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Abstract

In this paper we introduce a general framework for time-inconsistent optimal control prob-
lems. We characterize the closed-loop equilibrium strategy in both the integral and pointwise
forms with the newly developed methodology. We recover and improve the results of some
well-known models, including the classical optimal control, Bjork et al. (2017), He and Jiang
(2020), and Yong (2012) models, and reveal some interesting aspects that appear for the first
time in the literature. We illustrate the usefulness of the model and the results by a number
of examples in dynamic portfolio selection, including mean-variance with state-dependent risk
aversion, investment/consumption with non-exponential discounting, and utility-deviation-risk
with coupled terminal state and expected terminal state.
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1 Introduction

There has been extensive research and tremendous progress in the literature of dynamic optimiza-
tion. One key feature of most papers is that the model is time-consistent in the sense that a
decision deemed optimal yesterday is still optimal today and will continue to be optimal tomorrow.
If this property is broken, then the problem is called time-inconsistent. Qualitative analysis on
time-inconsistent behaviors of animals and human beings can be at least traced back to the works
of Hume [16] in 1739 and of Smith [20] in 1759, see Palacios-Huerta [19] for an interesting survey.

Time-inconsistent problems are widely studied in economics and finance. Strotz [21] first showed
some quantitative analysis on a deterministic Ramsey problem. There are mainly three different
types of strategies to treat the time inconsistency in the literature: pre-commitment strategy, naive
strategy and equilibrium strategy. The first one (the pre-committed agent) is derived from solving
an optimization problem at initial time and then used throughout the whole time horizon, despite
the fact that it may no longer be optimal at later time. The second one (the naive agent) is to
pursue optimality at any time and ignore the resulting time inconsistency, which is quite riveting
and has stimulated several recent works, see e.g. Eliaz and Splieger [7], He et al. [10], Huang et
al. [15]. The last one (the sophisticated agent) is derived from solving a game-theoretic problem
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that ensures the strategies are consistent over the whole time period, which is a rational choice of
a decision maker who is fully aware of time inconsistency.

There have been renewed interest and active research in recent literature on time-inconsistent
model in the continuous time framework. Ekeland and Lazrak [4] and Ekeland and Pirvu [5] con-
sidered optimal consumption and investment under hyperbolic discounting in deterministic and
stochastic models, and elegantly introduced a precise definition of the equilibrium concept. The
idea is that, at every time instant t, the agent builds a coalition with his/her immediate selves in
an infinitesimal time interval [t, t+ ε] and tries to minimize the cost functional, provided that the
selves on [t+ ε, T ] are agreed upon the desired equilibrium strategy. This is essentially a classical
spike variation from the perspective of optimal control theory. Inspired by [4, 5], especially their
definition of equilibrium strategy, Björk et al. [2] studied a general class of time-inconsistent opti-
mal control problem in Markovian setting and derived, among other things, the so-called extended
Hamilton-Jacobi-Bellman (HJB) system and the verification theorem. He and Jiang [11] introduced
two new notions of equilibrium strategies, called the regular equilibria and strong equilibria, for
time-inconsistent problems and their relations with the weak equilibria in [2]. Yong [28, 29] inde-
pendently discussed a class of time-inconsistent optimal control problems with nonlinear state and
cost functional by multi-person differential games approach, introduced a class of new equilibrium
HJB equations and, unlike [2], started the investigation in continuous time setting, made parti-
tion on time intervals and used the theory of forward-backward stochastic differential equations
(FBSDEs).

One common feature of aforementioned papers and almost all other papers in the literature is
that the model coefficients and the objective functions are deterministic. The extension to non-
Markovian models with nonlinear state and cost is few and far between. The only papers on this
topic the authors are aware of are Wang and Wu [23] and Hernández and Possamai [12]. In [23],
the authors discussed a time-inconsistent problem with random coefficients and derived a family
of backward stochastic partial differential equations (BSPDEs), called the stochastic equilibrium
HJB equation, for the equilibrium value function by the multi-person differential games idea in
[28, 29] and applied the results to a linear quadratic problem. Their model does not allow controls
in the diffusion coefficient, nor initial state and expected terminal state in the objective function.
In [12], the authors discussed a continuous time non-Markovian time-inconsistent problem in which
the stochastic differential equation (SDE) for the state process depends on the trajectory of the
state process and derived a system of backward stochastic differential equations (BSDEs) by the
sub-game perfect Nash equilibrium and applied the results to a CRRA utility problem under the
Markovian setting. They solved the problem in the weak sense (finding both the probability space
and the equilibrium control) in contrast to the strong sense (finding the equilibrium control with a
given probability space) of all other papers in the literature.

In this paper we introduce a general framework of time-inconsistent optimal control problems.
We develop a new approach to characterizing the closed-loop equilibrium strategy in both integral
and pointwise forms, recover and improve the well-known results in the existing papers, and reveal
some interesting phenomena that appear for the first time in the literature. We now elaborate our
contributions.

First, we propose a model setting that is more general than all those in the aforementioned
literature (e.g. [2, 11, 12, 23, 28]). For example, the objective function in these papers is additively
separable in the terminal state variable and its conditional expectation, which excludes the non-
separable utility-deviation-risk portfolio selection problem (Wong et al. [27]) that is a special case
of our model. To the best knowledge of the authors, this is the first result in the literature
on equilibrium strategies for general time-inconsistent and coupled utility deviation risk portfolio
selection problems in continuous time framework. Our integral characterization of equilibrium
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strategy, with applications such as mean-variance problem with state-dependent risk aversion and
investment-consumption problem with power utility and non-exponential discounting, allows the
model coefficients to be random. These applications are beyond the scope of [12, 23]. Our study
opens a way of solving the following open problem mentioned in [2, Section 10]: “the present theory
depends critically on the Markovian structure. It would be interesting to see what can be done
without this assumption.”

We develop a new methodology for solving the problem as follows: We first introduce a new def-
inition of closed-loop equilibrium strategy, motivated by the randomness of the coefficients and the
limitation in the relevant literature (Remark 2.1), then propose two terms Θ0, Ξ (partially inspired
by Wang and Yong [26]) that have the flow property and tackle the two kinds of time inconsistency
caused by the cost functional (Remark 3.1), and finally establish the main results of the paper, i.e.,
the integral characterization (Theorem 3.1) and the pointwise counterpart (Theorems 4.1 and 4.2)
for equilibrium strategy, by a new BSPDE system and a new PDE system, respectively. We make
full use of the term Ξ̄ (associated with equilibrium strategy Φ̄) in various characterizations to re-
place the equilibrium value function (EVF). We may regard Ξ̄ as a generalized EVF which reduces
to the EVF in a diagonal manner. Moreover, Ξ̄ has the inherent flow property and natural connec-
tion with BSPDE system by the Itô-Kunita formula, while the EVF lacks these advantages. Some
special forms of Ξ̄ appear in [28, 29] that use the multi-person differential games idea (Subsection
5.4), a different approach compared with ours.

We now highlight some extension/improvement of our work on the relevant literature. First, to
verify an equilibrium strategy in [2], one has to check the limit condition with arbitrary element
in the Euclidean space, but He and Jiang [11, Footnote 6] showed that, for the mean-variance
problem, such a requirement would be too strong to be satisfied and suggested the “support of
distributions” of equilibrium state process, which still seems abstract and hard to verify. We
directly use the value of equilibrium state process at time t, which is easy to verify and bypasses
the above problematic issue. The new definition is also consistent with those in [28, 29]. Second, a
fundamental assumption in e.g. [2, 11] is that the closed-loop strategy and the model coefficients are
right-continuous in time, needed for some limit argument by the Dominated Convergence Theorem
(DCT). For a mean-variance portfolio selection model, such a requirement means that the riskless
interest rate, the excess stock return, the stock volatility are either constant or right-continuous
functions. We remove the continuity requirement by using a key result in Wang [25]. Third, when
our cost functional reduces to that in e.g. [2, 11] with deterministic coefficients, we give a unified
treatment on the necessary condition (see Lindensjö [17]) and the sufficient condition (see [2]) for
equilibrium strategy, and our new PDE system essentially reduces to the HJB system in [2, 11, 28]
(see Section 5). We also recover the linear quadratic case in Wang [24] which relies on the FBSDEs
approach.

Finally, we list some interesting facts arising from our study. First, due to the randomness of
the coefficients, if we define the equilibrium strategy in terms of ε > 0 like those in e.g. [2, 11],
then the unaccountable property of ε > 0 may cause the corresponding limit ill-posed. To avoid
this issue, we use arbitrary sequence {εn} tending to zero instead. Second, in the particular
time-consistent Markovian setting (Subsection 5.1), we find that the equilibrium strategy, which
is weaker than the optimal strategy, happens to be essentially equivalent to the optimal strategy
and, to our surprise, that the HJB equation in the view of EVF can be obtained without the
dynamic programming principle and the compact assumption of the control region (Remark 5.1).
Third, we find two interesting phenomena for the investment/consumption model with CRRA
utility and non-exponential discounting (Remark 3.7): One is that in the Markovian setting the
time inconsistency caused by the discounting function does not affect the investment proportion of
wealth, whereas in the non-Markovian case such coincidence disappears. The other is that for log
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utility the equilibrium consumption strategy is merely determined by the discounting functions and
independent of other random coefficients, but for power utility the same feature does not hold.

The rest of the paper is organized as follows. In Section 2 we describe the time-inconsistent
model with random coefficients and define the closed-loop equilibrium strategy. In Section 3 we give
the integral characterization for equilibrium strategy (Theorem 3.1) and apply it to solve mean-
variance and investment/consumption problems with random coefficients. In Section 4 we discuss
the Markovian case and give two pointwise characterizations for equilibrium strategy (Theorems
4.1 and 4.2). In Section 5 we compare and recover the results of some well-known models in the
Markovian setting, including classical optimal control, Bjork et al. [2], He and Jiang [11], and Yong
[28] models. Section 6 concludes. The appendix contains the proofs of all theorems.

2 Problem formulation

Suppose (Ω,F ,P, {Ft}t≥0) is a filtered complete probability space, {W (t), t ≥ 0} is a F := {Ft}t≥0-
adapted one-dimensional Brownian motion. For p > 1, denote by L2

Ft(Ω;Rn) the space of Ft-
measurable random variables ξ such that E|ξ|2 <∞, LpF(Ω;C([0, T ];Rn)) the space of all F-adapted,
Rn-valued, continuous processes X such that E(supr∈[0,T ] |X(r)|2)p < ∞ and LpF(Ω;L2(0, T ;Rn))

the space of all F-adapted, Rn-valued processes X such that E(
∫ T

0 |X(r)|2dr)
p
2 < ∞. If p = 2,

then L2
F(0, T ;Rn) ≡ L2

F(Ω;L2(0, T ;Rn)). Given r ∈ [0, T ], y ∈ Rn, l ∈ N, mapping f : Ω× [0, T ]×
Rn → Rl, denote by ∂yf(r, y) ∈ Rl×n and ∂yyf(r, y) ∈ Rl×(n×n) the first and second order partial
derivatives of f with respect to y and evaluated at (r, y). Note that for a, b ∈ Rn, a>∂yyf(r, y)b ∈ Rl.
To shorten notations, we write C1,2 ≡ C1,2([0, T ] × Rn;R), C1,2

n ≡ C1,2([0, T ] × Rn;Rn). Similar
notations are used for other spaces, e.g. C0,1 and C0,1

n .
For n, m ∈ N, we introduce the following assumption.

(H1) Suppose b, σ : Ω × [0, T ] × Rn × Rm → Rn, g : Ω × [0, T ] × [0, T ] × Rn × Rn × Rm → R,
h : Ω× [0, T ]×Rn×Rn×Rn → R are measurable processes such that for (t, γ, x, u, y) ∈ [0, T ]×Rn×
Rn ×Rm ×Rn, b(·, x, u), σ(·, x, u), g(t, ·, γ, x, u) are F-progressively measurable, and ∂yh(t, γ, x, y)
exits.

