
Dynamic Convex Duality in Constrained Utility

Maximization

Yusong Li∗ and Harry Zheng†

Abstract

In this paper, we study a constrained utility maximization problem following

the convex duality approach. After formulating the primal and dual problems,

we construct the necessary and sufficient conditions for both the primal and dual

problems in terms of forward and backward stochastic differential equations (FBS-

DEs) plus some additional conditions. Such formulation then allows us to explicitly

characterize the primal optimal control as a function of the adjoint process coming

from the dual FBSDEs in a dynamic fashion and vice versa. We also find that

the optimal wealth process coincides with the adjoint process of the dual problem

and vice versa. Finally we solve three constrained utility maximization problems,

which contrasts the simplicity of the duality approach we propose and the technical

complexity of solving the primal problem directly.
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1 Introduction

One of the most commonly studied problems in mathematical economics is the optimal

investment problem. Such problems have their goal of constructing the investment strat-

egy that maximizes the agent’s expected utility of the wealth at the end of the planning

horizon. Here we assume that trading strategies take values in a closed convex set which

is general enough to include short selling, borrowing, and other trading restrictions, see

[13].

There has been extensive research in dynamic portfolio optimization. The stochastic

control approach was first introduced in the two landmark papers of Merton [17, 18], which

was wedded to the Hamilton-Jacobi-Bellman equation and the requirement of an under-

lying Markov state process. The optimal investment problem in a non-Markov setting

was solved using the martingale method by, among others, Pliska [21], Cox and Huang
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[4, 5], Karatzas et al. [11]. The stochastic duality theory of Bismut [1] was first employed

to study the constrained (no-short-selling) optimal investment problem in Shreve and Xu

[25]. The effectiveness of the convex duality method was later adopted to tackle more

general incomplete market models in the works of, among others, Karatzas et al. [12],

Pearson and He [7, 8], Cvitanić and Karatzas [6]. The spirit of this approach is to suit-

ably embed the constrained problem in an appropriate family of unconstrained ones and

find a member of this family for which the corresponding optimal policy satisfies the con-

straints. However, despite the evident power of this approach, it is nevertheless true that

obtaining the corresponding dual problem remains a challenge as it often involves clever

experimentation and subsequently show to work as desired. To bring some transparency

to the dual problem, Labbé and Heunis [16] established a simple synthetic method of

arriving at a dual functional, bypassing the need to formulate a fictitious market. It

often happens that the dual problem is much nicer than the primal problem in the sense

that it is easier to show the existence of a solution and in some cases explicitly obtain a

solution to the dual problem than it is to do likewise for the primal problem.

In this paper, we first follow [14] to convert the original primal problem into an

equivalent dual problem by the supermartingale approach, then progress, following the

approach in [9, 22], to simultaneously characterise the necessary and sufficient optimality

conditions for both the primal and dual problems as systems of forward and backward

stochastic differential equations (FBSDEs) coupled with additional optimality conditions.

Such formulation allows us to characterize the primal optimal control as a function of

the adjoint process coming from the dual FBSDEs in a dynamic fashion and vice versa.

Moreover, we also find that the optimal wealth process coincides with the adjoint process

of the dual problem and vice versa. To the best of our knowledge, this is the first time

the dynamic relations of the primal and dual problems have been explicitly established

for constrained utility maximization problems under a non-Markov setting. After estab-

lishing the optimality conditions and the relations for the primal and dual problems, we

solve three constrained utility maximization problems with both Markov and non-Markov

setups. Instead of tackling the primal problem directly, we start from the dual problem

and then construct the optimal solution to the primal problem from that to the dual

problem. All examples contrast the simplicity of the duality approach we propose and

the technical complexity of solving the primal problem directly.

The rest of the paper is organised as follows. In Section 2 we set up the market model

and formulate the primal and dual problems following the approach in [14]. In Section 3

we state and prove the main results of necessary and sufficient optimality conditions for

the primal and dual problems and their connections in a dynamic fashion. In Section 4

we give three examples to demonstrate the effectiveness of the dynamic duality approach

in solving constrained utility maximization problems. Section 5 concludes the paper.

2 Market Model and Primal and Dual Problems

Let (Ω,F ,P) be a complete probability space on which is defined a RN -valued standard

Brownian motion {W (t), t ∈ [0, T ]} with T > 0 denoting a fixed terminal time. Let
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{Ft, t ∈ [0, T ]} be the standard filtration induced by W , where

Ft , σ{W (s), s ∈ [0, t]}
∨
N (P ), t ∈ [0, T ],

in which N (P ) denotes the collection of all P-null events in (Ω,F ,P). Denote by F∗ the

σ-algebra of Ft progressively measurable sets on Ω × [0, T ]. For any stochastic process

v : Ω × [0, T ] → Rm, m ∈ N+, we write v ∈ F∗ to indicate v is F∗ measurable. We

introduce the following notation:

Hp(0, T ;Rm) ,

{
ξ : Ω× [0, T ]→ Rm | ξ ∈ F∗, E

[∫ T

0

|ξ(t)|pdt
]
<∞

}
,

where p ≥ 1.

Consider a market consisting of a bank account with price {S0(t)} given by

dS0(t) = r(t)S0(t)dt, 0 ≤ t ≤ T, S0(0) = 1, (1)

and N stocks with prices {Sn(t)}, n = 1, · · · , N , given by

dSn(t) = Sn(t){bn(t)dt+
N∑
m=1

σnm(t)dWm(t)}, 0 ≤ t ≤ T, Sn(0) > 0. (2)

Throughout the paper we assume that the interest rate {r(t)}, the appreciation rates

on stocks denoted by entries of the RN -valued process {b(t)} and the volatility rates

denoted by entries of the N × N matrix valued process {σ(t)} are uniformly bounded

{Ft}-progressively measurable scalar processes on Ω× [0, T ]. We also assume that there

exists a positive constant k such that

zᵀσ(t)σᵀ(t)z ≥ k|z|2

for all (z, ω, t) ∈ RN × Ω× [0, T ], where zᵀ is the transpose of z. According to [25, (2.4)

and (2.5)], the strong non-degeneracy condition above ensures that matrices σ(t), σᵀ(t)

are invertible and uniformly bounded.

Consider a small investor with initial wealth x0 > 0 and a self-financing strategy.

Define the set of admissible portfolio strategies by

A :=
{
π ∈ H2(0, T ;RN) : π(t) ∈ K for t ∈ [0, T ] a.e.

}
,

where K ⊆ RN is a closed convex set with 0 ∈ K and π is a portfolio process with each

entry πn(t) defined as the fraction of the wealth invested in the stock n for n = 1, . . . , N at

time t. Given any π ∈ A, the investor’s total wealth Xπ satisfies the following dynamics{
dXπ(t) = Xπ(t){[r(t) + πᵀ(t)σ(t)θ(t)]dt+ πᵀ(t)σ(t)dW (t)}, 0 ≤ t ≤ T,

Xπ(0) = x0,
(3)

where θ(t) := σ−1(t) [b(t)− r(t)1] is the market price of risk at time t and is uniformly

bounded and 1 ∈ RN has all unit entries. A pair (Xπ, π) is admissible if π ∈ A and Xπ

satisfies (3) with control process π.
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Remark 1. Here we define the nth entry of π(t) as the fraction of small investor’s wealth

invested in the stock n at time t. Such setup ensures the positivity of the wealth process

Xπ, but surrenders the Lipschitz property of the coefficients in both X and π. Hence, the

stochastic maximum principle developed in [3, 19] are not directly applicable in our case.

