

x2

+ Pn−1(s1, s2, 1)

× (a3)
s1−x1(1 − a3)

x1(b3)
s2−x2(1 − b3)

x2
]
,

where the initial condition is given by

P0(x1, x2, h) =
{

1, (x1, x2, h) = (x1
0 , x2

0 , 1),

0, otherwise.

By Lemma 1, we obtain the following proposition
and its proof can be found in the Appendix.

Proposition 3. The joint distribution of (T1,W
1
T1

) is
given by

P
{(

T1,W
1
T1

) = (n, x)
}

=
∑
x2

Pn−1
(
x1

0 − x, x2, 0
)
(1 − a1)

x1
0−x

+
∑
x2

Pn−1
(
x1

0 − x, x2, 1
)
(1 − a3)

x1
0−x.

We remark that due to the symmetric property of the
two sectors, the joint distribution (W 2

T2
, T2) shares a

similar form of (W 1
T1

, T1).

3.2. Parameter estimation

In the two-sector model, there are eight parame-
ters: a0, a1, a2, a3 and b0, b1, b2 and b3. We em-
ploy the maximum likelihood method to estimate
the parameters. Given the total bonds n1, n2 and
the observations of the number of defaulted bonds
y1

0 , y1
1 , . . . , y1

N and y2
0 , y2

1 , . . . , y2
N , where N denotes

the period of observation time, the number of surviv-
ing bonds x1

0 , x1
1 , . . . , x1

N and x2
0 , x2

1 , . . . , x2
N are de-

terministic.
The following proposition gives analytical expres-

sions for the maximum likelihood estimates of the
model parameters.

Proposition 4. For i = 0, 1, 2, 3,

âi =
∑N−1

t=0 y1
t+1hi(y

1
t , y2

t )∑N−1
t=0 x1

t hi(y
1
t , y2

t )
and

b̂i =
∑N−1

t=0 y2
t+1hi(y

2
t , y1

t )∑N−1
t=0 x2

t hi(y
2
t , y1

t )
.
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Proof. We prove the expression for â0 here and the
proof for the others are similar. The likelihood function
L(a, b | x0, x1, . . . , xN , y0, y1, . . . , yN) is then the
joint probability density function f (x0, x1, . . . , xN ,

y0, y1, . . . , yN | a, b):

L(a, b | x0, x1, . . . , xN , y0, y1, . . . , yN)

= f (x0, x1, . . . , xN , y0, y1, . . . , yN | a, b)

=
(

x1
0

x1
1

) (
1 − a(y0)

)x1
1 a(y0)

y1
1

×
(

x2
0

x2
1

) (
1 − b(y0)

)x2
1 b(y0)

y2
1

×
(

x1
1

x1
2

) (
1 − a(y1)

)x1
2 a(y1)

y1
2

×
(

x2
1

x2
2

) (
1 − b(y1)

)x2
2 b(y1)

y2
2 × · · ·

×
(

x1
N−1

x1
N

) (
1 − a(yN−1)

)x1
N a(yN−1)

y1
N

×
(

x2
N−1

x2
N

) (
1 − b(yN−1)

)x2
N b(yN−1)

y2
N .

Then by solving

∂ ln L(a, b | x0, x1, . . . , xN , y0, y1, . . . , yN)

∂a0
= 0,

we have

−
N−1∑
t=0

x1
t+1h0(y

1
t , y2

t )

1 − a(yt )
+

N−1∑
t=0

y1
t+1h0(y

1
t , y2

t )

a(yt )
= 0.

Since for any t ,

1

1 − a(yt )
=

3∑
i=0

hi(y
1
t , y2

t )

1 − ai

and

1

a(yt )
=

3∑
i=0

hi(y
1
t , y2

t )

ai

we have

0 = −
N−1∑
t=0

3∑
i=0

x1
t+1h0(y

1
t , y2

t )hi(y
1
t , y2

t )

1 − ai

+
N−1∑
t=0

3∑
i=0

y1
t+1h0(y

1
t , y2

t )hi(y
1
t , y2

t )

ai

= −
N−1∑
t=0

x1
t+1h0(y

1
t , y2

t )

1 − a0

+
N−1∑
t=0

y1
t+1h0(y

1
t , y2

t )

a0
.