Under (H1), given x ∈ Rn, we consider the following SDE:{
dX(s) = b(s,X(s), u(s))ds+ σ(s,X(s), u(s))dW (s), s ∈ [0, T ],

X(0) = x,
(2.1)

where X(·) is the state process and u(·) the control process that ensures (2.1) admits a unique
strong solution. For any t ∈ [0, T ), and Ft-measurable random variable X(t), we consider the cost
functional

J(u(·); t,X(t))=Et
[ ∫ T

t
g
(
t,s,X(t),X(s),u(s)

)
ds+ h

(
t,X(t),X(T ),EtX(T )

)]
, (2.2)

where Et is the conditional expectation given Ft. The pre-committed (or naive) strategy with
initial condition (t,X(t)) is to find a ū(·) that minimizes J(u(·); t,X(t)) in the essentially infimum
(essinf) sense over all controls u(·) that make (2.2) well defined. However, in this paper we seek the
equilibrium strategy. In the following, instead of control u(·), we consider feedback (closed-loop)
strategy Φ which is a measurable mapping Φ : Ω × [0, T ] × Rn → Rm such that for any t ∈ [0, T ],
x ∈ Rn, Φ(t, x) is Ft-measurable. Given (t, s) ∈ [0, T ]× [0, T ], (γ, x) ∈ Rn × Rn, let

fΦ(s,x) := f(s,x,Φ(s,x)), f := b, σ, gΦ(t,s,γ,x) := g(t,s,γ,x,Φ(s,x)). (2.3)
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Definition 2.1 A closed-loop strategy Φ is called admissible if for any x ∈ R,{
dX (s) = bΦ

(
s,X (s)

)
ds+ σΦ

(
s,X (s)

)
dW (s), s ∈ [0, T ],

X (0) = x,
(2.4)

admits a unique strong solution X (·) ≡X Φ,0,x(·) such that for any t ∈ [0, T ),

Et
[∫ T

t

∣∣gΦ(t,s,X (t),X (s))
∣∣ds+

∣∣h(t,X (t),X (T ),EtX (T ))
∣∣+∣∣X (T )

∣∣]<∞. (2.5)

The set of all admissible strategies is denoted by Sad.

In the following, when it is necessary to emphasize the dependence of X (·) on (Φ, 0, x), we use
X Φ,0,x(·), otherwise, we simply write it as X (·). Condition (2.5) can be easily checked if gΦ, h, and
X (·) satisfy proper growth and integrability conditions and is mainly used to keep the following
cost functional, derived from (2.2) by replacing u(·) with Φ, well-defined,

J(Φ; t,X (t)) :=Et
[∫ T

t
gΦ
(
t,s,X (t),X (s)

)
ds+h

(
t,X (t),X (T ),EtX (T )

)]
. (2.6)

For any Φ̄, Φ′ ∈ Sad, t ∈ [0, T ), ε > 0 small enough such that t+ ε ≤ T , define

Φε(s, x) = Φ̄(s, x)I[0,t)∪[t+ε,T ](s) + Φ′(s, x)I[t,t+ε)(s). (2.7)

For a given Φ̄ ∈ Sad, we define S̄ad the set of all closed-loop strategies Φ′ such that Φε ∈ Sad.
The set S̄ad is implicit and abstract, and is specified with explicit form in various special settings.
Let X ε(·) be the strong solution of (2.4) with Φε. By uniqueness, X ε(·) = X (·) on [0, t]. We now
introduce the notion of closed-loop equilibrium strategy.

Definition 2.2 A strategy Φ̄ ∈ Sad is called a closed-loop equilibrium strategy if for any t ∈ [0, T ),
any Φ′ ∈ S̄ad, and any sequence {εn} tending to zero, we have

lim
εn→0

J
(
Φεn ; t, X̄ (t)

)
− J

(
Φ̄; t, X̄ (t)

)
εn

≥ 0, (2.8)

where X̄ (·) is the strong solution of (2.4) with (Φ̄, 0, x). A function V : [0, T ]×Rn → Rn is called
the equilibrium value function (EVF) if V (t, X̄ (t)) = J(Φ̄; t, X̄ (t)) for all t ∈ [0, T ], x ∈ Rn.

Note that in (2.8) the limit is taken with any sequence {εn} tending to 0, not ε ∈ R tending to 0.
In fact, in our non-Markovian framework, the difference quotient in (2.8) with εn replaced by ε is
well-defined in a full measure with respect to ω. Due to the uncountability property of ε > 0, the
limit in (2.8) may not be well-defined and this is the reason of using {εn} instead.

Remark 2.1 Given Φ ∈ Sad, t ∈ [0, T ), and Ft-measurable random variable ξ, let J (Φ; t, y) be
the restriction of J(Φ; t, ξ) on Rn. Under proper conditions, one has J(Φ; t, ξ) = J (Φ; t, y)

∣∣
y=ξ

a.s.

(see Appendix A.4), which enables us to present another equivalent statement of (2.8) by J . Note
that J still depends on ω due to the randomness of b, σ, g, h, but is deterministic in the Markovian
setting. In some literature, e.g. [2, 11], the authors replace J , ξ in (2.8) by J , y, respectively,
where y is in a subset of Rn or even Rn itself. Here we adopt the idea from [24, Definition 2.3], [28,
Definition 4.1]. Our version avoids the problematic issue of [2] pointed in [11, Footnote 6] and
also reduces to the classical notions in specific important models (Subsection 5.1).
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3 Integral characterizations with random coefficients

Given (τ, γ) ∈ [0, T ) × Rn, Φ ∈ Sad, inspired by the backward PDEs in [26, Theorem 1.2], we
introduce the following BSPDE system: for t ∈ [0, T ], γ, y ∈ Rn,

Λ(t,y)=y+

∫ T

t

[(
A Λ(s,·)

)Φ
(y)+∂yΓ(s,y)σΦ(s,y)

]
ds−

∫ T

t
Γ(s,y)dW (s),

Ξ(τ,t,γ,y)=h(τ,γ,y,Λ(τ, γ))+

∫ T

t

[(
A Ξ(τ,s,γ,·)

)Φ
(y)+ gΦ(τ, s, γ, y)

+ ∂y∆(τ,s,γ,y)σΦ(s,y)
]
ds−

∫ T

t
∆(τ,s,γ,y)dW (s),

(3.1)

where A is an infinitesimal generator, defined by, for a Rn-valued (or R-valued) function g,

(A g(r, ·))Φ(x) := ∂xg(r, x)bΦ(r, x) +
1

2
σΦ(r, x)>∂xxg(r, x)σΦ(r, x). (3.2)

In this paper, we are interested in the classical solution of (3.1), see e.g. Hu et al. [13]. Given Φ̄,
Φ′ ∈ Sad, for any t, r ∈ [0, T ), γ, x ∈ Rn, define

δb(r, x) := bΦ
′(
r, x
)
− bΦ̄(r, x), δσ(r, x) := σΦ′

(
r, x
)
− σΦ̄(r, x),

δg(t, r, γ, x) := gΦ′(t, r, γ, x)− gΦ̄(t, r, γ, x),

δG1(r,x) := (A Λ̄(r,·))Φ′(x)− (A Λ̄(r,·))Φ̄(x) + ∂xΓ̄(r,x)[δσ(r,x)],

δG2(t,r,γ,x) :=(A Ξ̄(t,r,γ,·))Φ′(x)−(A Ξ̄(t,r,γ,·))Φ̄(x) + ∂x∆̄(t,r,γ,x)[δσ(r,x)],

H(t, ε) :=

∫ 1

0
∂yh
(
t,X̄ (t),X ε(T ),y

)
|y=(1−θ)EtX̄ (T )+θEtX ε(T )dθ,

SΦε,Φ̄(t, ε) :=
1

ε
Et
∫ t+ε

t

(
δg(t, r, X̄ (t),X ε(r))

+
[
EtH(t, ε)

]
δG1(r,X ε(r)) + δG2(t, r, X̄ (t),X ε(r))

)
dr,

(3.3)

where X ε(·) is a solution of (2.4) associated with Φε and (Λ̄, Γ̄), (Ξ̄, ∆̄) satisfy (3.1) with Φ̄.

(H2) Suppose (H1) holds true, Φ̄ ∈ Sad such that (3.1) admits classical solutions (Λ̄, Γ̄) and
(Ξ̄, ∆̄) satisfying

Et
[(∫ T

t

∣∣Γ̄(r, y)+∂xΛ̄(r, y)σΦ(r, y)
∣∣2∣∣∣

y=X (r)
dr
) 1

2
]
<∞,

Et
[(∫ T

t

∣∣∆̄(t, r,X (t), z)+∂zΞ̄(t, r,X (t), z)σΦ(r, z)
∣∣2∣∣∣

z=X (r)
dr
) 1

2
]
<∞,

(3.4)

with (X̄ (·), Φ̄). Moreover, there exists a closed-loop strategy Φ′ such that Φε in (2.7) is admissible
and (3.4) holds corresponding to (X ε(·),Φε). We assume t ∈ [0, T ) and ε ∈ (0, T −t). In addition,

Et
[∫ t+ε

t

(∣∣δG1(r,X ε(r))
∣∣+∣∣δG2(t,r,X̄ (t),X ε(r))

∣∣+
∣∣gΦ̄(t,r,X̄ (t),X ε(r))

∣∣)dr
+|H(t, ε)|+

∣∣h(t, X̄ (t),X ε(T ),EtX̄ (T ))
∣∣]<∞. (3.5)

We can now state the first main result of the paper: the integral characterization for equilibrium
strategy.
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Theorem 3.1 Suppose (H2) holds with the given Φ̄,Φε ∈ Sad. Then

J(Φε; t, X̄ (t))− J(Φ̄; t, X̄ (t))

ε
= SΦε,Φ̄(t, ε). (3.6)

Furthermore, if (H2) holds for any Φ′ ∈ S̄ad, then Φ̄ is an equilibrium strategy if and only if

lim
εn→0

SΦεn ,Φ̄(t, εn) ≥ 0.

Proof. See Section A.1.

Remark 3.1 To address the time inconsistency of J(u(·); t,X (t)) due to the dependence of g, h
on t,X (t),EtX (T ), we introduce an alternative “time consistent” version which closely relates to
J . Specifically, for any x ∈ Rn, Φ ∈ Sad, 0 ≤ t ≤ r ≤ T , X (·) = X Φ,0,x(·), η := X (t), ξ := X (r),
we propose the following term

Θ0(t, r, η, ξ) := Er
[ ∫ T

r
gΦ
(
t, s, η,X (s)

)
ds+ h

(
t, η,X (T ),EtX (T )

)]
, (3.7)

which is well-defined and useful in the proof of Theorem 3.1. It is more general than J in the sense
that Θ0(t, t, η, η) = J(Φ; t, η) if t = r. More importantly, for any r ≥ t,

Θ0(t, t,X (t),X (t))=Et
[
Θ0(t,r,X (t),X (r))+

∫ r

t
gΦ
(
t,s,X (t),X (s)

)
ds
]
. (3.8)

The above relation is referred as the flow property which is closely relate to the classical dynamic
programming principle. In some sense, such a property treats the time inconsistency caused by g.

We also rely on Ξ in (3.1) to tackle the time inconsistency caused by EtX (T ). The term Ξ
connects Θ0 via H(t, ε) in (A.2). Unlike Θ0, it is defined on Euclidean vector (rather than random
variable) which makes the well-known Itô-Kunita formula applicable. Note that Ξ also satisfies the
flow property in the sense of (3.8), and J(Φ; t,X (t)) = Ξ(t, t,X (t),X (t)). If Φ̄ is the equilibrium
strategy, then in terms of Definition 2.2, Ξ̄(t, t, x, x), with (t, x) ∈ [0, T ] × Rn, is the EVF, and Ξ̄
may be regarded as a generalized EVF that reduces to the EVF in a diagonal manner. Its usefulness
is demonstrated in Theorem 3.1 and the following sections. Some special forms of Ξ appear in [2,
(6.4-6.5)] and [28, Section 5], but their roles are not explored.