Let U : [0,∞)→ R be a given utility function that is twice continuously differentiable,

strictly increasing, strictly concave and satisfies the following conditions:

U(0) , lim
x↘0

U(x) > −∞, lim
x↘0

U ′(x) =∞, lim
x→∞

U ′(x) = 0.

Define the value of the expected utility maximization problem as

V , sup
π∈A

E [U (Xπ(T ))] . (4)

To avoid trivialities, we assume that

−∞ < V < +∞.

Any π̂ ∈ A satisfying E
[
U
(
X π̂(T )

)]
= V is called the optimal control (portfolio), the

corresponding X π̂ is called the optimal state (wealth) process.

In the rest of this section, we formulate the dual problem following the approach in

[14]. Define the dual function of U by

Ũ(y) , sup
x>0

(U(x)− xy).

It is clear that Ũ(y) = ∞ if y < 0 and Ũ is twice continuously differentiable, strictly

decreasing and strictly convex on (0,∞). The dual process Y is a strictly positive process

and has the following semimartingale decomposition{
dY (t) = Y (t){α(t)dt+ βᵀ(t)dW (t)}, 0 ≤ t ≤ T,

Y (0) = y,
(5)

where processes α and β are chosen such that XπY is a supermartingale for all admissible

control processes π ∈ A. Using Ito’s lemma, we have

d(Xπ(t)Y (t)) = Xπ(t)Y (t){[r+πᵀ(t)σ(t)θ(t)+α(t)+πᵀ(t)σ(t)β(t)]dt+[πᵀ(t)σ(t)+βᵀ(t)]dW (t)}.

To make XπY a supermartingale, we must have

r + πᵀσ(t)θ(t) + α(t) + πᵀσ(t)β(t) ≤ 0

for all π ∈ K a.s. for a.e. t ∈ [0, T ], which is equivalent to

r + α(t) + δK(−σ(t)(θ(t) + β(t))) ≤ 0,

where δK(·) is the support function of the set −K, defined by

δK(z) , sup
π∈K
{−πᵀz}, z ∈ RN .
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Define v(t) , −σ(t)(θ(t) + β(t)). We have

α(t) ≤ −(r + δK(v(t))), β(t) = −(σ−1(t)v(t) + θ(t)). (6)

From the definition of the dual function, we have

E[U(Xπ(T ))] ≤ E[Ũ(Y (T ))] + E[Xπ(T )Y (T )] ≤ E[Ũ(Y (T ))] + x0y.

The second inequality above is due to XπY being a supermartingale. This leads to

sup
π
E[U(Xπ(T ))] ≤ inf

y,α,v
(E[Ũ(Y (T ))] + x0y).

For any fixed y and v, the solution Y of the SDE (5) satisfying conditions (6) is bounded

above by the process Y (y,v) satisfying the SDE{
dY (y,v)(t) = −Y (y,v)(t)

{
[r(t) + δK(v(t))]dt+ [θ(t) + σ−1(t)v(t)]

ᵀ
dW (t)

}
, 0 ≤ t ≤ T,

Y (y,v)(0) = y,
(7)

that is, Y (t) ≤ Y (y,v)(t) a.s. for 0 ≤ t ≤ T . Since Ũ is a strictly decreasing function, we

have E[Ũ(Y (T ))] ≥ E[Ũ(Y (y,v)(T ))] for any fixed y and v, which implies the optimal α

is determined by α(t) = −(r + δK(v(t))). The process Y (y,v) is a dual process and v ∈ D
is a dual control process, where the set D is defined by

D ,

{
v , Ω× [0, T ]→ RN |v ∈ F∗ and

∫ T

0

[
δK(v(t)) + |v(t)|2

]
dt <∞ a.s.

}
.

If K is a closed convex cone, then δK(z) = 0 if z ∈ K̃ and ∞ otherwise, where K̃ = {z :

zᵀπ ≥ 0, ∀π ∈ K} is the positive polar cone of K. In that case, the dual process Y (y,v)

satisfies the SDE{
dY (y,v)(t) = −Y (y,v)(t)

{
r(t)dt+ [θ(t) + σ−1(t)v(t)]

ᵀ
dW (t)

}
, 0 ≤ t ≤ T,

Y (y,v)(0) = y,
(8)

where v is square integrable and v(t) ∈ K̃ a.s. for a.e. t ∈ [0, T ].

The optimal value of the dual minimization problem is defined by

Ṽ , inf
(y,v)∈(0,∞)×D

(
x0y + E

[
Ũ(Y (y,v)(T ))

])
. (9)

Any (ŷ, v̂) ∈ (0,∞)×D satisfying x0ŷ+E
[
Ũ(Y (ŷ,v̂)(T ))

]
= Ṽ is called the optimal dual

control and the corresponding Y (ŷ,v̂) is called the optimal dual process. Dual problem (9)

can be naturally solved in two steps: first, fix y and solve

ũ(y) , inf
v∈D

E
[
Ũ(Y (y,v)(T ))

]
,

and, second, solve

Ṽ = inf
y>0

(x0y + ũ(y)) .
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If coefficients r(t), b(t), σ(t) in (1) and (2) are deterministic, then the wealth process Xπ

is a Markov controlled process and the stochastic optimal control theory may be used to

solve the first stage problem. We illustrate this approach with two examples in Section 4.

In this paper, instead of applying the convex duality method of [1], we use the ma-

chinery of the stochastic maximum principle and BSDEs to derive the necessary and

sufficient conditions of the primal and dual problems separately. After establishing the

optimality conditions as two systems of FBSDEs, we explicitly characterise the primal

optimal solution as a function of the adjoint process coming from the dual FBSDEs in a

dynamic fashion and vice versa.

Remark 2. We may also derive the dual process Y and the dual problem following the

approach in [16]. The key steps are to first transform the primal dynamic constrained

problem (4) into a static unconstrained optimization, then to use convex analysis to find

its static dual optimization, and finally to construct the dual dynamic constrained problem

(9). We briefly outline the first step to illustrate the idea.

Given any continuous {Ft} semimartingale process X, we write X ∈ S , R ×
H1(0, T ;R)×H2(0, T ;RN) if

X(t) = X0 +

∫ t

0

Ẋ(s)ds+

∫ t

0

Λᵀ
X(s)dW (s), 0 ≤ t ≤ T,

where (X0, Ẋ,ΛX) ∈ S. Define the following penalty functions:

l0(x) ,

{
0, if x = x0,

+∞, otherwise,

lT (x) ,

{
− U(x), if x ∈ (0,∞),

+∞, otherwise,

L(t, x, v, ξ) ,

{
0, if x > 0, v = xr(t) + ξᵀθ(t) and x−1[σᵀ(t)]−1ξ ∈ K,
+∞, otherwise.