Thus we obtain

â0 =
∑N−1

t=0 y1
t+1h0(y

1
t , y2

t )∑N−1
t=0 x1

t h0(y
1
t , y2

t )
.

�

4. Crisis VaR and crisis ES

In this section, we give a brief introduction to the
concepts of the CRVaR and the CRES in Ching et al.
[5,6]. Then we present the evaluation of the CRVaR
and the CRES using the proposed models. The CRVaR
and the CRES are measures for the duration and the
severity of a default crisis. Let

L(·, ·)(ω) : T × R × � → R

be a real-valued function L(T ,WT )(ω) of T and WT .
We then suppose that for a fixed ω ∈ �,

T (ω) = t, Wt (ω) = w, and

L(t, w)(ω) = l(t, w) ∈ R.

That is, the loss from the default crisis is l(t, w) when
the duration of default crisis T = t and the num-
ber of defaulted bonds in the crisis Wt = w. We
write L(T ,WT ) for the space of all loss functions
L(T ,WT )(ω) generated by T and WT .

The CRVaR with probability level β under P is then
defined as a functional Vβ(·) : L(T ,WT ) → R such
that for each L(T ,WT ) ∈ L(T ,WT ),

Vβ

(
L(T ,WT )

)
:= inf

{
l ∈ R|P (

L(T ,WT ) > l
)

� β
}
. (7)

In the language of statistics, Vβ(L(T ,WT )) is the gen-
eralized β-quantile of the distribution of the loss vari-
able L(T ,WT ) under P . Since the loss from the de-
fault crisis L(T ,WT ) is completely determined when
T and WT are given, P(L(T ,WT ) > l) is completely
determined by the joint p.d.f. of WT and T .

The CRES with probability level β under P is also
defined as a functional Eβ(·) : L(T ,WT ) → R such
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that for each L(T ,WT ) ∈ L(T ,WT ),

Eβ

(
L(T ,WT )

)
:= EP

[
L(T ,WT )|

L(T ,WT ) � Vβ

(
L(T ,WT )

)]
. (8)

In other words, Eβ(L(T ,WT )) is the average of the
loss from the default crisis when the loss exceeds the
CRVaR of the default crisis with probability level β

under P .

5. Numerical experiments

In this section, we present the empirical results of
the proposed two-sector model using real default data
extracted from the figures in Giampieri et al. [11],
where we adopt the estimation methods and techniques
presented in the previous section.

The default data comes from four different sectors.
They include consumer/service sector, energy and nat-
ural resources sector, leisure time/media sector and
transportation sector. Table 1 shows the default data
taken from Giampieri et al. [11]. From the table, the
proportions of defaults for Consumer, Energy, Media
and Transport are 24.1%, 16.9%, 20.5% and 21.0%,
respectively. The default probabilities of all four sec-
tors are significantly greater than zero. This means that
the default risk of each of the four sectors is substan-
tial.

We then construct the infectious disease model using
these real data. The asterisk “*” in the table indicates
the pair of sectors which has the largest correlation.
From Table 2, we see that all correlations are positive.
This provides some preliminary evidence for support-
ing the use of the two-sector model from the perspec-
tive of descriptive statistical analysis. We shall provide
more empirical evidence for supporting the use of the
proposed infectious model by the results of BIC later
in this section. To build the infectious model, for each
row (Sector A), we may find a partner (Sector B) by
searching the one with the largest correlation in magni-

Table 1

The default data (taken from Giampieri et al. [11])

Sectors Total Defaults

Consumer 1041 251

Energy 420 71

Media 650 133

Transport 281 59

Table 2

Correlations of the sectors

Consumer Energy Media Transport

Consumer – 0.0224 0.6013∗ 0.3487

Energy 0.0224 – 0.1258∗ 0.1045

Media 0.6013∗ 0.1258 – 0.3708

Transport 0.3487 0.1045 0.3708∗ –

Fig. 1. The partner relations among the sectors using correlation.

tude (i.e., the one with the asterisk “*”). Figure 1 gives
the partner relations among the sectors using correla-
tion. Later in this section, we shall give the results for
BIC to support the matched pair presented in Fig. 1.
The estimation results for proposed infectious model
and two-sector model studied in Ching et al. [5] are
presented in Table 3.