Remark 3.2 To the best knowledge of the authors, the conclusions in Theorem 3.1 appear for the
first time even in the special framework (e.g. [2, 11, 12]). Motivated by (2.8), we derive an explicit
equality for the difference of perturbed cost and equilibrium cost, which immediately leads to the
integral characterization for equilibrium strategy with random coefficients. For later use, we point
out a special case with h being free of EtX (T ). Then H(t, ε) = 0 in (3.3), which makes the term
δG1(r,X ε(r)) irrelevant in (3.6). Hence Λ,Γ in BSPDE (3.1) can be removed.

In the next two subsections, we apply Theorem 3.1 to two special settings with random coef-
ficients, while most existing papers (e.g. [1, 2, 3, 5, 14, 18, 28]) assume deterministic coefficients.
For these models, the BSPDE system (3.1) can be reduced to the BSDE systems, some of which
appear for the first time in the literature. Denote by H1 := L2

F(Ω;C([0, T ];R))× L2
F(0, T ;R).
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3.1 Mean-variance with state-dependent risk aversion

Suppose that A(·), B(·), D(·) are bounded F-adapted processes, x ∈ R. Given a proper strategy
Φ, we consider a one-dimensional controlled SDE:

dX (s)=
[
A(s)X (s)+B(s)Φ(s,X (s))

]
ds+D(s)Φ(s,X (s))dW (s), s ∈ [0, T ],

X (0) = x.
(3.9)

For any t ∈ [0, T ), the cost functional at time t is given by

J(Φ; t,X (t)) = Et
[
X (T )2

]
− (Et

[
X (T )

]
)2 −R

(
X (t)

)
Et[X (T )], (3.10)

where for a constant R > 0, R(x) = R or R(x) = Rx for all x. SDE (3.9) can be interpreted as a
wealth equation with X (·) the wealth, A(·) the riskless interest rate, B(·) the excess stock return,
D(·) the stock volatility, and Φ(·,X (·)) the amount of money invested in the risky stock. This is
a continuous time time-inconsistent mean-variance problem.

The model (3.9) and the objective (3.10) can be written as (2.1) and (2.2) with{
b(s, x, u) = A(s)x+B(s)u, σ(s, x, u) = D(s)u,

g(t, s, γ, x, u) = 0, h(t, γ, x, y) = x2 − y2 −R(γ)x.

Due to the linear-quadratic structure, also the terminal condition

Λ̄(T, y) = y, Ξ̄(τ, T, γ, y) = h(τ, γ, y, Λ̄(τ, γ)) = y2 − Λ̄(τ, γ)2 −R(γ)y,

we propose the following ansatz form on all admissible strategies:

Φ̄(s, y) = φ̄(s)y + ϕ̄(s), Φ′(s, y) = φ̄(s)y + ϕ̄(s) + v, s ∈ [0, T ], y ∈ R, (3.11)

with any v ∈ R and some proper processes (φ̄, ϕ̄), and the BSPDE solution (Λ̄, Γ̄), (Ξ̄, ∆̄) to (3.1),
associated with Φ̄, given by

Λ̄(s, y) := λ0(s)y + λ1(s), Γ̄(s, y) := λ̃0(s)y + λ̃1(s),

Ξ̄(τ, t, γ, y) := λ2(t)y2 + (λ3(t)−R(γ)λ0(t))y + λ4(t)− Λ̄(τ, γ)2,

∆̄(τ, t, γ, y) := λ̃2(t)y2 + (λ̃3(t)−R(γ)λ̃0(t))y + λ̃4(t),

where (λi, λ̃i) are to be determined. Substituting (Λ̄, Γ̄) and (Ξ̄, ∆̄) into (3.1), collecting terms, we
can easily obtain the following system of BSDEs: for t ∈ [0, T ],

λ0(t) = 1 +

∫ T

t

[
λ0A+ λ0Bφ̄+ λ̃0Dφ̄

]
(s)ds−

∫ T

t
λ̃0(s)dW (s),

λ1(t) =

∫ T

t

[
λ0Bϕ̄+ λ̃0Dϕ̄

]
(s)ds−

∫ T

t
λ̃1(s)dW (s),

λ2(t) = 1+

∫ T

t

[
λ2D

2φ̄2+2λ2A+2λ2Bφ̄+2λ̃2Dφ̄
]
(s)ds−

∫ T

t
λ̃2(s)dW (s),

λ3(t) =

∫ T

t

[
λ3A+ λ3Bφ̄+ λ̃3Dφ̄+ 2λ2D

2φ̄ϕ̄+ 2λ2Bϕ̄+ 2λ̃2Dϕ̄
]
(s)ds−

∫ T

t
λ̃3(s)dW (s),

λ4(t) =

∫ T

t

[
λ2D

2ϕ̄2 + λ3Bϕ̄+ λ̃3Dϕ̄
]
(s)ds−

∫ T

t
λ̃4(s)dW (s).

(3.12)
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This greatly simplifies the problem as one only needs to solve BSDEs, not BSPDEs.

(H3) Suppose for any p > 2, (φ̄, ϕ̄) ∈ LpF(Ω;L2(0, T ;R2)) and
(i) for any v ∈ R, SDE (3.9) admits a unique solution X̄ (·), X ε(·) ∈ LpF(Ω;C([0, T ];R)) associated
with Φ̄, Φε, respectively.
(ii) BSDE system (3.12) is solvable such that (λi, λ̃i) ∈H1, i = 0, 1, 2, 3, 4.
(iii) Some limiting condition in the sense of (A.5), (A.6) hold.

Under (H3) and (3.11), Φ̄ ∈ Sad. Let M̄ be the set of Φ′ in (3.11) such that (φ̄, ϕ̄) satisfy (H3).
Clearly, M̄ ⊂ S̄ad. In this subsection, the equilibrium strategy is defined with S̄ad replaced by
M̄ . Given functions f, g, let Kf,g(t) := B(t)f(t) +D(t)g(t) for t ∈ [0, T ].

Theorem 3.2 Assume A(·), B(·), D(·) are bounded F-adapted processes, x ∈ R.
(i) Suppose R(x) = R, a constant, and there exists (φ̄, ϕ̄) satisfying (H3). Then Φ̄ is a closed-loop
equilibrium strategy if and only if for t ∈ [0, T ), D2(t)λ2(t) ≥ 0 and

K
λ2,λ̃2

(t)− λ0(t)K
λ0,λ̃0

(t) +D2(t)φ̄(t)λ2(t) = 0,

K
λ3,λ̃3

(t)− (R+ 2λ1(t))K
λ0,λ̃0

(t) + 2D2(t)ϕ̄(t)λ2(t) = 0.

(ii) Suppose R(x) = Rx and there exists (φ̄, 0) satisfying (H3). Then Φ̄ is a closed-loop equilibrium
strategy if and only if for t ∈ [0, T ], D2(t)λ2(t) ≥ 0 and

K
λ2,λ̃2

(t)− λ0(t)K
λ0,λ̃0

(t)− 1

2
RK

λ0,λ̃0
(t) +D2(t)φ̄(t)λ2(t) = 0.

Proof. See Section A.2.

Remark 3.3 When the coefficients are deterministic, then λ̃i = 0, i = 0, 1, 2, 3, 4. If R(x) = R,
(φ̄, ϕ̄) ∈ L2(0, T ;R2), then (H3) automatically holds. We have Φ̄ = φ̄x + ϕ̄ is a closed-loop
equilibrium strategy if and only if for t ∈ [0, T ), D2(t)λ2(t) ≥ 0,[

λ2(t)− λ2
0(t)
]
B(t) +D2(t)φ̄(t)λ2(t) = 0,

B(t)
[
λ3(t)− (R+ 2λ1(t))λ0(t)

]
+ 2D2(t)ϕ̄(t)λ2(t) = 0.

IfR(x) = Rx, and φ̄ ∈ L2(0, T ;R), then (H3) automatically holds. We have Φ̄ = φ̄x is a closed-loop
equilibrium strategy if and only if for t ∈ [0, T ), D2(t)λ2(t) ≥ 0 and

[
λ2(t)− λ2

0(t)− 1

2
Rλ0(t)

]
B(t) +D2(t)φ̄(t)λ2(t) = 0.

These conclusions coincide with those in [14, 24].

Remark 3.4 The condition D2(t)λ2(t) ≥ 0 is a convexity condition for our optimization problem.
In the Markovian setting with deterministic φ̄, this conclusion holds by the comparison theorem
of ODEs. For R(x) = Rx, we seek the equilibrium strategy with ϕ̄ = 0 to be consistent with
the Markovian setting in [3]. When R(x) = R, the solvability of the relevant backward stochastic
Riccati equation (BSRE) system and the existence of (φ̄, ϕ̄) satisfying (H3) are obtained in [22]
with the FBSDEs and decoupling techniques, which is different from ours. We leave the solvability
of BSRE system when R(x) = Rx to our future work.
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Remark 3.5 We give some comparisons with the well-known papers [1, 3] that treat the Markovian
case. First, our Riccati system (3.12) coincides with theirs (see [3, Proposition 4.5]) that are derived
from the total variance formula or from [2]. We will show in Subsection 5.2 that, even in the
Markovian setting, our approach is different from theirs. Second, the coefficients of the models in
[1, 3] are constants whereas ours are bounded processes that may be discontinuous (see Theorem
4.2) and/or random, which brings us nontrivial challenges (e.g. the solvability of Riccati system
(3.12) due to the rough integrability of λ̃i) as well as interesting facts (see e.g. [22]). Third, our
assumption (H3) is natural and easy to check in the Markovian setting.

3.2 Investment/consumption with non-exponential discounting

Suppose (Φ1,Φ2) are two closed-loop strategies such that for x ≥ 0, the following SDE admits a
unique solution: s ∈ [0, T ],

dX(s)=
[
A(s)X(s)+B(s)Φ2(s,X(s))−Φ1(s,X(s))

]
ds+D(s)Φ2(s,X(s))dW (s),

X(0) = x,
(3.13)

and the following cost functional starting from (t,X (t)) is well-defined,

J(Φ; t,X (t)) = Et
∫ T

t
ν(t, s)U1

(
Φ1(s,X (s))

)
ds+Et

[
ρ(t)U2

(
X (T )

)]
. (3.14)

The aim is to maximize J over (Φ1,Φ2). Here A(·), B(·), D(·) are bounded processes, ν(t, ·) is F-
adapted, ρ(t) is FT -measurable, and both ν, ρ are bounded and positive, U1(x) = U2(x) = xβ with
β ∈ (0, 1). SDE (3.13) can be interpreted as a wealth equation with Φ1(·,X (·)) the nonnegative
consumption rate and Φ2(·,X (·)) the amount of wealth invested in risky asset. If ν(t, s) = e−α(s−t)

and ρ(t) = e−α(T−t) (α > 0), then (3.14) is a standard power utility maximization problem. If ν(t, s)
and ρ(t) are some other discounting functions, for example, ν(t, s) = (1+α(s−t))−1, the hyperbolic
discounting function, then it becomes time-inconsistent. Normally, ρ(t) = ν(t, T ), but can be a
different function.

The model (3.13) and the objective (3.14) can be written as (2.1) and (2.2) with{
b(s, x, u1, u2) = A(s)x+B(s)u2 − u1, σ(s, x, u1, u2) = D(s)u2,

g(t, s, γ, x, u) = −ν(t, s)uβ1 , h(t, γ, x, y) = −ρ(t)xβ.