Then problem (4) is equivalent to

inf
X∈S

(
l0(X(0)) + E [lT (X(T ))] + E

[ ∫ T

0

L(t,X(t), Ẋ(t),ΛX(t))dt
])
. (10)

Penalty functions l0 and L ensure only those X ∈ S satisfying X(0) = x0 and (3) are

used for optimization. Problem (10) is a static convex minimization problem in a Banach

space S. We can then use Fenchel conjugate functions of l0, lT , L to find its static dual

optimization and finally recover the dual process Y in (7) and the dual problem (9), see

[16] for details.

For utility maximization with Xπ being a wealth process, our way of deriving the dual

problem is easier and more straightforward than the alternative method, however, the

approach of [16] is more general and may help derive dual problems for more complicated

problems.
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3 Main Results

In this section, we derive the necessary and sufficient optimality conditions for the primal

and dual problems and show the dynamic connection between the optimal solutions

through their corresponding FBSDEs.

Given an admissible control π ∈ A and a solution Xπ of the SDE (3), the associated

adjoint equation is the following linear BSDE in the unknown processes p1 ∈ H2(0, T ;R)

and q1 ∈ H2(0, T ;RN):{
dp1(t) = −{[r(t) + πᵀ(t)σ(t)θ(t)] p1(t) + qᵀ1(t)σᵀ(t)π(t)} dt+ qᵀ1(t)dW (t),

p1(T ) = −U ′(Xπ(T )).
(11)

Remark 3. The BSDE (11) is from the stochastic maximum principle (SMP). Since

coefficients of the SDE (3) are not Lipschitz continuous due to unboundedness of X and

π and utility function U is not Lipschitz continuous and is only defined on the positive

real line, we cannot directly apply the standard SMP in [3, 19]. However, we can formally

apply the SMP to find the form of BSDE for adjoint processes and then prove it rigorously.

Define the Hamiltonian function

H(t, x, π, p1, q1) , x[r(t) + πᵀσ(t)θ(t)]p1 + xπᵀσ(t)q1.

Then the adjoint process is a pair of processes (p1, q1) satisfying the following BSDE

dp1(t) = − ∂

∂x
H(t,Xπ(t), π(t), p1(t), q1(t))dt+ qᵀ1(t)dW (t)

with the terminal condition p1(T ) = −U ′(Xπ(T )), which is the BSDE (11).

Assumption 4. The utility function U satisfies the following conditions:

(i) x→ xU ′(x) is non-decreasing on (0,∞).

(ii) There exist β ∈ (0, 1) and γ ∈ (1,∞) such that βU ′(x) ≥ U ′(γx) for all x ∈ (0,∞).

Moreover, for all π ∈ A and corresponding Xπ satisfying the SDE (3), E[|U(Xπ(T ))|] <
∞ and E

[
(U ′(Xπ(T ))Xπ(T ))2

]
<∞.

Remark 5. Assumption 4 corresponds to [13, Remark 3.4.4]. Assumption 4(i) implies

that the Arrow-Pratt measure of relative risk aversion R(x) , −xU ′′(x)/U ′(x) does not

exceed 1 and z → Ũ(ez) is convex when Ũ is the dual function of U . Assumption 4(ii) is

equivalent to Ũ ′(βy) ≥ γŨ ′(y) for all y ∈ (0,∞).

Lemma 6. Let π̂ ∈ A and the strictly positive, adapted process X π̂ satisfy the SDE (3).

Then there exists a unique solution (p̂1, q̂1) to the adjoint BSDE (11).

Proof. According to Assumption 4, the process defined as

α(t) , E
[
−X π̂(T )U ′(X π̂(T )

∣∣Ft] , t ∈ [0, T ]
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is square integrable. In addition, it is the unique solution of the BSDE

α(t) = −X π̂(T )U ′(X π̂(T ))−
∫ T

t

βᵀ(t)dW (t), t ∈ [0, T ], (12)

where β is an adapted, square integrable process with values in RN . Applying Ito’s lemma

to α(t)/X π̂(t), we have

d
α(t)

X π̂(t)
=

βᵀ(t)

X π̂(t)
dW (t)− α(t)

X π̂(t)

{
[r(t) + π̂ᵀ(t)σ(t)θ(t)]dt+ π̂ᵀ(t)σ(t)dW (t)− |π̂ᵀ(t)σ(t)|2dt

}
− π̂ᵀ(t)σ(t)β(t)

X π̂(t)
dt

= −{[r(t) + π̂ᵀ(t)σ(t)θ(t)]p̂1(t) + q̂ᵀ1(t)σᵀ(t)π̂(t)} dt+ q̂ᵀ1(t)dW (t),

where

p̂1(t) ,
α(t)

X π̂(t)
, q̂1(t) ,

β(t)

X π̂(t)
− α(t)σᵀ(t)π̂(t)

X π̂(t)
. (13)

Hence, we conclude that (p̂1, q̂1) solves the adjoint BSDE (11).

3.1 Necessary and sufficient conditions for primal problems

We now state the necessary and sufficient optimality conditions for the primal problem.

Theorem 7. (Primal problem and associated FBSDE) Let π̂ ∈ A. Then π̂ is optimal for

the primal problem if and only if the solution (X π̂, p̂1, q̂1) of FBSDE

dX π̂(t) = X π̂(t){[r(t) + π̂ᵀ(t)σ(t)θ(t)]dt+ π̂ᵀ(t)σ(t)dW (t)},

X π̂(0) = x0,

dp̂1(t) = −{[r(t) + π̂ᵀ(t)σ(t)θ(t)] p̂1(t) + q̂ᵀ1(t)σᵀ(t)π̂(t)} dt+ q̂ᵀ1(t)dW (t),

p̂1(T ) = −U ′(X π̂(T ))

(14)

satisfies the condition

−X π̂(t)σ(t) [p̂1(t)θ(t) + q̂1(t)] ∈ NK(π̂(t)), ∀t ∈ [0, T ], P− a.s., (15)

where NK(x) is the normal cone of the closed convex set K at x ∈ K, defined as

NK(x) ,
{
y ∈ RN : ∀x∗ ∈ K, yᵀ(x∗ − x) ≤ 0

}
.

Proof. Let π̃ ∈ A be an admissible control and ρ , π̃ − π̂. Let

τn , T ∧ inf
{
t ≥ 0,

∫ t

0

|ρ(s)σ(s)|2ds ≥ n or

∫ t

0

|ρᵀ(s)σ(s)σᵀ(s)π̂(s)|2ds ≥ n
}
.