To compare the proposed infectious model with the
two-sector model in Ching et al. [5], we consider
the Bayesian information criterion(BIC), which is also
named as Schwarz criterion. The formula for the BIC
is given by

BIC = −2 log(L) + k log(m),

where m is the number of observation data, k is the
number of free parameters to be estimated, and L is
the maximized value of the likelihood function for the
estimated model. Given any two estimated models, the
smaller the value of BIC is, the better the model will
be. Table 4 presents the value of the BIC for the pro-
posed model and the two-sector model in Ching et al.
[5]. We remark that for all the four sectors, the pro-
posed model with lower value of BIC is statistically
better.

To compare the matched pairs in Fig. 1 with other
matched pairs for the proposed model, we also adopt
the BIC. Since the models of different matched pairs
have the same number of parameters and length of data
set, to compare their BIC is equivalent to compare their
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Table 3

Estimation results for proposed model

Sector A: Consumer Energy Media Transport

Sector B: Media Media Consumer Media

Proposed model

a0 0.0007 0.0004 0.0005 0.0013

a1 0.0018 0.0033 0.0005 0.0012

a2 0.0013 0.0018 0.0017 0.0026

a3 0.0049 0.0032 0.0042 0.0052

Two-sector model [5]

α0 0.0013 0.0018 0.0005 0.0013

α1 0.0043 0.0023 0.0033 0.0036

Table 4

The value of BIC for proposed model and two-sector model [5]

Sector A: Consumer Energy Media Transport

Sector B: Media Media Consumer Media

BIC (proposed model) 419.0813 215.4654 301.2534 2.1287

BIC (two-sector
model [5])

434.6700 231.8225 321.0501 2.1460

Table 5

The value of BIC for matched pairs in Fig. 1 and other matched pairs

Matched pairs in Fig. 1

Sector A: Consumer Energy Media Transport

Sector B: Media Media Consumer Media

Log-likelihood ratio 12.2717 12.6559 14.3757 4.4860

Other matched pairs

Sector A: Consumer Energy Media Transport

Sector B: Energy Consumer Energy Consumer

Log-likelihood ratio 33.1330 7.3286 18.6264 1.9942

Sector A: Consumer Energy Media Transport

Sector B: Transport Transport Transport Energy

Log-likelihood ratio 10.7231 7.3495 14.6136 8.4934

log-likelihood ratio. Table 5 presents the log-likelihood
ratios for the matched pairs in Fig. 1 against other
matched pairs. We remark that all the log-likelihood
ratios are positive which support the matched pairs in
Fig. 1 for the proposed model.

Our proposed model aims at modeling causality of
defaults in both direction. From the pair up results, one
may find that the relation is not necessarily symmetric.
This relation is only found symmetric for the sectors
media and consumer, which means the causality of de-
faults from both direction is more reasonable for the
media and consumer sector.

We provide a scatter plot to depict the correlation
of defaults in the matched sectors. A simulation of de-
faults in matched sectors in our proposed model is also

conducted. Figure 2 presents the number of surviving
bonds in the matched sectors of empirical data and sim-
ulation.

To apply the two measures CRVaR and CRES in the
proposed model, we consider some hypothetical val-
ues for the loss. The loss L(WT , T ), for each T =
1, 2, . . . , X0 and WT = 0, 1, . . . , X0, are as in Eq. (9).
Then we present the value of CRVaR and CRES for the
proposed model as well as the two-sector model Ching
et al. [5] in Table 6. And the loss distribution are pre-
sented in Fig. 3.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L(0, j) = j − 1 + 0.1,

for each j = 1, 2, . . . , X0;
L(i, j) = L(0, j) + i − 1,

for each i = 1, 2, . . . , X0
and j = 1, . . . , X0.