Since h is free of y, we do not need to find Λ,Γ (Remark 3.2). We seek the following ansatz strategy:
for φ̄1 ≥ 0 and φ̄1, φ̄2 satisfying suitable integrability conditions, any v1 ≥ 0, v2 ∈ R, define

Φ̄ := (Φ̄1, Φ̄2) = (φ̄1x, φ̄2x), Φ′ := (
[
φ̄1 + v1

]
x,
[
φ̄2 + v2

]
x), (3.15)

and the ansatz solution to BSPDE (3.1) as

Ξ̄(τ, t, γ, y) = Y (τ, t)yβ, ∆̄(τ, t, γ, y) = Ỹ (τ, t)yβ.

Substituting (Ξ̄, ∆̄) into (3.1), we can obtain the following BSDE:

Y (τ,t)=−ρ(τ)+

∫ T

t

(
βY (τ, s)

(
A(s)+B(s)φ̄2(s)−φ̄1(s)+

1

2
(β−1)D2(s)φ̄2

2(s)
)

+βỸ (τ,s)D(s)φ̄2(s)−ν(τ,s)φ̄β1 (s)
)
ds−

∫ T

t
Ỹ (τ,s)dW (s), t ∈ [0, T ].

(3.16)
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(H4) Suppose there exists (φ̄1, φ̄2) such that
(i) φ̄1 is a nonnegative, φ̄1 ∈ L1

F(Ω;L1(0, T ;R)), φ̄2 ∈ LpF(Ω;L2(0, T ;R)), ∀p > 2.
(ii) SDE (2.4) admits a unique solution X̄ (·), X ε(·) ∈ LpF(Ω;C([0, T ];R)), (p > 2).

(iii) BSDE (3.16) admits a solution (Y (τ, ·), Ỹ (τ, ·)) ∈ H1, τ ∈ [0, T ], such that for almost all
r ∈ [0, T ], Ỹ (r, r) is well-defined.
(iv) (φ̄1, φ̄2) satisfies some limiting conditions in the sense of (A.10).

Denote by C̄ the set of Φ′ defined in (3.15) with (φ̄1, φ̄2) satisfying (H4). Clearly, C̄ ⊂ S̄ad. In
this subsection, the equilibrium strategy is defined with S̄ad replaced by C̄ .

Theorem 3.3 Suppose (H4) holds for some (φ̄1, φ̄2). Then Φ̄ in (3.15) is a closed-loop equilibrium
strategy if and only if

Y (t, t)B(t) + (β − 1)Y (t, t)D2(t)φ̄2(t) + Ỹ (t, t)D(t) = 0,

ν(t, t)
[
φ̄1(t)

]β−1
+ Y (t, t) = 0, Y (t, t) ≤ 0, t ∈ [0, T ].

(3.17)

Proof. See Section A.3.

Remark 3.6 For U1(x) = U2(x) = lnx, we can easily derive the equilibrium strategy by noting
that lim

β→0
(xβ − 1)/β = lnx and that, for any fixed β > 0, the equilibrium strategies for xβ and

(xβ − 1)/β are the same. We can give the characterization by setting β = 0 in (3.17), that is,

Y (t, t)B(t)− Y (t, t)D2(t)φ̄2(t) + Ỹ (t, t)D(t) = 0,

ν(t, t)
[
φ̄1(t)

]−1
+ Y (t, t) = 0, Y (t, t) ≤ 0, t ∈ [0, T ],

(3.18)

where (Y, Ỹ ) is the solution to BSDE (3.16) with β = 0, that is,

Y (τ, t) = −ρ(τ)−
∫ T

t
ν(τ, s)ds−

∫ T

t
Ỹ (τ, s)dW (s), t ∈ [0, T ]. (3.19)

We can also derive (3.18), (3.19) by the ansatz solution to BSPDE (3.1) as Ξ̄(τ, t, y) = Y1(τ, t) ln y+
Y2(τ, t), ∆̄(τ, t, y) = Ỹ1(τ, t) ln y + Ỹ2(τ, t). Substituting (Ξ̄, ∆̄) into (3.1), we can get a system of
BSDEs for (Y1, Ỹ1) and (Y2, Ỹ2), the former satisfies (3.19).

Remark 3.7 We can deduce a number of important facts from our model.
First, in the Markovian setting, Ỹ = 0. The time inconsistency caused by ν, ρ does not affect

φ̄2, the investment proportion of wealth, for the power and log utility case. It is conjectured in
[6, Remark 5.5] that such coincidence would disappear in the non-Markovian framework. Here we
give a positive answer to this conjecture due to the presence of Ỹ .

Second, for log utility model, (3.18) and (3.19) imply that the randomness of equilibrium con-
sumption strategy is only determined by the non-exponential discounting functions but not the
other coefficients A(·), B(·), D(·). This interesting feature does not hold for power utility as β 6= 0,
see BSDE (3.16).

Third, in the Markovian setting, if ν, ρ reduce to exponential discounting functions, from (3.17)
and (3.18), the equilibrium strategy (φ̄1, φ̄2) degenerate into the classical optimal strategy, see e.g.
[18, Subsection 4.5]. We believe that a similar result also holds in the non-Markovian setting, and
leave the details to the interested reader.

Fourth, if Ui(·) = lnx, the existence and uniqueness of (Y, Ỹ ) for (3.19) is guaranteed. However,
if Ui = xβ, the well-posedness of (3.16) is yet to be established. In fact, (H4) is standard under
the Markovian framework, see e.g. [5, 6, 18], and the related solvability of (3.16) is proved under
various cases. In our context, the essential difficulty arises from Ỹ .
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4 Pointwise characterizations with deterministic coefficients

In this section, we compute the limit in (2.8), using (3.6), and obtain the limit in a delicate way.
We demonstrate these ideas from two different viewpoints.

Since the model is Markovian, for a given Φ ∈ Sad, instead of the BSPDE (3.1), we introduce
the following PDE system: for 0 ≤ τ ≤ t ≤ T and γ, y ∈ Rn,

∂tΛ(t, y) + (A Λ(t, ·))Φ(y) = 0,

∂tΞ(τ, t, γ, y) + (A Ξ(τ, t, γ, ·))Φ(y) + gΦ(τ, t, γ, y) = 0,

∂tΠ(τ, t, γ, y) + (A Π(τ, t, γ, ·))Φ(y) = 0,

Λ(T, y) = y, Ξ(τ, T, γ, y) = h(τ, γ, y,Λ(τ, γ)),

Π(τ, T, γ, y) = ∂zh(τ, γ, y, z)|z=Λ(τ,γ).

(4.1)

Note that Π is R1×n-valued. In contrast with (3.1), we introduce an additional PDE for Π which
has the following representation under proper conditions,

Et∂zh
(
τ,X (τ),X (T ), z

)∣∣
z=EτX (T )

= Π(τ, t, γ, y)
∣∣
γ=X (τ),y=X (t)

. (4.2)

Remark 4.1 Given proper functions k, l, suppose

h(τ, γ, y, z) = k(τ, γ, y) + l(τ, γ, z), τ ∈ [0, T ], γ, y, z ∈ Rn, (4.3)

Since ∂zh(τ, γ, y, z)
∣∣
z=Λ(τ,γ)

= ∂zl(τ, γ, z)
∣∣
z=Λ(τ,γ)

is independent of y, we have a trivial solution to

the third PDE of (4.1), that is,

Π(τ, t, γ, y) ≡ ∂zl(τ, γ, z)
∣∣∣
z=Λ(τ,γ)

, (t, y) ∈ [0, T ]× Rn.

In particular, if h is independent of z, then Π ≡ 0, and Λ is irrelevant (Remark 3.2). Therefore, Π
is nontrivial only if y, z in h are non-separable.

Example 4.1 Consider the following utility-deviation-risk portfolio selection problem in Wong et
al. [27]. Assume X satisfies the SDE{

dX (s) =
[
A(s)X (s) +B(s)u(s)

]
ds+D(s)u(s)dW (s), s ∈ [0, T ],

X (0) = x,
(4.4)

where A,B,D are deterministic continuous functions, representing the riskless interest rate, excess
stock return, and stock volatility, respectively, u(s) is the amount of money invested in a risky asset
and X (s) the wealth of the investor at time s. The objective function is given by

J(u(·); t,X (t)) := EtU
(
X (T )

)
− γEt

[
D
(
X (T )− EtX (T )

)]
, (4.5)

where U is a continuously differentiable, increasing, strictly concave function and D a continuously
differentiable, nonnegative, convex function with D(0) = 0. The utility-deviation-risk portfolio
selection problem is to maximize J in (4.5) over u(·) subject to (4.4). [27] discussed the necessary
and sufficient optimality conditions and the existence of pre-commitment optimal control for this
time-inconsistent problem. To the best knowledge of the authors, the cost functional (4.5) cannot
be covered by the existing relevant literature (e.g. [2]). Thanks to the PDE system (4.1) and
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Theorems 4.1 and 4.2 below, we can characterize the closed-loop equilibrium strategy. Specifically,
(4.4) and (4.5) can be written as (2.1) and (2.2) with{

b(s, x, u) = A(s)x+B(s)u, σ(s, x, u) = D(s)u,

g(t, s, γ, x, u) = 0, h(t, γ, x, y) = −U(x) + γD(x− y).

Note variables x, y are not separable for general deviation function D (with one important exception
that D(x − y) = x2 − y2, variance measure). From Remark 4.1, we need to solve the full PDE
system (4.1) for Λ,Ξ,Π when the equilibrium control u is a closed-loop strategy u = Φ(t, x). Note
also that Gu et al. [9] investigated a class of utility-deviation-risk portfolio selection problems, but
their model can still be cast into a separable structure as that in [2].

Given a closed-loop strategy Φ̄, and solutions Λ̄, Ξ̄, Π̄ to system (4.1), define

Hd(t,x,u) :=g(t,t,x,x,u)+
(

Π̄(t,t,x,x)∂xΛ̄(t,x)+∂yΞ̄(t,t,x,y)
∣∣
y=x

)
b(t,x,u)

+
1

2
Π̄(t,t,x,x)σ(t,x,u)>∂xxΛ̄(t,x)σ(t,x,u) +

1

2
σ(t,x,u)>∂yyΞ̄(t,t,x,y)

∣∣
y=x

σ(t,x,u),

(4.6)
with t ∈ [0, T ], x ∈ Rn, u ∈ Rm. Given state process X̄ (·), the Hamiltonian functionHd(t, X̄ (t), ·),
inspired and formally derived by the pointwise limit of SΦε,Φ̄(t, ε) in Theorem 3.1 as ε→ 0, is closely
connected with Theorems 4.1 and 4.2 that give two distinctly different pointwise characterizations
for closed-loop equilibrium strategies.

4.1 Characterization I

The intuitive idea can be easily explained: Given a mapping f : [0, T ] × [0, T ] → R, consider

limε→0

∫ t+ε
t

f(t,s)
ε ds, t ∈ [0, T ). If for any t ∈ [0, T ), s 7→ f(t, s) is continuous, sups∈[t,t+ε] |f(t, s)| <

∞, then ∫ t+ε

t

|f(t, s)− f(t, t)|
ε

ds ≤ sup
s∈[t,t+ε]

|f(t, s)− f(t, t)| → 0 as ε→ 0,

from which one obtains the limit f(t, t). To adjust this simple idea into our framework, we introduce
a subset Dad of admissible control set Sad as follows.