Hence, limn→∞ τn = T almost surely. Define ρn(t) , ρ(t)1{t≤τn} for 0 ≤ t ≤ T and

φn(ε) , U
(
X π̂+ερn(T )

)
8



for 0 ≤ ε ≤ 1. Setting G(x) , U(x0e
x) and taking derivatives, we have

G′(x) = U ′(x0e
x)x0e

x ≥ 0,

G′′(x) = x0e
x (U ′(x0e

x) + U ′(x0e
x)x0e

x) ≤ 0,

by Assumption 4. Differentiating φn on (0, 1), we have

φ′n(ε) =G′(·)
[∫ T

0

(ρᵀn(t)σ(t)θ(t)− ρᵀn(t)σ(t)σᵀ(t) (π̂(t) + ερn(t))) dt+

∫ T

0

ρᵀn(t)σ(t)dW (t)

]
,

φ′′n(ε) =G′′(·)
[∫ T

0

∫ T

0

(ρᵀn(t)σ(t)θ(t)− ρᵀn(t)σ(t)σᵀ(t) (π̂(t) + ερn(t))) dt+

∫ T

0

ρᵀn(t)σ(t)dW (t)

]2
−G′(·)

[∫ T

0

ρᵀn(t)σ(t)σᵀ(t)ρn(t)dt

]
≤ 0.

Hence we conclude that the function Φn(ε) , (φn(ε) − φ(0))/ε is a decreasing function

and we have

lim
ε→0

Φn(ε) = U ′(X π̂(T ))X π̂(T )Hρ
n(T ),

where Hρ
n(t) ,

∫ t
0

(ρᵀn(s)σ(s)θ(s)− ρᵀn(s)σ(s)σᵀ(s)π̂(s)) ds +
∫ t
0
ρᵀn(s)σ(s)dW (s). More-

over, we obtain

E
[
|U ′(X π̂(T ))X π̂(T )Hρ

n(T )|
]
≤ E

[(
U ′(X π̂(T ))X π̂(T )

)2] 1
2
E
[
Hρ
n(T )2

] 1
2 <∞.

Note that for ε ∈ [0, 1],Φn(ε) ≥ Φn(1) = U(X π̂+ρn(T ))−U(X π̂(T )) with E [Φn(1)] <∞.

Therefore the sequence Φn(ε) is bounded from below. By the Monotone Convergence

Theorem, we have

lim
ε→0

E
[
U(X π̂+ερn(T ))

]
− E

[
U(X π̂(T ))

]
ε

= E
[
U ′(X π̂(T ))X π̂(T )Hρ

n(T )
]
.

In addition, since π̂ is optimal, we conclude

E
[
U ′(X π̂(T ))X π̂(T )Hρ

n(T )
]
≤ 0. (16)

Let (α, β) be defined as in (12) and (p̂2), q̂2) be the adjoint process corresponding to π̂.

Applying Ito’s lemma to −α(t)Hρ
n(t) and simplifying the terms using (12) and (13), we

obtain

−dα(t)Hρ
n(t) = −X π̂(t)ρᵀn(t)σ(t)(p̂1(t)θ(t)+ q̂1(t))dt+[βᵀ(t)Hρ

n(t)− α(t)ρᵀn(t)σ(t)] dW (t).

(17)

Next, we prove that the local martingale
∫ t
0
(βᵀ(s)Hρ(s)− α(s)ρᵀ(s)σ(s))dW (s) is a true
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martingale. We have

E

[
sup
t∈[0,T ]

|Hρ
n(t)|2

]

= E

[
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

(ρᵀn(s)σ(s)θ(s)− ρᵀn(s)σ(s)σᵀ(s)π̂(s)) ds+

∫ t

0

ρᵀn(s)σ(s)dW (s)

∣∣∣∣2
]

≤ C

{
E

[
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

ρᵀn(s)σ(s)dW (s)

∣∣∣∣2
]

+ E

[
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

(ρᵀn(s)σ(s)θ(s)− ρᵀn(s)σ(s)σᵀ(s)π̂(s)) ds

∣∣∣∣2
]}

≤ C

{
E

[∫ T

0

|ρᵀn(s)σ(s)|2ds
]

+ E

[∫ T

0

|ρᵀn(s)σ(s)θ(s)|2ds
]

+ E

[∫ T

0

|ρᵀn(s)σ(s)σᵀ(s)π̂(s)|2ds
]}

< ∞.

Here we have used the Burkholder-Davis-Gundy inequality in the second last inequality

above. In addition, we have

E

[∫ T

0

|α(s)ρᵀn(s)σ(s)|2ds
]
<∞.

Hence, (16) can be reduced to the following

E

[∫ τn

0

−X π̂(t)ρᵀn(t)σ(t)

(
p̂1(t)θ(t) + q̂1(t)

)
dt

]
≤ 0, ∀n ∈ N. (18)

Define the following sets:

B , {(t, ω) ∈ [0, T ]× Ω : (πᵀ − π̂ᵀ(t))σ(t) (p̂1(t)θ(t) + q̂1(t)) < 0, for ∀π ∈ K} ,

and, for any π ∈ K,

Bπ , {(t, ω) ∈ [0, T ]× Ω : (πᵀ − π̂ᵀ(t))σ(t) (p̂1(t)θ(t) + q̂1(t)) < 0} .

Obviously for each t ∈ [0, T ], Bπ
t ∈ Ft. Consider the control π̃ : [0, T ]× Ω→ K, defined

by

π̃(t, ω) ,

{
π, if (t, ω) ∈ Bπ

π̂(t, ω), otherwise.

Then π̃ is adapted and there exists n∗ ∈ N such that

E

[∫ τn

0

X π̃(t) (π̃ᵀ(t)− π̂ᵀ(t))σ(t) (p̂1(t)θ(t) + q̂1(t)) dt

]
< 0, ∀n > n∗,

contradicting (18), unless (Leb ⊗ P){Bπ} = 0 for all π ∈ K. Since RN is a separable

metric space, we can find a countable dense subset {πn} of K. Denote by B̂ = ∪∞n=1B
πn .

Then (Leb ⊗ P){B̂} = (Leb ⊗ P){∪∞n=1B
πn} ≤

∑∞
n=1(Leb ⊗ P){Bπn} = 0. Hence, we

conclude that

−X π̂(t)σ(t) [p̂1(t)θ(t) + q̂1(t)] ∈ NK(π̂(t)), ∀t ∈ [0, T ], P− a.s.
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We have proved the necessary condition.

Now we prove the sufficient condition. Let (X π̂, p̂1, q̂1) be a solution to the FBSDE

(14) and satisfy condition (15). Applying Ito’s lemma, we have(
X π̂(t)−Xπ(t)

)
p̂1(t)

=

∫ t

0

(
X π̂(s)−Xπ(s)

)
{− [(r(s) + π̂ᵀ(s)σ(s)θ(s)) p̂1(s) + q̂ᵀ1(t)σᵀ(t)π(t)] dt+ q̂ᵀ1(t)dW (t)}

+

∫ t

0

p̂ᵀ1(s)

{[
X π̂(t) (r(s) + π̂ᵀ(s)σ(s)θ(s))−Xπ(s) (r(s) + πᵀ(s)σ(s)θ(s))

]
ds

+
[
X π̂(s)π̂ᵀ(s)σ(s)−X π̂(s)πᵀ(s)σ(s)

]
dW (s)

}
+

∫ t

0

[
X π̂(s)π̂ᵀ(s)σ(s)−Xπ(s)πᵀ(s)σ(s)

]
q̂1(s)ds.