(9)

From Table 6, we see that for all of the four sec-
tors, the existing two-sector model underestimates both
the CRES and CRVaR. This reflects that failure to in-
corporate the contagion effect described in our pro-
posed model leads to an underestimation of credit risk.
This has an important consequence for credit risk man-
agement, such as inadequate capital charges for credit
portfolios. Indeed, the loss distribution implied by the
proposed model has a much fatter tail than that aris-
ing from the existing two-sector model. This explains
why the proposed model provides more prudent es-
timates for the risk measures than the existing two-
sector model via incorporating contagion. We also re-
mark that the contagion model including the causality
of defaults in both direction (i.e., looping defaults), has
a significant impact on the loss distribution.

6. Concluding remarks

In this paper, we propose a general model frame-
work for discrete-time default risk where default pro-
cesses for all the entities are governed by predictable
default probabilities. Existing literature [5,6,12] serve
as our special cases. We give a general formula for
the joint distribution of two important random vari-
ables featuring the severity of the crisis, i.e., the du-
ration of crisis (T ) and severity of the defaults (WT ).
We propose a two-sector Markovian infectious model
as a special case of the general framework. The pro-
posed model incorporated two important features of
credit contagion, namely, the chain reactions of de-
faults and the bi-lateral causality of defaults between

RDA (iosart2x 2017/11/18 v1.1.26) rda131.tex 2017/12/18 9:45 [research-article] p. 8/13



UNCORRECTED  P
ROOF

W.-K. Ching et al. / On infectious model for dependent defaults 9

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

Fig. 2. Number of Surviving Bonds in Matched Sectors.

two industrial sectors. We capture the chain reactions
of defaults by postulating that the future default proba-
bility switches over time according to the current num-
ber of defaults of two industrial sectors. The bi-lateral
causality of defaults means that defaults in one sector
are caused by defaults in another sector, and vice versa.
This bi-lateral causality of defaults enriches the depen-
dent structures of credit risk model. We provide an ef-
ficient estimation method of the proposed model based
on the maximum likelihood estimation. Two important

risk measures, namely, the CRVaR and the CRES, are
evaluated under the proposed model.

We also conduct empirical studies on the credit risk
models using real default data. We adopted the BIC
to compare the proposed model with the existing two-
sector model proposed in Ching et al. [5]. The numer-
ical results reveal that the proposed two-sector model
outperforms empirically the existing model. By com-
paring the risk measures evaluated from the proposed
model and those evaluated from the existing two-sector
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Table 6

CRVaR and CRES

Sector A: Consumer Energy Media Transport

Sector B: Media Media Consumer Media

Proposed model

CRVaR(β = 0.05) 374.1 25.1 122.1 26.1

CRES(β = 0.05) 424.7 33.8 150.4 33.8

CRVaR(β = 0.01) 457.1 39.1 168.1 39.1

CRES(β = 0.01) 495.1 47.5 192.4 46.5

Two-sector model [5]

CRVaR(β = 0.05) 114.1 12.1 34.1 10.10

CRES(β = 0.05) 146.1 17.1 45.7 14.1

CRVaR(β = 0.01) 166.1 20.1 52.1 16.1

CRES(β = 0.01) 195.6 24.5 63.3 20.2

model, we find that failure to incorporate the conta-
gion effect described in the proposed model leads to an
underestimation of risk measures. This provides some
evidence to support the proposed model.