Definition 4.1 A map Φ : [0, T ]×Rn → Rn is said to belong to Dad if for any γ, x ∈ Rn, r ∈ [0, T ],
s ∈ [r, T ], r 7→ bΦ(r, x), σΦ(r, x), gΦ(r, s, γ, x) are right-continuous on [0, T ], x 7→ gΦ(r, s, γ, x) is
continuous, and, for some k ≥ 1,K > 0,∣∣∣gΦ(t, s, γ, x)

∣∣∣+|h(t, γ, x, y)| ≤ K(1 + |γ|+ |x|+ |y|)k, 0 ≤ t ≤ s ≤ T, γ, x, y ∈ Rn,∣∣bΦ(t, x)
∣∣+
∣∣σΦ(t, x)

∣∣ ≤ K(1 + |x|), 0 ≤ t ≤ T, x ∈ Rn,∣∣bΦ(t, x1)−bΦ(t, x2)
∣∣+∣∣σΦ(t, x1)−σΦ(t, x2)

∣∣ ≤ K|x1−x2|, x1, x2 ∈ Rn.

(4.7)

A function is said to have polynomial growth if it satisfies an inequality as gΦ in (4.7). Definition
4.1 is similar to that in He and Jiang [11]. For any Φ, Φ′ ∈ Dad, and t ∈ [0, T ), we see that Φε

in (2.7) belongs to Dad. Moreover, Dad ⊂ Sad. In this subsection, we characterize equilibrium
strategy in terms of Definition 2.2 with Sad, S̄ad replaced by Dad.

(H5) Suppose for given t, s ∈ [0, T ], γ, x, y ∈ Rn, and Φ ∈ Dad, (x, y) 7→ ∂yh(t, γ, x, y), (γ, y) 7→
gΦ(t, s, γ, y), (γ, x, y) 7→ h(t, γ, x, y) are continuous, ∂yh has polynomial growth. Moreover, there
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exists Φ̄ ∈ Dad such that (4.1) admits a solution (Λ̄, Ξ̄, Π̄) satisfying Λ̄(·, ·) in C1,2
n , Ξ̄(t, ·, γ, ·) in

C1,2, Π̄(t, ·, γ, ·) in C1,2
n , and ∂xΛ̄, ∂xxΛ̄, ∂yΞ̄, ∂yyΞ̄, ∂yΠ̄ have polynomial growth.

We can now state the second main result of the paper: the pointwise characterization for
equilibrium strategy.

Theorem 4.1 Suppose (H5) holds. Then Φ̄ ∈ Dad is a closed-loop equilibrium strategy if and only
if, given Hd in (4.6),

Hd(t, X̄ (t), Φ̄(t, X̄ (t))) = min
Φ′∈Dad

Hd(t, X̄ (t),Φ′(t, X̄ (t))), ∀t ∈ [0, T ). (4.8)

Proof. See Section A.4.

4.2 Characterization II

We may drop the right continuity condition of r 7→ bΦ(r, x), σΦ(r, x), gΦ(t, r, γ, x) for any Φ ∈ Dad.
The intuitive idea again can be easily explained: If

∣∣f(t, s)− f(s, s)
∣∣ ≤ K|t− s|, ∀t, s ∈ [0, T ], then∫ t+ε

t

|f(t, s)− f(s, s)|
ε

ds ≤ 1

2
Kε→ 0 as ε→ 0.

Using the Lebesgue differentiation theorem, for almost all t ∈ [0, T ], we have

lim
ε→0

∫ t+ε

t

f(t, s)

ε
ds = lim

ε→0

∫ t+ε

t

f(s, s)

ε
ds = f(t, t).

To adjust this simple idea into our framework, we introduce a subset D0
ad of admissible control set

Sad as follows.

Definition 4.2 A map Φ : [0, T ] × Rn → Rn is said to belong to D0
ad if bΦ, σΦ satisfy the two in-

equalities (linear growth and Lipschitz continuity w.r.t state variable) in (4.7), h has the polynomial
growth, and gΦ satisfies, for some k ≥ 1,K > 0,∣∣gΦ(t1, r, γ1, y1)− gΦ(t2, r, γ2, y2)

∣∣
≤ K

[
1 + |γ1|+ |γ2|+ |y1|+ |y2|

]k[|y1 − y2|+ |t1 − t2|+ |γ1 − γ2|
]
,

|gΦ(t, r, 0, 0)| ≤ K, 0 ≤ t ≤ r ≤ T, (ti, γi, yi) ∈ [0, T ]× Rn × Rn, i = 1, 2.

(4.9)

A function is said to have Lipschitz continuity with polynomial growth rank if it satisfies two
inequalities of the same type as the ones for gΦ(·, r, ·, ·) in (4.9). For any Φ, Φ′ ∈ D0

ad, t ∈ [0, T ),
Φε ∈ D0

ad, and D0
ad ⊂ Sad. In this subsection, we characterize the equilibrium strategy with Sad,

S̄ad replaced by D0
ad.

(H6) Suppose for given t ∈ [0, T ], γ, x, y ∈ Rn, (x, y) 7→ ∂yh(t, γ, x, y) are continuous, (γ, x, y) 7→
∂yh has polynomial growth, and there exists Φ̄ ∈ D0

ad such that (4.1) admits a solution (Λ̄, Ξ̄, Π̄)

satisfying for t, r ∈ [0, T ], γ, y ∈ Rn, Λ̄(·, ·) in C1,2
n , Ξ̄(t, ·, γ, ·) in C1,2, Π̄(t, ·, γ, ·) in C1,2

n , Π̄ and
∂yΠ̄ have polynomial growth, and ∂yΞ̄(·, r, ·, ·), ∂yyΞ̄(·, r, ·, ·), ∂xΛ̄(r, ·), ∂xxΛ̄(r, ·), Π̄(·, r, ·, y) have
Lipschitz continuity with polynomial growth.

We next state the third main result of the paper: another pointwsie characterization for equi-
librium strategy.
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Theorem 4.2 Suppose (H6) holds. Then Φ̄ ∈ D0
ad is a closed-loop equilibrium strategy if and only

if, given Hd in (4.6),

Hd(t, X̄ (t), Φ̄(t, X̄ (t)))= min
Φ′∈D0

ad

Hd(t, X̄ (t),Φ′(t, X̄ (t))), t ∈ [0, T ). a.e. (4.10)

Proof. See Section A.5.

Note the subtle differences of the statements of Theorems 4.1 and 4.2: (4.8) holds for all
t ∈ [0, T ) while (4.10) holds for t ∈ [0, T ) almost everywhere.

Remark 4.2 We can deduce some important facts from our model.
First, given Φ ∈ Sad, mapping F : [0, T ]× Rn → Rn, define

[AΦF ](t, x) := ∂tF (t, x) + (A F (t, ·))Φ(x), (t, x) ∈ [0, T ]× Rn. (4.11)

According to (H5) or (H6), for any (t, x) ∈ [0, T ]× Rn, [AΦ̄Λ̄](t, x) = 0, and hence

[AΦ′Λ̄](t, x) = (A Λ̄(t, ·))Φ′(x)− (A Λ̄(t, ·))Φ̄(x).

A similar conclusion also holds for Ξ̄. Recalling (4.6), we have the following result:

Hd(t,X̄ (t),Φ′(t,X̄ (t)))−Hd(t,X̄ (t),Φ̄(t,X̄ (t)))

=
(
gΦ′
(
t,t,X̄ (t),x

)
+
[
AΦ′Ξ̄(t,·,X̄ (t),·)

]
(t,x)+Π̄(t,t,X̄ (t),x)[AΦ′Λ̄](t,x)

)∣∣∣
x=X̄ (t)

.
(4.12)

The above relation is used in Subsections 5.2 and 5.3.
Second, if all conditions in Definition 4.1 are also satisfied with Φ being replaced by arbitrary

u ∈ Rm, then u ∈ Dad, and (4.8) can be strengthened as

Hd

(
t, X̄ (t), Φ̄(t, X̄ (t))

)
= min

u∈Rm
Hd(t, X̄ (t), u), ∀t ∈ [0, T ), (4.13)

in the sense that the infinite dimensional space Dad is replaced by the finite dimensional space Rm.
Similar results hold for Definition 4.2 and relation (4.10).

Third, (H5) and (H6) hold true for the two models in Subsections 3.1 and 3.2, if Φ̄ and Φ′ are
Markovian and take the form of (3.11), (3.15), respectively. For the later model, although ∂yΞ̄,
∂yyΞ̄ do not have Lipschitz continuity with polynomial growth, we have the positive conclusion for
δG2 which makes the conclusion and approach work as well. Due to the page limit, we omit the
details.

Fourth, if we replace J , {εn} in (2.8) by J , ε, respectively, (see e.g. [2, 11]), by the approach
developed in Section A.4, the corresponding new equilibrium strategy can be characterized via
(4.8), in other words, these two types of equilibrium strategies are equivalent.

Fifth, compared with [2, 11], our conclusion is new and more general due to the non-separability
of (x, y) in h(τ, γ, x, y) and our approach is distinctly different from theirs and enables us to improve
their conclusions, see Subsections 5.2, 5.3.

5 Comparisons with known models

In this section we show that our results recover and improve those of the classical optimal control
model, the well-known Bjork et al. [2] model, He and Jiang [11] model and Yong [28] model.
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5.1 Classical optimal control model

Assume g, h in (2.2) have the forms of g(t, s, γ, x, u) ≡ g(s, x, u), h(t, γ, y, z) ≡ h(y). This is a
time-consistent model. From Remark 4.1, we know Π ≡ 0. Since the initial time t and state γ do
not appear in g, h, we do not need these two variables. This makes (4.1) much simplified with only
Ξ̄ that is described as a linear parabolic PDE with given Φ̄:

Ξ̄(t,y)=h(y)+

∫ T

t

((
A Ξ̄(s,·)

)Φ̄
(y)+ gΦ̄(s, y)

)
ds, t ∈ [0, T ], y ∈ Rn. (5.1)

Hd(·, ·, ·) reduces to the classical Hamiltonian function, Assumptions (H5) and (H6) become

(H7) h has polynomial growth and there exists Φ̄ ∈ Dad such that the second PDE in (4.1)
admits a unique solution Ξ̄ such that ∂xΞ̄(·, ·) and ∂xxΞ̄(·, ·) have polynomial growth.

(H8) h has polynomial growth and there exists Φ̄ ∈ D0
ad such that the second PDE in (4.1)

admits a unique solution Ξ̄ such that ∂xΞ̄(·, ·) and ∂xxΞ̄(·, ·) have Lipschitz continuity with power
growth rank.

If Φ̄ ∈ Dad or D0
ad is an equilibrium strategy in the sense that J , X̄ (t) are replaced by J , y,

where y is arbitrary element in Rn, then [8, Theorem 4.1] states, given (t, y), Φ̄(·, X̄ (·)) is optimal
on [t, T ]. In addition, the equilibrium value function Ξ̄(·, ·) can be described as∂tΞ̄(t, y)+ inf

u∈Rm

{1

2
σ(t, y, u)>∂yyΞ̄(t, y)σ(t, y, u)+∂yΞ̄(t, y)b(t, y, u)+g(t, y, u)

}
=0,

Ξ̄(T, y) = h(y), t ∈ [0, T ], y ∈ Rn.
(5.2)

This shows that for time consistent optimal control problems, one may slightly modify Definition
2.2 so that the closed-loop equilibrium strategy is optimal. However, for some specific models,
according to [24, Theorem 3.3] and Remark 3.7, Definition 2.2 is indeed enough.

Remark 5.1 Note that the classical HJB equation (5.2) is satisfied by (smooth) value function
corresponding to the (open-loop) optimal control, and its derivation relies on the dynamic pro-
gramming principle, the compact assumption of control region, the delicate properties of classical
value functions. In contrast, here (5.2) is satisfied by the equilibrium value function corresponding
to the equilibrium strategy, and the aforementioned preparations are not needed. In this sense, our
ideas are new and interesting.