Rearranging the above equation, we have(
X π̂(t)−Xπ(t)

)
p̂1(t)

=

∫ t

0

(π̂ᵀ(s)− πᵀ(s))X π̂(s)σ(s) [p̂1(s)θ(s) + q̂1(s)] ds

+

∫ t

0

[(
X π̂(s)−Xπ(s)

)
qᵀ(s) +X π̂(s) (π̂ᵀ(t)− πᵀ(t))σ(s)

]
dW (s).

Hence, by condition (15) and the definition of a normal cone, taking expectation of the

above, we have

E
[(
X π̂(T )−Xπ(T )

)
p̂1(T )

]
≤ 0.

Combining with the concavity of U gives us

E
[
U (Xπ(T ))− U

(
X π̂(T )

)]
≤ E

[(
Xπ(T )−X π̂(T )

)
U ′
(
X π̂(T )

)]
= E

[(
X π̂(T )−Xπ(T )

)
p̂1(T )

]
≤ 0.

Hence π̂ is indeed an optimal control.

3.2 Necessary and sufficient conditions for dual problems

Next we address the dual problem. To ensure the existence of an optimal solution, we

impose the following condition:

Assumption 8. ([16, Condition 4.14]) For any (y, v) ∈ (0,∞)×D, we have

E
[
Ũ
(
Y (y,v)(T )

)2]
<∞. (19)

According to [16, Proposition 4.15], there exists some (ŷ, v̂) ∈ (0,∞) × D such that

Ṽ = x0ŷ+E[Ũ
(
Y (ŷ,v̂)(T )

)
]. Given an admissible dual control (ŷ, v̂) ∈ (0,∞)×D with the

dual process Y (ŷ,v̂) that solves the SDE (7) and condition (19) holds with (y, v) = (ŷ, v̂),
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the associated adjoint equation for the dual problem is the following linear BSDE in the

unknown processes p̂2 ∈ H2(0, T ;R) and q̂2 ∈ H2(0, T ;RN):{
dp̂2(t) = {[r(t) + δK(v̂(t))] p̂2(t) + q̂ᵀ2(t) [θ(t) + σ−1(t)v̂(t)]} dt+ q̂ᵀ2(t)dW (t),

p̂2(T ) = −Ũ ′(Y (ŷ,v̂)(T )).
(20)

Since p̂2Y
(ŷ,v̂) is a martingale, we can find p̂2(t), 0 ≤ t ≤ T , from the relation

p̂2(t)Y
(ŷ,v̂)(t) = E[p̂2(T )Y (ŷ,v̂)(T )|Ft] = −E[Ũ ′(Y (ŷ,v̂)(T ))Y (ŷ,v̂)(T )|Ft]. (21)

Lemma 9. Let (y, v) ∈ (0,∞)×D and Y (y,v) be the corresponding state process satisfying

the SDE (7) and condition (19). Then the random variable Y (y,v)(T )Ũ ′(Y (y,v)(T )) is

square integrable and there exists a solution to the adjont BSDE (20).

Proof. From condition (19) and following similar arguments as in [13, page 290], we have

that since Ũ is a decreasing function,

Ũ(η)− Ũ(∞) ≥ Ũ(η)− Ũ(
η

β
) =

∫ η
β

η

I(u)du ≥
(
η

β
− η
)
I

(
η

β

)
≥ 1− β

βγ
ηI(η),

for 0 < η <∞, where β ∈ (0, 1) and γ ∈ (1,∞) are as in Condition 8. Since Ũ(∞) = U(0)

is finite, we conclude that the random variable Y (ŷ,v̂)(T )Ũ ′(Y (ŷ,v̂)(T )) is square integrable.

Define the process

φ(t) , E

[
−Y (ŷ,v̂)(T )Ũ ′(Y (ŷ,v̂)(T ))

∣∣∣∣Ft] , t ∈ [0, T ].

By the martingale representation theorem, it is the unique solution to the BSDE

φ(t) = −Y (ŷ,v̂)(T )Ũ ′(Y (ŷ,v̂)(T ))−
∫ T

t

ϕᵀ(s)dW (s),

where ϕ is a square integrable process with values in RN . Applying Ito’s lemma to

φ(t)/Y (ŷ,v̂)(t), we have

d
φ(t)

Y (ŷ,v̂)(t)
=

{
φ(t)

Y (ŷ,v̂)(t)

[
r(t) + δK(v̂(t)) + |θ(t) + σ−1(t)v̂(t)|2

]
+

ϕ(t)

Y (ŷ,v̂)(t)
[θ(t) + σ(t)−1v̂(t)]

}
dt

+

{
φ(t)

Y (ŷ,v̂)(t)

[
θ(t) + σ(t)−1v̂(t)

]ᵀ
+

ϕᵀ(t)

Y (ŷ,v̂)(t)

}
dW (t).

Rearranging the above equation, we have

dp̂2(t) =
{

[r(t) + δK(v̂(t))] p̂2(t) + q̂ᵀ2(t)
[
θ(t) + σ(t)−1v̂(t)

]}
dt+ q̂ᵀ2(t)dW (t),

where (p̂2, q̂2) are defined as

p̂2(t) ,
φ(t)

Y (ŷ,v̂)(t)
and q̂2(t) , p̂2(t)

[
θ(t) + σ(t)−1v̂(t)

]
+

ϕ(t)

Y (ŷ,v̂)(t)
.

Hence, we conclude that (p̂2, q̂2) solves the BSDE (20).
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Remark 10. Note that if U(x) = ln x then Ũ(y) = − ln y−1. We have Y (ŷ,v̂)(T )Ũ ′(Y (ŷ,v̂)(T )) ≡
−1, obviously square integrable. The conclusion of Lemma 9 holds. However, in this case,

U(0) = −∞, not finite. So the requirement of U(0) being finite is only a sufficient con-

dition for Lemma 9, not a necessary condition. We can apply all the results in the paper

to log utility.

We now state the necessary and sufficient optimality conditions for the dual problem.

Theorem 11. (Dual problem and associated FBSDE) Let (ŷ, v̂) ∈ (0,∞) × D. Then

(ŷ, v̂) is optimal for the dual problem if and only if the solution (Y (ŷ,v̂), p̂2, q̂2) of FBSDE

dY (ŷ,v̂)(t) = −Y (ŷ,v̂)(t) {[r(t) + δK(v̂(t))]dt+ [θ(t) + σ−1(t)v̂(t)]ᵀdW (t)} ,

Y (ŷ,v̂)(0) = ŷ,

dp̂2(t) = {[r(t) + δK(v̂(t))]ᵀ p̂2(t) + q̂ᵀ2(t) [θ(t) + σ−1(t)v̂(t)]} dt+ q̂ᵀ2(t)dW (t),

p̂2(T ) = −Ũ ′(Y (ŷ,v̂)(T ))

(22)

satisfies the following conditions
p̂2(0) = x0,

p̂2(t)
−1 [σᵀ(t)]−1 q̂2(t) ∈ K,

p̂2(t)δK(v̂(t)) + q̂ᵀ2(t)σ−1(t)v̂(t) = 0, ∀t ∈ [0, T ] P− a.s.
(23)

Proof. Let (ŷ, v̂) be an optimal control of the dual problem and Y (ŷ,v̂) be the corresponding

state process. Define a function h(ξ) , x0ξŷ + E[Ũ
(
ξY (ŷ,v̂)(T )

)
]. Then infξ∈(0,∞) h(ξ) =

h(1). Following the argument in [12, Lemma 11.7] by the convexity of Ũ , the dominated

convergence theorem and Lemma 9, we conclude that h is continuously differentiable

at ξ = 1 and the derivative h′(1) = x0ŷ + E[Y (ŷ,v̂)(T )Ũ ′
(
Y (ŷ,v̂)(T )

)
] holds. Hence, we

conclude that

p̂2(0) = −1

ŷ
E
[
Y (ŷ,v̂)(T )Ũ ′

(
Y (ŷ,v̂)(T )

)]
= x0.