One possible topic for future research is to incorpo-
rate the impact of the number of defaults on the like-
lihood of future defaults via a different parametriza-
tion of the future default probability. In the current pa-
per, we assume that the joint future default probability
switches over time depending on the region where the
current number of defaults falls in. Four parameters,
namely, a0, a1, a2 and a3 were involved. To provide
a more parsimonious way to incorporate the current
number of defaults on the joint future default probabil-
ity, one may consider the following parametrization for
the default probability:

αt = a0 + a1y
1
t + a2y

2
t ,

where y1
t and y2

t are the current numbers of defaults in
the two industrial sectors. Using this parametrization,
we can reduce the number of parameters by one and
accounts for more information of the current number
of defaults when evaluating the future default probabil-
ity.
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Appendix

A.1. Proof of Lemma 1

By the law of total probability and Markov property,

Pn(x1, x2, 0)

= P
{
T1 � n + 1, X1

n = x1,

X2
n = x2, I{Y 2

n >0} = 0
}

=
∑

s1>x1

∑
h=0,1

P
{
T1 � n, X1

n−1 = s1,

X2
n−1 = x2, I{Y 2

n−1>0} = h
}

× P
{
T1 � n + 1, X1

n = x1,

X2
n = x2, I{Y 2

n >0} = 0 | T1 � n, X1
n−1 = s1,

X2
n−1 = x2, I{Y 2

n−1>0} = h
}

=
∑

s1>x1

∑
h=0,1

Pn−1(s1, x2, h)

× P
{
Y 1

n > 0, X1
n = x1,

X2
n = x2, I{Y 2

n >0} = 0 | T1 � n, X1
n−1 = s1,

X2
n−1 = x2, I{Y 2

n−1>0} = h
}

=
∑

s1>x1

∑
h=0,1

Pn−1(s1, x2, h)

× P
{
Y 1

n > 0, X1
n = x1,

X2
n = x2, I{Y 2

n >0} = 0 | Y 1
n−1 > 0, X1

n−1 = s1,

X2
n−1 = x2, I{Y 2

n−1>0} = h
}

=
∑

s1>x1

(
s1

x1

)[
Pn−1(s1, x2, 0)

× (a1)
s1−x1(1 − a1)

x1(1 − b2)
x2

+ Pn−1(s1, x2, 1)

× (a3)
s1−x1(1 − a3)

x1(1 − b3)
x2

]
.

Similarly, we have

Pn(x1, x2, 1)

= P
{
T1 � n + 1, X1

n = x1,

X2
n = x2, I{Y 2

n >0} = 1
}
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Fig. 3. Loss distribution for proposed model and two-sector model Ching et al. [5].

=
∑

s1>x1

∑
s2>x2

∑
h=0,1

P
{
T1 � n, X1

n−1 = s1,

X2
n−1 = s2, I{Y 2

n−1>0} = h
}

× P
{
T1 � n + 1, X1

n = x1,

X2
n = x2, I{Y 2

n >0} = 1 | T1 � n, X1
n−1 = s1,

X2
n−1 = s2, I{Y 2

n−1>0} = h
}

=
∑

s1>x1

∑
s2>x2

∑
h=0,1

Pn−1(s1, s2, h)

× P
{
Y 1

n > 0, X1
n = x1,

X2
n = x2, I{Y 2

n >0} = 1 | T1 � n, X1
n−1 = s1,
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X2
n−1 = s2, I{Y 2

n−1>0} = h
}

=
∑

s1>x1

∑
s2>x2

∑
h=0,1

Pn−1(s1, s2, h)

× P
{
Y 1

n > 0, X1
n = x1,

X2
n = x2, I{Y 2

n >0} = 1 | Y 1
n−1 > 0, X1

n−1 = s1,

X2
n−1 = s2, I{Y 2

n−1>0} = h
}

=
∑

s1>x1

∑
s1>x1

(
s1

x1

)(
s2

x2

)[
Pn−1(s1, s2, 0)

× (a1)
s1−x1(1 − a1)

x1(b2)
s2−x2(1 − b2)

x2

+ Pn−1(s1, s2, 1)

× (a3)
s1−x1(1 − a3)

x1(b3)
s2−x2(1 − b3)

x2
]
.