5.2 Bjork et al. [2] model

Assume Φ̄ is closed-loop equilibrium strategy, h has the separable form (4.3) with k, l, ∂zl being
polynomial growth. To keep notational consistency with [2], for each fixed s ∈ [0, T ], y ∈ Rn, we
define fs,y(·, ·) := Ξ̄(s, ·, y, ·) and

f(t, x, s, y) := fs,y(t, x),
(
l � Λ̄

)
(t, x) := l(t, x, Λ̄(t, x)),[

HΦΛ̄
]
(t, x) := ∂zl(t, x, z)

∣∣
z=Λ̄(t,x)

[
AΦΛ̄

]
(t, x).

Let s = t, y = X̄ (t). Observe that V (t, X̄ (t)) = f(t, X̄ (t), t, X̄ (t)) +
(
l � Λ̄

)
(t, X̄ (t)). Therefore,

for Au defined similarly as in (4.11) with Φ by u ∈ Rm, we have[
AuV

]
(t, X̄ (t))−

[
Auf(·, ·, t, X̄ (t))

]
(t, X̄ (t))−

[
Au
(
l � Λ̄

)]
(t, X̄ (t)) ≡ 0. (5.3)
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By Remark 4.1, Π̄(τ, t, γ, y) = ∂zl(τ, γ, z)
∣∣
z=Λ̄(τ,γ)

. From (4.12), conclusion (4.13) and (H5), we can

rewrite (4.13) as
inf
u∈Rm

{[
AuV

]
(t, X̄ (t)) + g(t, t, X̄ (t), X̄ (t), u)−

[
Auf(·, ·, t, X̄ (t))

]
(t, X̄ (t))

+
[
Auf t,X̄ (t)

]
(t, X̄ (t))−

[
Au
(
l � Λ̄

)]
(t, X̄ (t)) +

[
HuΛ̄

]
(t, X̄ (t))

}
= 0,

which essentially recovers the main result, the extended HJB system, in [2, Section 6].

Remark 5.2 Compared with [2], our model has the following additional novelties: First, by our
developed methodology, in the HJB system we replace classical equilibrium value function (EVF)
V by Ξ̄ (i.e., the above fs,y(·, ·)) which has the inherent advantage of the flow property (Remark
3.1). By revealing the interesting relation (5.3), the essential structure of HJB system in [2] is
considerably simplified, and some involved assumptions (e.g. the ones on AuV , Auf , Au(l �Λ)) are
dropped. Second, our model is more general and can cover utility-deviation-risk model in Example
4.1 while [2] can not. When our setting reduces to [2], we present a new definition of equilibrium
strategy (Remark 2.1). Third, in contrast to the Markovian setting in [2], the randomness of
coefficients requires us to slightly modify the definition of equilibrium strategy (Remark 2.1), and
the derived PDEs system (4.1), a nontrivial extension to that in [2, Definition 6.2], is new due to
the presence of Π̄ (Remark 4.1).

5.3 He and Jiang [11] model

Assume h takes the form of (4.3). Given (τ, γ) ∈ [0, T ]×Rn, we next show that, with Φ̄ ∈ Dad satis-
fying (H5), (4.8) essentially reduces to the analogue conclusion of [11, Theorem 3.3]. From Remark
4.1, Π̄(τ, t, γ, y) = ∂zl(τ, γ, z)

∣∣
z=Λ̄(τ,γ)

, therefore, ∂yΠ̄(τ, t, γ, y) ≡ 0. With AΦ in (4.11), suppose

Ξ̄(2)(τ, ·, γ, ·) has polynomial growth and is the unique solution of AΦ̄Ξ̄(2)(τ, ·, γ, ·) = 0 with terminal

condition Ξ̄(2)(τ, T, γ, y) = k(τ, γ, y). We define Ξ̄(1)(τ, t, γ, y) := Et
∫ T
t gΦ̄(τ, s, γ,M (s))ds, where

M (·) is the solution of (2.4) with Φ̄ and M (t) = y, and the mapping (t, y) 7→ G(t, y; τ, s, γ) as
G(t, y; τ, s, γ) := EtgΦ̄(τ, s, γ,M (s)), t ∈ [τ, s], y ∈ Rn. As in [11], suppose that G is the solution of[
AΦ̄G(·, ·; τ, s, γ)

]
= 0 with G(s, y; τ, s, γ) = gΦ̄(τ, s, γ, y) such that ∂tG, ∂yG, ∂yyG have polynomial

growth. Then Ξ̄(1)(τ, t, γ, y) =
∫ T
t G(t, y; τ, s, γ)ds and ∂yΞ̄

(1), ∂yyΞ̄
(1) have polynomial growth too.

In addition, for any Φ ∈ Dad,

[
AΦΞ̄(1)(τ, ·, γ, ·)

]
(t, y) =

∫ T

t

[
AΦG(·, ·; τ, s, γ)

]
(t, y)ds− gΦ̄(τ, t, γ, y).

In particular, by taking Φ = Φ̄, we arrive at
[
AΦ̄Ξ̄(1)(τ, ·, γ, ·)

]
+gΦ̄(τ, ·, γ, ·) = 0 with Ξ̄(1)(τ, T, γ, y) =

0. Simple calculation shows that for τ ∈ [0, T ], γ ∈ Rm, j = 1, 2, the following defined Ξ̄(τ, ·, γ, ·)
satisfies the second PDE in (4.1) associated with Φ̄,

Ξ̄(τ, ·, γ, ·) := Ξ̄(1)(τ, ·, γ, ·) + Ξ̄(2)(τ, ·, γ, ·) + l(τ, γ, Λ̄(τ, γ)). (5.4)

The polynomial growth of Λ̄, l, Ξ̄(1), Ξ̄(2) implies that of Ξ̄. Recalling (4.12), we obtain that Φ̄(·, ·)
is the equilibrium strategy if and only if

min
Φ′∈Dad

{
gΦ′
(
t, t, γ, x

)
− gΦ̄(t, t, γ, x) +

∫ T

t

[
AΦ′G

(
·, ·; t, s, γ

)]
(t, x)ds

+
[
AΦ′Ξ̄(2)(t, ·, γ, ·)

]
(t, x)+∂zl

(
t, γ, z

)∣∣
z=Λ̄(t,γ)

[AΦ′Λ̄](t, x)
}∣∣∣
γ=x=X̄ (t)

=0,
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which is essentially consistent with the main result in [11, Theorem 3.3].

Remark 5.3 We highlight some key differences and contributions of our paper compared with
[11]. First, our framework is more general to cover Example 4.1 while [11] can not. Second, our
developed approach in dealing with the intertemporal cost functional is different from [11] that
follows [5]. The additional assumptions on G, ∂tG, ∂yG, ∂yyG are not needed in our case. Third,
by Theorem 4.2 we can drop the right continuity of coefficients imposed in [11]. For example, as
to mean-variance problem or investment/consumption problem, this implies that the interest rate,
the excess stock return, the stock volatility do not have to be continuous. Fourth, we replace the
abstract notion of “support of distributions” in [11] by the value of equilibrium state process to
bypass the issue in [11, Footnote 6]. As a trade-off, we need the continuity assumption of gΦ, h in
(H5) which is fulfilled for most well-known models.

5.4 Yong [28] model

It is a special form of the cost functional (2.2) with g
(
t, s,X(s), u(s)

)
and h

(
t,X(T )

)
. For τ, t ∈

[0, T ], x ∈ Rn, u ∈ Rm, p ∈ Rn, P ∈ Rn×n, define the Hamiltonian function H, same as [28],
by H(τ, t, x, u, p, P ) := p>b(t, x, u) + 1

2σ(t, x, u)>Pσ(t, x, u) + g(τ, t, x, u). Suppose there exists a
well-defined mapping ψ : [0, T ]2 × Rn × Rn × Rn×n such that

H(τ, t, x, ψ(τ, t, x, p, P ), p, P ) = inf
u∈Rm

H(τ, t, x, u, p, P ) > −∞, (5.5)

and the following PDE admits a classical solution Σ
∂tΣ̄(τ, t, y) +

(
A Σ̄(τ, t, ·)

)Φ̄
(y) + gΦ̄(τ, t, y) = 0, t ∈ [τ, T ], y ∈ Rn,

Σ̄(τ, T, y) = h(τ, y), t ∈ [τ, T ], y ∈ Rn,
Φ̄(t, y) := ψ(t, t, y, Σ̄y(t, t, y), Σ̄yy(t, t, y)), t ∈ [0, T ], y ∈ Rn.

(5.6)

Using this Φ̄, we have ∂tΞ̄(τ, ·, ·) +
(
A Ξ̄(τ, ·, ·)

)Φ̄
(·) + gΦ̄(τ, ·, ·) = 0 with Ξ̄(τ, t, y) = h(τ, y). By

the uniqueness of PDEs, for any τ , Σ̄(τ, ·, ·) = Ξ̄(τ, ·, ·). In terms of (4.6), (5.5) and Φ̄ in (5.6), we
have Hd(t, x, Φ̄(t, x)) = infu∈Rm Hd(t, x, u), with x ∈ Rn. Thanks to (4.13) and (H3), it follows from
Theorem 4.1 that Φ̄ is a closed-loop equilibrium strategy. One can also verify this by Theorem 4.2
with minor modifications. In summary, the PDE in (5.6), the so-called equilibrium HJB equation
in [28], coincides with our PDE for Ξ̄. [28] also directly uses Σ̄ which equals to our auxiliary
equilibrium value function Ξ̄.

There are some essential differences between [28] and this paper. First, the ways of defining the
closed-loop equilibrium strategy are different. In [28] some closed-loop strategy for any partition is
first constructed by sticking together the obtained Nash equilibrium on each small interval and then
the equilibrium strategy is defined as the limit in a subtle way. In contrast, our definition is simpler
and the limit techniques focus on the difference of cost functional, rather than the equilibrium
strategy. Second, the approaches are different. In [28], for any given partition, the multi-person
non-cooperative differential games ideas are first used to obtain the Nash equilibrium by the classical
HJB equation and FBSDEs. Then the equilibrium HJB equation is formally obtained by passing
the size of partition to zero, and finally a rigorous verification is provided under special cases. These
procedures are completely different from ours.

6 Conclusions

In this paper we propose a general framework for time-inconsistent optimal control problems with
random coefficients. We develop a new approach to characterizing the closed-loop equilibrium
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strategies in both integral and pointwise forms and apply the results to solve the mean-variance
problem with state-dependent risk aversion and the investment/consumption problem with non-
exponential discounting. We compare, recover and improve the results of some well-known models
in the literature and highlight the key advantages of our approach and distinct features of our model.
There remain many open questions for time-inconsistent models, including the well-posedness of
the BSPDE (3.1) with a given admissible strategy and that of the BSDE (3.16). We leave these
questions and others for future research.

Acknowledgments. The authors are very grateful to two anonymous reviewers whose constructive
comments and suggestions have helped to improve the paper of the previous version.

A Proofs of theorems

A.1 Proof of Theorem 3.1

Since (Λ̄, Γ̄) satisfies (3.1) with Φ̄, by Itô-Kunita formula to Λ̄(r, X̄ (r)) on [t, T ], and integrability
assumptions (2.5), (3.4), we have EtX̄ (T ) = Λ̄(t, X̄ (t)). Because (Ξ̄, ∆̄) satisfies (3.1) with Φ̄, by
Itô-Kunita formula to Ξ̄(t, r, X̄ (t),X ε(r)) on [t + ε, T ], and relevant integrability assumptions in
(2.5), (3.4), (3.5),

Ξ̄(t, t+ ε, X̄ (t),X ε(t+ ε))

= Et+ε
[
h(t, X̄ (t),X ε(T ),EtX̄ (T )) +

∫ T

t+ε
gΦ̄(t, s, X̄ (t),X ε(s))ds

]
.