Let (ŷ, ṽ) be an admissible control and η , ṽ − v̂. Similar to the argument in [6, page

781-782], define the stopping time

τn , T ∧ inf{t ∈ [0, T ];

∫ t

0

(
|δK(η(s))|2 + |θᵀ(s)σ−1(s)η(s)|2 + |φ(s)η(s)|2

+ |v̂ᵀ(s)[σ−1(s)]ᵀσ−1(s)η(s)|2
)
ds ≥ n or

∣∣∣ ∫ t

0

ηᵀ(s)[σ−1(s)]ᵀdW (s)
∣∣∣ ≥ n}.

Define ηn(t) , η(t)1t≤τn for 0 ≤ t ≤ T and

φ̃n(ε) , Ũ
(
Y (ŷ,v̂+εηn)(T )

)
= Ũ

(
exp

[
ln
(
Y (ŷ,v̂+εηn)(T )

)])
for 0 ≤ ε ≤ 1. According to Assumption 4, g(z) , Ũ(ez) is a convex function that

is nonincreasing. Moreover, since δK is convex, f(ε) , ln
(
Y (ŷ,v̂+εηn)(T )

)
is a concave

function of ε. Hence φ̃n(ε) = g(f(ε)) is a convex function and Φ̃n(ε) , (φ̃n(ε)− φ̃n(0))/ε
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is an increasing function. Define H̃ηn
ε (t) and H̃ηn(t) as

H̃ηn
ε (t) ,

∫ t

0

δK(v̂(s) + εηn(s))− δK(v̂(s)) + εθᵀ(s)σ−1(s)ηn(s) + εv̂ᵀ(s)[σ−1(s)]ᵀσ−1(s)ηn(s)

+
1

2
ε2ηᵀn(s)[σ−1(s)]ᵀσ−1(s)ηn(s)ds+

∫ t

0

εηᵀn(s)[σ−1(s)]ᵀdW (s),

H̃ηn(t) ,
∫ t

0

δK(ηn(s)) + θᵀ(s)σ−1(s)ηn(s) + v̂ᵀ(s)[σ−1(s)]ᵀσ−1(s)ηn(s)ds

+

∫ t

0

ηᵀn(s)[σ−1(s)]ᵀdW (s).

For ε ∈ (0, 1), we have

Φ̃n(ε) =
Ũ
(
Y (ŷ,v̂+εηn)(T )

)
− Ũ

(
Y (ŷ,v̂)(T )

)
ε

=
Ũ
(
Y (ŷ,v̂+εηn)(T )

)
− Ũ

(
Y (ŷ,v̂)(T )

)
Y (ŷ,v̂+εηn)(T )− Y (ŷ,v̂)(T )

Y (ŷ,v̂)(T )

ε

[
Y (ŷ,v̂+εηn)(T )

Y (ŷ,v̂)(T )
− 1

]
=
Ũ
(
Y (ŷ,v̂+εηn)(T )

)
− Ũ

(
Y (ŷ,v̂)(T )

)
Y (ŷ,v̂+εηn)(T )− Y (ŷ,v̂)(T )

Y (ŷ,v̂)(T )

ε

[
exp

(
−H̃ηn

ε (T )
)
− 1
]

≤
Ũ
(
Y (ŷ,v̂+εηn)(T )

)
− Ũ

(
Y (ŷ,v̂)(T )

)
Y (ŷ,v̂+εηn)(T )− Y (ŷ,v̂)(T )

Y (ŷ,v̂)(T )

ε{
−1 + exp

[
−ε
∫ T

0

(
δK(ηn(t)) + θᵀ(t)σ−1(t)ηn(t) + v̂ᵀ(t)[σ−1(t)]ᵀσ−1(t)ηn(t)

+
1

2
εηᵀn(t)[σ−1(t)]ᵀσ−1(t)ηn(t)

)
dt− ε

∫ T

0

ηᵀn(t)[σ−1(t)]ᵀdW (t)

]}
.

Hence, taking lim sup on both sides, we have

lim sup
ε→0

Φ̃n(ε) ≤ −Ũ ′
(
Y (ŷ,v̂)(T )

)
Y (ŷ,v̂)(T )H̃ηn(T )

with

E

[∣∣∣∣Ũ ′ (Y (ŷ,v̂)(T )
)
Y (ŷ,v̂)(T )H̃ηn(T )

∣∣∣∣] ≤ E

[(
Ũ ′
(
Y (ŷ,v̂)(T )

)
Y (ŷ,v̂)(T )

)2] 1
2

E
[
H̃ηn(T )2

] 1
2
<∞.

Moreover, note that as ε ∈ (0, 1) approaches zero, the sequence(
Ũ
(
Y (ŷ,v̂+εηn)(T )

)
− Ũ

(
Y (ŷ,v̂)(T )

)
ε

)
ε∈(0,1)

is bounded from above by |Φ̃n(1)| and E[|Φ̃n(1)|] <∞. By the reverse Fatou lemma, we

have

0 ≤ lim sup
ε→0

E
[
Φ̃n(ε)

]
≤ E

[
lim sup
ε→0

Φ̃n(ε)

]
≤ E

[
−Ũ ′

(
Y (ŷ,v̂)(T )

)
Y (ŷ,v̂)(T )H̃ηn(T )

]
.
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Let (φ, ϕ) be defined as in Lemma 9 and (p̂2, q̂2) be the adjoint process corresponding

to (ŷ, v̂). Applying Ito’s lemma to φ(t)H̃η
n(t), we obtain

dφ(t)H̃ηn(t)

=− ϕᵀ(t)H̃ηn(t)dW (t) + φ(t)
(
δK(ηn(t)) + θᵀ(t)σ−1(t)ηn(t) + v̂(t)[σ−1(t)]ᵀσ−1(t)ηn(t)

)
dt

+ φ(t)ηᵀn(t)[σ−1(t)]ᵀdW (t) + ηᵀn(t)[σ−1(t)]ᵀϕ(t)dt

=Y ŷ,v̂(t)
[
δK(ηn(t))p̂2(t) + q̂2(t)σ

−1(t)ηn(t))
]
dt+

[
φ(t)ηᵀn(t)[σ−1(t)]ᵀ − ϕᵀ(t)H̃ηn(t)

]
dW (t).