A.2. Proof of Proposition 3

P
{(

T1,W
1
T1

) = (n, x)
}

= P
{
T1 � n, Y 1

n = 0, X1
n = x1

0 − x
}

=
∑
x2

∑
h=0,1

P
{
T1 � n,X1

n−1 = x1
0 − x,

X2
n−1 = x2, I{Y 2

n−1>0} = h
}

× P
{
Y 1

n = 0, X1
n = x1

0 − x |
T1 � n,X1

n−1 = x1
0 − x,

X2
n−1 = x2, I{Y 2

n−1>0} = h
}

=
∑
x2

∑
h=0,1

Pn−1
(
x1

0 − x, x2, h
)

× P
{
Y 1

n = 0, X1
n = x1

0 − x |
Y 1

n−1 > 0, X1
n−1 = x1

0 − x,

X2
n−1 = x2, I{Y 2

n−1>0} = h
}

=
∑
x2

Pn−1
(
x1

0 − x, x2, 0
)
(1 − a1)

x1
0−x

+
∑
x2

Pn−1
(
x1

0 − x, x2, 1
)
(1 − a3)

x1
0−x.

References

[1] T. Bielecki, A. Cousin and S. Crépey, Dynamic hedging of
portfolio credit risk in a Markov copula model (Previous ti-

tle: Dynamic modeling of portfolio credit risk with common
shocks), Working papers in economics, 2011.

[2] T. Bielecki, A. Cousin, S. Crépey et al., Dynamic hedging of
portfolio credit risk in a Markov copula model, Journal of Op-
timization Theory Applications 161 (2014), 90–102. doi:10.
1007/s10957-013-0318-4.

[3] F. Black and M. Scholes, The pricing of options and corporate
liabilities, Journal of Political Economy 81 (1973), 637–654.
doi:10.1086/260062.

[4] F. Carapella, Banking panics and deflation in dynamic general
equilibrium, FEDS Working Paper 2015-018, 2015. doi:10.
17016/FEDS.2015.018.

[5] W. Ching, H. Leung, H. Jiang, L. Sun and T. Siu, A Marko-
vian network model for default risk management, International
Journal of Intelligent Engineering Informatics 1 (2010), 104–
124. doi:10.1504/IJIEI.2010.033532.

[6] W. Ching, T. Siu, L. Li, T. Li and W. Li, On an infectious
model for default crisis, Preprint, 2008, http://www.hku.hk/
math/~imr/IMRPrePrintSeries/2007/IMR2007-21.pdf.

[7] J. Crook and F. Moreira, Checking for asymmetric default de-
pendence in a credit card portfolio: A copula approach, Jour-
nal of Empirical Finance 18 (2011), 728–742. doi:10.1016/j.
jempfin.2011.05.005.

[8] D. Daley and J. Gani, Epidemic Modeling: An Introduction,
Cambridge University Press, 1999.

[9] M. Davis and V. Lo, Infectious defaults, Quantitative Finance
1 (2001), 382–387. doi:10.1080/713665832.

[10] Y. Dong and G. Wang, The dependence of assets and default
threshold with thinning-dependence structure, Journal of In-
dustrial and Management Optimization 8 (2012), 391–410.
doi:10.3934/jimo.2012.8.391.

[11] G. Giampieri, M. Davis and M. Crowder, Analysis of default
data using hidden Markov models, Quantitative Finance 5
(2005), 27–34. doi:10.1080/14697680500039951.

[12] J. Gu, W. Ching and T. Siu, A Markovian infectious model for
dependent default risk, International Journal of Intelligent En-
gineering Informatics 1 (2011), 174–195. doi:10.1504/IJIEI.
2011.040178.

[13] E. Hillebrand, A. Sengupta and J. Xu, Temporal correlation
of defaults in subprime securitization, Communications on
Stochastic Analysis 6 (2012), 487–511.

[14] R. Jarrow and S. Turnbull, Pricing derivatives on financial se-
curities subject to credit risk, Journal of Finance 50 (1995),
53–85. doi:10.1111/j.1540-6261.1995.tb05167.x.