(A.1)

Similarly, one obtains (A.1) with X ε(t+ ε) replaced by X̄ (t+ ε).
Given Φε ∈ Sad, and the associated Θ0 in (3.7),

J(Φε; t, X̄ (t)) = Et
[ ∫ t+ε

t
gΦ′
(
t, s, X̄ (t),X ε(s)

)
ds+ Θ0(t, t+ ε, X̄ (t),X ε(t+ ε))

]
.

Observe that Φε(·, x) = Φ̄(·, x), X ε(·) = X̄ t+ε,X ε(t+ε)(·) on [t+ ε, T ], and (A.1), we have

Θ0(t, t+ ε, X̄ (t),X ε(t+ ε))

= Et+ε
∫ T

t+ε
gΦ̄
(
t, s, X̄ (t),X ε(s)

)
ds+ Et+ε

[
H(t, ε)

]
Et
[
X ε(T )−X (T )

]
+Et+εh

(
t, X̄ (t),X ε(T ),EtX̄ (T )

)
= Et+ε

[
H(t, ε)

]
Et
[
X ε(T )− X̄ (T )

]
+ Ξ̄(t, t+ ε, X̄ (t),X ε(t+ ε)),

(A.2)

where H(t, ε) is defined in (3.3), and all the terms are well-defined due to the integrability in (2.5)
and (3.5). Similar as the above, we have

J(Φ̄; t, X̄ (t)) = Et
[ ∫ t+ε

t
gΦ̄
(
t, s, X̄ (t), X̄ (s)

)
ds+ Ξ̄(t, t+ ε, X̄ (t), X̄ (t+ ε))

]
.

As a result, we have

J(Φε; t, X̄ (t))− J(Φ̄; t, X̄ (t))

= Et
[ ∫ t+ε

t

(
gΦ′
(
t, s, X̄ (t),X ε(s)

)
− gΦ̄

(
t, s, X̄ (t), X̄ (s)

))
ds
]

+Et
[
H(t, ε)Et

[
X ε(T )− X̄ (T )

]]
+Et

[
Ξ̄(t, t+ ε, X̄ (t),X ε(t+ ε))− Ξ̄(t, t+ ε, X̄ (t), X̄ (t+ ε))

]
.

(A.3)
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By BSPDEs (3.1), (H2), the notations in (3.2), (3.3), and the well-known Itô-Kunita formula, we
derive Et

[
Λ̄(t, X̄ (t))− Λ̄(t+ ε, X̄ (t+ ε))

]
= 0 and

Et
[
Λ̄(t+ ε,Xε(t+ ε))− Λ̄(t,X ε(t))

]
= Et

∫ t+ε

t
δG1(r,X ε(r))dr.

Here the stochastic integral disappear due to (3.4). Recall that X̄ (t) = X ε(t), we thus have

Et
[
X ε(T )− X̄ (T )

]
= Et

∫ t+ε

t
δG1(r,X ε(r))dr. (A.4)

As for Ξ̄, using BSPDEs (3.1), (H2), the notations in (3.2), (3.3), and the Itô-Kunita formula, we
derive that

Et
[
Ξ̄(t, t+ ε, X̄ (t),X ε(t+ ε))− Ξ̄(t, t, X̄ (t), X̄ (t))

]
= Et

[ ∫ t+ε

t
δG2(t, r, X̄ (t),X ε(r))dr −

∫ t+ε

t
gΦ̄
(
t, r, X̄ (t),X ε(r)

)
dr
]
,

Et
[
Ξ̄(t, t+ ε, X̄ (t), X̄ (t+ ε))− Ξ̄(t, t, X̄ (t), X̄ (t))

]
= −Et

∫ t+ε

t
gΦ̄
(
t, r, X̄ (t), X̄ (r)

)
dr.

Then conclusion (3.6) follows from (A.3), (A.4), Definition 2.2 and

Et
[
Ξ̄(t, t+ ε, X̄ (t),X ε(t+ ε))− Ξ̄(t, t+ ε, X̄ (t), X̄ (t+ ε))

]
= Et

[ ∫ t+ε

t

(
δḠ2(t, r, X̄ (t),X ε(r))−gΦ̄

(
t, r, X̄ (t),X ε(r)

)
+gΦ̄

(
t, r, X̄ (t), X̄ (r)

))
dr
]
.

The other conclusion is easy to see.

A.2 Proof of Theorem 3.2

By the definition of (Φ̄,Φ′) in (3.11), we see that all the conditions in (H2) are satisfied under
(H3). For notational simplicity, given mapping f, g, denote by Kf,g := Bf + Dg. Note that
δG1(r,X ε(r)) = K

λ0,λ̃0
(r)v, and

δG2(r,X ε(r)) =
[
2X ε(r)K

λ2,λ̃2
(r) + K

λ3,λ̃3
(r)−R(X̄ (t))K

λ0,λ̃0
(r)
]
v

+ 2λ2(r)D2(r)
[
2φ̄(r)X ε(r)v + v2 + 2ϕ̄(r)v

]
.

As a result, (3.6) can be rewritten as

J(Φε; t,X ε(t))− J(Φ̄; t, X̄ (t))

= Et
∫ t+ε

t

(
H(t, ε)K

λ0,λ̃0
(r) + 2X ε(r)K

λ2,λ̃2
(r) + K

λ3,λ̃3
(r)−R(X̄ (t))K

λ0,λ̃0
(r)
)
vdr

+Et
∫ t+ε

t
λ2(r)D2(r)

(
2φ̄(r)X ε(r)v + v2 + 2ϕ̄(r)v

)
dr.
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To show the limiting condition for Φ̄, for any sequence εn satisfying lim
n→∞

εn = 0, we assume that

X̄ εn(·), X̄ (·) satisfy: for any t ∈ [0, T ), t+ εn ≤ T , p > 2,
Et sup

s∈[t,t+εn]

∣∣X εn(s)− X̄ (s)
∣∣p ≤ Kε p2n ,

Et sup
s∈[t+εn,T ]

∣∣X εn(s)− X̄ (s)
∣∣p ≤ KEτ

∣∣X εn(t+ εn)− X̄ (t+ εn)
∣∣p. (A.5)

Moreover, for (f, f̃) := (λ0, λ̃0), (λ2X̄ , λ̃2X̄ ), (λ3, λ̃3), suppose
lim
εn→0

1

εn
Et
[ ∫ t+εn

t
K
f,f̃

(r)dr
]

= K
f,f̃

(t),

lim
εn→0

1

εn
Et
[ ∫ t+εn

t
λ2(r)

(
2D2(r)

[
φ̄(r)X̄ (r) + ϕ̄(r)

]
v +D2(r)v2

)
dr
]

= λ2(t)
(

2D2(t)
[
φ̄(t)X̄ (t) + ϕ̄(t)

]
v +D2(t)v2

)
.

(A.6)

As a result of (A.5), we have

lim
εn→0

H(t, εn) = −2EtX̄ (T ) = −2Λ̄(t, X̄ (t)) = −2λ0(t)X̄ (t)− 2λ1(t). (A.7)

In addition,

Et
∫ t+εn

t

∣∣K
λ2,λ̃2

(r)
∣∣∣∣X εn(r)− X̄ (r)

∣∣dr ≤ Kεn[Et ∫ t+εn

t

∣∣K
λ2,λ̃2

(r)
∣∣2dr] 1

2
. (A.8)

Similarly,

lim
εn→0

1

εn
Et
∫ t+εn

t
λ2(r)D2(r)φ̄(r)

[
X εn(r)− X̄ (r)

]
dr = 0. (A.9)

We discuss the two cases of R(·). If R(·) ≡ R is a constant, then from (A.7), (A.8), (A.9), (A.6),
we have

lim
εn→0

J(Φεn ; t, X̄ (t))− J(Φ̄; t, X̄ (t))

εn

=
[
2X̄ (t)

{
K
λ2,λ̃2

(t)− λ0(t)K
λ0,λ̃0

(t) +D2(t)φ̄(t)λ2(t)
}

+ K
λ3,λ̃3

(t)

−RK
λ0,λ̃0

(t)− 2λ1(t)K
λ0,λ̃0

(t) + 2D2(t)ϕ̄(t)λ2(t)
]
v +D2(t)λ2(t)v2.

The first part of Theorem 3.2 is easy to see.
If R(γ) = Rγ with constant R > 0, ϕ̄ = 0. Then (λ1, λ̃1, λ3, λ̃3) = (0, 0, 0, 0),

lim
εn→0

J(Φεn ; t, X̄ (t))− J(Φ̄; t, X̄ (t))

εn

= 2X̄ (t)
{
K
λ2,λ̃2

(t)−λ0(t)K
λ0,λ̃0

(t)+D2(t)φ̄(t)λ2(t)− 1

2
RK

λ0,λ̃0
(t)
}
v+D2(t)λ2(t)v2.

The second part of Theorem 3.2 is easy to see.
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A.3 Proof of Theorem 3.3

After some direct calculations, we know that

Ξ̄(τ, t, y) = Y (τ, t)yβ, ∆̄(τ, t, y) = Ỹ (τ, t)yβ,

satisfies the second BSPDE in (3.1) corresponding to (φ̄1, φ̄2). In addition, under (H6), (H2) holds
naturally. It then follows from Theorem 3.1 that

J(Φεn ; t, X̄ (t))− J(Φ̄; t, X̄ (t))

= Et
∫ t+εn

t

[
X εn(r)

]β{
H1(t, r, v1) + H2(t, r)v2 + H3(t, r)v2

2

}
dr,

where 
H1(t, r, v1) := −ν(t, r)

[
φ̄1(r) + v1

]β
+ ν(t, r)

[
φ̄1(r)

]β − βY (t, r)v1,

H2(t, r) := βY (t, r)B(r) + β(β − 1)Y (t, r)D2(r)φ̄2(r) + βỸ (t, r)D(r),

H3(t, r) :=
β(β − 1)

2
Y (t, r)D2(r).

To present the limiting conditions of (φ̄1, φ̄2), we suppose that
lim
εn→0

Et
∫ t+εn

t

H1(t, r, v1)
[
X εn(r)

]β
εn

dr = H1(t, t, v1)
[
X̄ (t)

]β
,

lim
εn→0

Et
∫ t+εn

t

Hi(t, r)
[
X εn(r)

]β
εn

dr = Hi(t, t)
[
X̄ (t)

]β
, i = 2, 3.

(A.10)

Recall that X εn(·) is solution of (2.4) associated with Φεn . As a result,

lim
εn→0

J(Φεn ; t, X̄ (t))− J(Φ̄; t, X̄ (t))

εn

=
[
X̄ (t)

]β{
H1(t, t, v1) + H2(t, t)v2 + H3(t, t)v2

2

}
.

Therefore, (φ̄1, φ̄2) is equilibrium strategy if and only if for any v1 ≥ 0, v2 ∈ R,

H1(t, t, v1) + H2(t, t)v2 + H3(t, t)v2
2 ≥ 0.

By the definitions of Hi, i = 1, 2, 3, the above is also equivalent with (3.17).

A.4 Proof of Theorem 4.1

Recall that J is the restriction of J and is deterministic. For any t ∈ [0, T ), by (H5) and the DCT,

J(Φε; t, X̄ (t))− J(Φ̄; t, X̄ (t)) =
[
J (Φε; t, y)− J (Φ̄; t, y)

]∣∣∣
y=X̄ (t)

. a.s. (A.11)
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In the remaining part of the proof, let X ε(·), X̄ (·) be the solution of (2.4) associated with
(Φε, t, y), (Φ̄, t, y), respectively. Using the same ideas as in Theorem 3.1, we obtain that

J (Φε; t, y)− J (Φ̄; t, y)

= E
∫ t+ε

t

[
δg(t, s, y,X ε(s)) +

[
EtH ′(t, ε)

]
δG1(s,X ε(s))

+δG2(t, s, y,X ε(s))
]
ds ≡

3∑
i=1

Ri(t, ε),

H ′(t, ε) :=

∫ 1

0
∂zh
(
t, y,X ε(T ), z

)
|z=(1−θ)EtX̄ (T )+θEtX ε(T )dθ.