Following a similar approach as in the proof of necessary condition for the primal problem,

it can be shown that
∫ t
0
[φ(s)ηᵀn(s)[σ−1(s)]ᵀ − ϕᵀ(s)H̃ηn(s)]dW (s) is a true martingale.

Taking expectation of the above equation, we obtain

E

[∫ τn

0

Y (ŷ,v̂)(t)
[
δK(η(t))p̂2(t) + q̂2(t)σ

−1(t)η(t))
]
dt

]
≥ 0. (24)

Note that p̂2(t) = φ(t)/Y (ŷ,v̂)(t) > 0, define the eventB , {(ω, t) : p̂2(t)
−1σ(t)−1q̂2(t) 6∈ K}.

According to [13, Lemma 5.4.2], there exists some RN -valued progressively measurable

process η such that |η(t)| ≤ 1 and |δK(η(t))| ≤ 1 a.e. and

δK(η(t)) + p̂2(t)
−1q̂2(t)

′σ(t)−1 < 0 a.e. on B,

δK(η(t)) + p̂2(t)
−1q̂2(t)

′σ(t)−1 = 0 a.e. on Bc.

Let ṽ , v̂ + η. We can easily verify that ṽ is progressively measurable and square

integrable. Hence, we obtain that

E

[∫ τn

0

Y (ŷ,v̂)(t)
[
p̂2(t) (δK(η(t))) + q̂2(t)

′σ(t)−1η(t)
]
dt

]
< 0,

contradicting with (24). Hence, by the P strict positivity of Y (ỹ,ṽ)(t)p̂2(t), we conclude

that p̂2(t)
−1σ(t)−1q̂2(t) ∈ K a.e. (this argument is essentially identical to the analysis in

the proof of Proposition 4.17 in [16]). Take ṽ = 2v̂, and we have

E

[∫ τn

0

Y (ỹ,ṽ)(t)
[
p̂2(t) (δK(v̂(t))) + q̂2(t)

′σ(t)−1v̂(t)
]
dt

]
≥ 0.

Lastly, to prove the third condition, simply take ṽ = 0 and by the same analysis, we

obtain

E

[∫ τn

0

Y (ỹ,ṽ)(t)
[
p̂2(t) (δK(v̂(t))) + q̂2(t)

′σ(t)−1v̂(t)
]
dt

]
≤ 0.

On the other hand, by the definition of δK , we have δK(v̂(t)) + p̂2(t)
−1q̂ᵀ2(t)σ−1(t)v̂(t) ≥ 0

a.e. Combining with the P strict positivity of Y (ỹ,ṽ)(t)p̂2(t) gives the last condition. We

have proved the necessary condition.

Now we prove the sufficient condition. Let
(
Y (ŷ,v̂), p̂2, q̂2

)
be a solution to the FBSDE

(22) and satisfy conditions (23). Let (ỹ, ṽ) ∈ (0,∞) × D be an admissible control such

that Y (ỹ,ṽ) solves the SDE (7) and E[Ũ(Y (ỹ,ṽ)(T ))2] < ∞. By Lemma 9, there exists
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adjoint process (p̃2, q̃2) that solves the BSDE with control (ỹ, ṽ). Applying Ito’s lemma,

we have(
Y (ŷ,v̂)(t)− Y (ỹ,ṽ)(t)

)
p̂2(t)

=p̂2(0)y +

∫ t

0

{
Y (ỹ,ṽ)(s) [r(s) + δK(ṽ(s))]ᵀ − Y (ŷ,v̂)(s) [r(s) + δK(v̂(s))]ᵀ

}
p̂2(s)ds

+

∫ t

0

{
Y (ỹ,ṽ)(s)[θ(s) + σ−1(s)ṽ(s)]ᵀ − Y (ŷ,v̂)(s)[θ(s) + σ−1(s)v̂(s)]ᵀ

}
p̂2(s)dW (s)

+

∫ t

0

(
Y (ŷ,v̂)(s)− Y (ỹ,ṽ)(s)

) {
[r(s) + δK(ṽ(s))]ᵀ p̂2(s) + q̂ᵀ2(s)

[
θ(s) + σ−1(s)v̂(s)

]}
ds

+

∫ t

0

(
Y (ŷ,v̂)(s)− Y (ỹ,ṽ)(s)

)
q̂ᵀ2(s)dW (s)

+

∫ t

0

{
Y (ỹ,ṽ)(s)[θ(s) + σ−1(s)ṽ(s)]ᵀ − Y (ŷ,v̂)(s)[θ(s) + σ−1(s)v̂(s)]ᵀ

}
q̂2(s)ds

=p̂2(0)y +

∫ t

0

Y (ỹ,ṽ)(s)p̂2(s)
[
δK(ṽ(s))− δK(v̂(s)) + q̂ᵀ2(s)σ−1(s) (ṽ(s)− v̂(s))

]
ds

+

∫ t

0

{
Y (ỹ,ṽ)(s)[θ(s) + σ−1(s)ṽ(s)]ᵀ − Y (ŷ,v̂)(s)[θ(s) + σ−1(s)v̂(s)]ᵀ

}
p̂2(s)dW (s)

+

∫ t

0

(
Y (ŷ,v̂)(s)− Y (ỹ,ṽ)(s)

)
q̂ᵀ2(s)dW (s).

By (23) and taking expectation, we have

E
[(
Y (ŷ,v̂)(T )− Y (ỹ,ṽ)(T )

)
p̂2(T )

]
≥yp̂2(0).

By the convexity of Ũ we obtain

x0ỹ + E
[
Ũ(Y (ỹ,ṽ)(T ))

]
− x0ŷ − E

[
Ũ(Y (ŷ,v̂)(T ))

]
≥ y(x0 − p̂2(0)) = 0.

Hence, we conclude that (ŷ, v̂) is indeed an optimal control of the dual problem.

3.3 Dynamic relations of primal and dual problems

We can now state the dynamic relations of the optimal portfolio and wealth processes of

the primal problem and the adjoint processes of the dual problem and vice versa.

Theorem 12. (From dual problem to primal problem) Suppose that (ŷ, v̂) ∈ (0,∞)×D
is optimal for the dual problem. Let

(
Y (ŷ,v̂), p̂2, q̂2

)
be the associated process that solves

the FBSDE (22) and satisfies condition (23). Define

π̂(t) ,
[σᵀ(t)]−1 q̂2(t)

p̂2(t)
, t ∈ [0, T ]. (25)

Then π̂ is the optimal control for the primal problem with initial wealth x0. The optimal

wealth process and associated adjoint process are given by
X π̂(t) = p̂2(t),

p̂1(t) = −Y (ŷ,v̂)(t),

q̂1(t) = Y (ŷ,v̂)(t)[σ−1(t)v̂(t) + θ(t)].