[15] R. Jarrow and F. Yu, Counterparty risk and the pricing of de-
faultable securities, Journal of Finance 56 (2001), 1765–1799.
doi:10.1111/0022-1082.00389.

[16] M. Kijima, Monotonicities in a Markov chain model for valu-
ing corporate bonds subject to credit risk, Mathematical Fi-
nance 8 (1998), 229–247. doi:10.1111/1467-9965.00054.

[17] D. Li, On default correlation: A copula function approach,
Journal of Fixed Income 9 (2000), 43–54. doi:10.3905/jfi.
2000.319253.

[18] S. Lu, Comparing the reliability of a discrete-time and a
continuous-time Markov chain model in determining credit
risk, Applied Economics Letters 16 (2009), 1143–1148. doi:10.
1080/13504850701349153.

[19] R. Merton, On the pricing of corporation debt: The risk struc-
ture of interest rates, Journal of Finance 29 (1974), 449–470.

[20] F. Milne, Credit crises, risk management systems and liquidity
modelling, Working paper, 2008.

RDA (iosart2x 2017/11/18 v1.1.26) rda131.tex 2017/12/18 9:45 [research-article] p. 12/13

http://dx.doi.org/10.1007/s10957-013-0318-4
http://dx.doi.org/10.1007/s10957-013-0318-4
http://dx.doi.org/10.1086/260062
http://dx.doi.org/10.17016/FEDS.2015.018
http://dx.doi.org/10.17016/FEDS.2015.018
http://dx.doi.org/10.1504/IJIEI.2010.033532
http://www.hku.hk/math/~imr/IMRPrePrintSeries/2007/IMR2007-21.pdf
http://www.hku.hk/math/~imr/IMRPrePrintSeries/2007/IMR2007-21.pdf
http://dx.doi.org/10.1016/j.jempfin.2011.05.005
http://dx.doi.org/10.1016/j.jempfin.2011.05.005
http://dx.doi.org/10.1080/713665832
http://dx.doi.org/10.3934/jimo.2012.8.391
http://dx.doi.org/10.1080/14697680500039951
http://dx.doi.org/10.1504/IJIEI.2011.040178
http://dx.doi.org/10.1504/IJIEI.2011.040178
http://dx.doi.org/10.1111/j.1540-6261.1995.tb05167.x
http://dx.doi.org/10.1111/0022-1082.00389
http://dx.doi.org/10.1111/1467-9965.00054
http://dx.doi.org/10.3905/jfi.2000.319253
http://dx.doi.org/10.3905/jfi.2000.319253
http://dx.doi.org/10.1080/13504850701349153
http://dx.doi.org/10.1080/13504850701349153


UNCORRECTED  P
ROOF

W.-K. Ching et al. / On infectious model for dependent defaults 13

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

[21] S. Mitra, A risk management framework and model for pension
investment funds, International Journal of Business Continuity
Risk Management 1 (2010), 301–316. doi:10.1504/IJBCRM.
2010.038621.

[22] A. Saunders and L. Allen, Credit Risk Measurement in
and out of the Financial Crisis: New Approaches to Value-

at-Risk and Other Paradigms, 3rd edn, Wiley, New York,
2010.

[23] R. Savona and M. Vezzoli, Multidimensional distance-to-
collapse point and sovereign default prediction, Intelligent Sys-
tems in Accounting, Finance and Management 19 (2012), 205–
228.

RDA (iosart2x 2017/11/18 v1.1.26) rda131.tex 2017/12/18 9:45 [research-article] p. 13/13

http://dx.doi.org/10.1504/IJBCRM.2010.038621
http://dx.doi.org/10.1504/IJBCRM.2010.038621

	Introduction
	The general model framework
	The two-sector model
	Default cycle and severity
	Parameter estimation

	Crisis VaR and crisis ES
	Numerical experiments
	Concluding remarks
	Acknowledgements
	Appendix
	Proof of Lemma 1
	Proof of Proposition 3

	References