(A.12)

Observe that EtH ′(t, ε) = EH ′(t, ε) and X ε(r) = X1(r), r ∈ [t, t + ε), where X1(·) ≡ y on [0, t],
and

X1(r) = y +

∫ r

t
bΦ
′
(s,X1(s))ds+

∫ r

t
σΦ′(s,X1(s))dW (s), r ∈ [t, T ].

Since Φ̄, Φ′ ∈ Dad, for any k > 2, there exists constant K such that
E sup
r∈[t,t+ε]

∣∣X1(r)− y
∣∣k ≤ K · ε k2−1E

∫ t+ε

t

[
1 + |X1(s)|

]k
ds,

E sup
r∈[t,t+ε]

∣∣X̄ (r)− y
∣∣k ≤ K · ε k2−1E

∫ t+ε

t

[
1 + |X̄ (s)|

]k
ds.

(A.13)

For the term involving δg in (A.12), let us denote it by R1(t, ε). Since Φ′ ∈ Dad, Φ̄ ∈ Dad,
δg(t, ·, y,X1(·)) is right-continuous in [t, t+ ε], and

lim
ε↓0

sup
s∈[t,t+ε]

∣∣δg(t, s, y,X1(s)
)
− δg

(
t, t, y, y

)∣∣ = 0. a.s.

E sup
s∈[t,t+ε]

∣∣δg(t, s, y,X1(s))− δg(t, t, y, y)
∣∣ <∞. a.s.

Using the DCT, we see that

lim
ε→0

R1(t, ε)

ε
= gΦ′(t, t, y, y)− gΦ̄(t, t, y, y). (A.14)

We continue to look at the term involving H ′(t, ε) on the right hand of (A.12),

R2(t, ε) := EH ′(t, ε)E
∫ t+ε

t
δG1(r,X1(r))dr

where for r ∈ [t, t + ε], δG1(r, x) is defined in (3.3). We first treat H ′(t, ε). From the polynomial
growth condition of ∂yh in (H5), there exists k > 2 and K > 0 such that

|H ′(t, ε)| ≤ K
[
1 +

∣∣y|k + |X̄ (T )|k + |X ε(T )− X̄ (T )|k
]
.

Since Φ̄ ∈ Dad, we have x 7→ bΦ̄(s, x), x 7→ σΦ̄(s, x) are Lipschitz, linear growth, and

E|X ε(T )− X̄ (T )|k ≤ KE
∣∣X ε(t+ ε)− X̄ (t+ ε)

∣∣k ≤ Kε k2−1, k > 2,

23



where the second inequality comes from (A.13). By the continuity of (x, y) 7→ ∂yh(t, γ, x, y), the
DCT, and the polynomial growth of ∂yΠ,

lim
ε→0

EH ′(t, ε) = E
[
∂zh
(
t, y, X̄ (T ), z

)∣∣
z=Et[X̄ (T )]

]
= Π̄(t, t, y, y). (A.15)

Since Φ′, Φ ∈ Dad, we have that bΦ
′
, σΦ′ , bΦ̄, σΦ̄ are linear growth. Using the polynomial growth

condition of ∂xΛ̄, ∂xxΛ̄, there exists k ∈ N such that

sup
s∈[t,t+ε]

∣∣δG1(s,X1(s))
∣∣ ≤ K[1 + sup

s∈[t,T ]
|X1(s)|k

]
. (A.16)

By (H5) and Φ′ ∈ Dad, we observe that Λ̄ ∈ C1,2, t 7→ bΦ
′
(t, x), σΦ′(t, x), bΦ̄(t, x)), σΦ̄(t, x) are

right-continuous for fixed x ∈ Rn, and thus

lim
ε↓0

sup
s∈[t,t+ε]

∣∣δG1(s,X1(s))− δG1(t, y)
∣∣ = 0.

Hence by the DCT, limε→0 E
∫ t+ε
t

δG1(r,X1(r))
ε dr = δG1(t, y). To summarize the above arguments,

recalling (3.2),

lim
ε→0

R2(t, ε)

ε
= Π̄(t, t, y, y)

[(
A Λ̄(t, ·)

)Φ′
(y)−

(
A Λ̄(t, ·)

)Φ̄
(y)
]
. (A.17)

We treat the remaining term in (A.12) with δG2(t, ·, y, ·) in (3.3). From the polynomial growth of
∂yΞ̄, ∂yyΞ̄, the linear growth of bΦ̄, σΦ̄, for some k ≥ 2,

E
[

sup
s∈[t,T ]

∣∣δG2(t, r, y,X1(r))
∣∣] ≤ KE

[
sup
s∈[t,T ]

(
1 + |X1(s)|k

)
+ |y|k

]
<∞. a.s.

Due to Φ̄′ ∈ Dad and (H5), for fixed t ∈ [0, T ], x ∈ Rn, we see that ∂zzΞ̄(t, ·, x, ·), ∂zΞ̄(t, ·, x, ·),
bΦ
′
(·, x), σΦ′(·, x) are right-continuous at point t and thus

lim
ε→0

sup
s∈[t,t+ε]

∣∣δG2(t, r, y,X1(r))− δG2(t, t, y, y)
∣∣ = 0. a.s.

Hence by the DCT,

lim
ε→0

E
∫ t+ε

t

δG2(t, r, y,X1(r))

ε
dr = δG2(t, t, y, y). (A.18)

To sum up the above arguments, from (A.11), (A.12), (A.14), (A.17), (A.18), we obtain that Φ̄ is
closed-loop equilibrium strategy if and only if for any t ∈ [0, T ),

gΦ′(t, t, y, y)− gΦ̄(t, t, y, y) + Π̄(t, t, y, y)
[(

A Λ̄(t, ·)
)Φ′

(y)−
(
A Λ̄(t, ·)

)Φ̄
(y)
]

+
(
A Ξ̄(t, t, y, ·)

)Φ′
(y)−

(
A Ξ̄(t, t, y, ·)

)Φ̄
(y) ≥ 0.

Therefore, it is easy to see the above (4.8).
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A.5 Proof of Theorem 4.2

First under (H6), we point out that (H2) holds associated with the given Φ̄ and any Φ′ ∈ D0
ad.

From (3.6), we have

J(Φε; t, X̄ (t))− J(Φ̄; t, X̄ (t))

= Et
∫ t+ε

t

[
δg(t, s, X̄ (t),X ε(s)) +

[
EtH(t, ε)

]
δG1(s,X ε(s))

+δG2(t, s, X̄ (t),X ε(s))
]
ds ≡

3∑
i=1

Ri(t, ε).

(A.19)

As to R1(t, ε), we observe that for s ∈ [t, t+ ε],∣∣gΦ′(t, s, X̄ (t), X1(s))− gΦ′(s, s, X̄ (s), X̄ (s))
∣∣

≤ K sup
s∈[t,t+ε]

[
1+|X̄ (t)|+|X̄ (s)|+|X1(s)|

]k[|X1(s)−X̄ (s)|+ε+|X̄ (t)−X̄ (s)|
]
.

Using (A.13) with E, y replaced by Et, X̄ (t), for k > 2, and any {εn} tending to 0, one has

Et
∫ t+εn

t

∣∣gΦ′(t, s, X̄ (t), X1(s))− gΦ′(s, s, X̄ (s), X̄ (s))
∣∣

εn
ds→ 0.

Similarly, with k > 2, as εn → 0,

Et
∫ t+εn

t

∣∣gΦ̄(t, s, X̄ (t), X1(s))− gΦ̄(s, s, X̄ (s), X̄ (s))
∣∣

εn
ds→ 0.

Therefore, we see that

lim
εn→0

R1(t, εn)

εn
= lim

εn→0
Et
∫ t+εn

t

δg(s, s, X̄ (s), X̄ (s))

εn
ds. (A.20)

To treat R2(t, εn), we first look at δG1(·, ·). By (H6), for s ∈ [t, t+ εn],∣∣δG1(s,X1(s))− δG1(s, X̄ (s))
∣∣

≤ K sup
s∈[t,t+εn]

[
1 + |X̄ (s)|+ |X1(s)|

]k[|X1(s)− X̄ (t)|+ |X̄ (t)− X̄ (s)|
]
,

from which

lim
εn→0

Et
∫ t+εn

t

δG1(s,X1(s))

εn
ds = lim

εn→0
Et
∫ t+εn

t

δG1(s, X̄ (s))

εn
ds. (A.21)

Similar as the above (A.15), we also have

lim
εn→0

EtH(t, εn) = Et
[
∂zh
(
t, X̄ (t), X̄ (T ), z

)∣∣
z=Et[X̄ (T )]

]
= Π̄(t, t, X̄ (t), X̄ (t)).

By the continuity of X̄ (·) and the requirements of Π̄ in (H6), we have

lim
εn→0

Et sup
s∈[t,t+εn]

∣∣∣Π̄(t, t, X̄ (t), X̄ (t))− Π̄(s, s, X̄ (s), X̄ (s))
∣∣∣2 = 0.
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From the above (A.16), there exists k ∈ N such that

Et sup
s∈[t,t+εn]

∣∣δG1(s, X̄ (s))
∣∣2 ≤ K[1 + Et sup

s∈[t,T ]
|X̄ (s)|k

]
<∞. a.s.

As a result,

Π̄(t, t, X̄ (t), X̄ (t)) lim
εn→0

Et
∫ t+εn

t

δG1(s, X̄ (s))

εn
ds

= lim
εn→0

Et
∫ t+εn

t

Π̄(s, s, X̄ (s), X̄ (s))δG1(s, X̄ (s))

εn
ds.

(A.22)

To treat R3(t, εn), it follows from the assumptions in (H6) that∣∣δG2(t, s, X̄ (t), X1(s))− δG2(s, s, X̄ (s), X̄ (s))
∣∣

≤ K
[
1+|X̄ (t)|+|X̄ (s)|+|X1(s)|

]k[|X1(s)−X̄ (s)|+εn+|X̄ (t)−X̄ (s)|
]
.

Consequently, we arrive at

lim
εn→0

R3(t, εn)

εn
= lim

εn→0
Et
∫ t+εn

t

δG2(s, s, X̄ (s), X̄ (s))

εn
ds. (A.23)

To summarize, by (A.19), (A.20), (A.21), (A.22), (A.23), we see that

lim
εn→0

J(Φεn ; t, X̄ (t))− J(Φ̄; t, X̄ (t))

εn

= lim
εn→0

Et
∫ t+εn

t

Hd(s, X̄ (s),Φ′(s, X̄ (s)))−Hd(s, X̄ (s), Φ̄(s, X̄ (s)))

εn
ds

(A.24)

On the other hand, by the integrability of X̄ (·) and (H6),

E
∫ T

0

∣∣Hd(s, X̄ (s),Φ′(s, X̄ (s)))−Hd(s, X̄ (s), Φ̄(s, X̄ (s)))
∣∣2ds <∞.

Using the Lemma 3.5 of [25], for almost all t ∈ [0, T ], there exists a subsequence, still denoted by
{εn}, which may depend on t, such that

lim
εn→0

Et
∫ t+εn

t

Hd(s, X̄ (s),Φ′(s, X̄ (s)))−Hd(s, X̄ (s), Φ̄(s, X̄ (s)))

εn
ds

= Hd(t, X̄ (t),Φ′(t, X̄ (t)))−Hd(t, X̄ (t), Φ̄(t, X̄ (t)))

To sum up the above arguments, if Φ̄ is a closed-loop equilibrium strategy, then we obtain (4.8) for
almost all t ∈ [0, T ]. Conversely, if (4.8) for almost all t ∈ [0, T ], then it follows from (A.24) that Φ̄
is a closed-loop equilibrium strategy.
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