(26)
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Proof. Suppose that (ŷ, v̂) ∈ (0.∞) × D is optimal for the dual problem. By Theorem

11, the process
(
Y (ŷ,v̂), p̂2, q̂2

)
solves the dual FBSDE (22) and satisfies condition (23).

Construct π̂ and (X π̂, p̂1, q̂1) as in (25) and (26), respectively. Substituting them back

into (14), we conclude that (X π̂, p̂1, q̂1) solves the FBSDE for the primal problem. By

condition (23), it can be easily shown that π̂ ∈ A. Moreover, we have

X π̂(t)σ(t) [p̂1(t)θ(t) + q̂1(t)]

= p̂2(t)σ(t)
{
−Y (ŷ,v̂)(t)θ(t) + Y (ŷ,v̂)(t)

[
σ−1(t)v̂(t) + θ(t)

]}
= Y (ŷ,v̂)(t)p̂2(t)v̂(t).

Combining with the third statement of (23) and the almost sure positivity of Y (ŷ,v̂)p̂2, we

claim that condition (15) holds. By Theorem 11 we conclude that π̂ is indeed an optimal

control to the primal problem.

Theorem 13. (From primal problem to dual problem) Suppose that π̂ ∈ A is optimal for

the primal problem with initial wealth x0. Let (X π̂, p̂1, q̂1) be the associated process that

satisfies the FBSDE (14) and conditions (15). Define ŷ , −p̂1(0),

v̂(t) , −σ(t)

[
q̂1(t)

p̂1(t)
+ θ(t)

]
, ∀t ∈ [0, T ].

(27)

Then (ŷ, v̂) is an optimal control for the dual problem. The optimal dual process and

associated adjoint process are given by
Y (ŷ,v̂)(t) = −p̂1(t),
p̂2(t) = X π̂(t),

q̂2(t) = σᵀ(t)π̂(t)X π̂(t).

(28)

Proof. Suppose that π̂ ∈ A is an optimal control for the primal problem. By Theorem 7,

the process (X π̂, p̂1, q̂1) solves the FBSDE (14) and satisfies conditions (15). Define (ŷ, v̂)

and (Y (ŷ,v̂), p̂2, q̂2) as in (27) and (28), respectively. Substituting them back into (22),

we obtain that (Y (ŷ,v̂), p̂2, q̂2) solves the FBSDE for the dual problem. Moreover, by the

construction in (27) and (28), we have p̂2(0) = x0 and [σᵀ(t)]−1q̂2(t) = π̂(t)X π̂(t)−1 ∈ K.

Substituting v̂ into (23), we can easily show that the third statement in (23) holds.

Hence, by Theorem 11, we conclude that (ŷ, v̂) is indeed an optimal control to the dual

problem.

4 Examples

In this section, we use the main results in the previous section to address several classical

constrained utility maximization problems.

4.1 Constrained power utility maximization

In this subsection, we assume U is a power utility function defined by U(x) , 1
β
xβ, x ∈

(0,∞), where β ∈ (0, 1) is a constant. In addition, we assume that coefficients r(t), b(t), σ(t)
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in (1) and (2) are deterministic and K ⊆ RN is a closed convex cone. In this case, the

dual problem can be written as

Minimize x0y + E
[
Ũ
(
Y (y,v)(T )

)]
over (y, v) ∈ (0,∞) × D, where Ũ(y) = 1−β

β
y

β
β−1 , y ∈ (0,∞), is the dual function of

U . We solve the above problem in two steps: first, fix y and solve a stochastic optimal

control problem

ũ(y) , inf
v
E
[
Ũ
(
Y (y,v)(T )

)]
,

where Y (y,v) satisfies the SDE (8) and, second, solve a convex minimization problem

inf
y

(x0y + ũ(y)).

Step 1: Define the dual value function

v(t, y) = inf
v
E
[
Ũ
(
Y (y,v)(T )

) ∣∣∣Y (y,v)(t) = y
]
,

where the expectation above is the conditional expectation given Y (t) = y. Using the

dynamic programming principle (DPP) (see [20]), we have v satisfies the following HJB

(Hamilton-Jacobi-Bellman) equation:{
∂
∂t
v(t, y)− r(t)yvy(t, y) + 1

2
infv∈K̃ |θ(t) + σ−1(t)v|2y2vyy(t, y) = 0,

v(T, y) = Ũ(y),
(29)

for (t, y) ∈ [0, T ] × R. Let v̂(t) ∈ K̃ be the minimizer of infv∈K̃ |θ(t) + σ−1(t)v|2 and

θ̂(t) , σ−1(t)v̂(t) + θ(t). Note that the dual optimal control v̂ is independent of y. Then

the HJB equation (29) becomes{
∂
∂t
v(t, y)− r(t)yvy(t, y) + 1

2
|θ̂(t)|2y2vyy(t, y) = 0

v(T, y) = Ũ(y),

for (t, y) ∈ [0, T ]×R. Assume |θ̂(t)| ≥ c > 0 for t ∈ [0, T ]. According to the Feynman-Kac

formula, we can represent v as

v(t, y) = E
[
Ũ(Y (T ))

∣∣∣Y (t) = y
]
,

where the stochastic process Y follows a geometric Brownian motion

dY (s) = −Y (s){r(s)ds+ θ̂ᵀ(s)dW (s)}, t ≤ s ≤ T

with Y (t) = y. Simple calculation gives

v(t, y) = Ũ(y) exp

(∫ T

t

[
1

2

β

(β − 1)2
|θ̂(s)|2 − β

β − 1
r(s)

]
ds

)
.

Step 2: Since ũ(y) = v(0, y), solving the following convex minimization problem

inf
y>0

(x0y + v(0, y)),
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we find the minimum is achieved at point

ŷ = xβ−10 exp

(
(1− β)

∫ T

0

[
β

2(β − 1)2
|θ̂(s)|2 − β

β − 1
r(s)

]
ds

)
.

Solving the adjoint BSDE (20), we have

p̂2(t) = x0 exp

(∫ t

0

[
r(s) +

(1− 2β)

2(1− β)2
|θ̂(s)|2

]
ds+

1

1− β

∫ t

0

θ̂ᵀ(s)dW (s)

)
,

q̂2(t) =
1

1− β
p̂2(t)θ̂(t).

Applying Theorem 12, we can construct the optimal solution to the primal problem

using the optimal solutions of the dual problem and hence arrive at the following closed

form solutions:
π̂(t) =

1

1− β
[σ(t)ᵀ]−1θ̂(t),

X π̂(t) = x0 exp

(∫ t

0

[
r(s) +

(1− 2β)

2(1− β)2
|θ̂(s)|2

]
ds+

1

1− β

∫ t

0

θ̂ᵀ(s)dW (s)

)
.

4.2 Constrained log utility maximization with random coeffi-

cients

In this section, we assume that U is a log utility defined by U(x) = log x for x > 0.

The dual function of U is given by Ũ(y) = −(1 + log y), y ≥ 0. Assume that K ⊆ RN

is a closed convex set and r, b, σ are uniformly bounded {Ft} progressively measurable

processes on Ω× [0, T ].

Step 1: We fix y and solve the dual optimal control problem. Note that the DPP

is not appropriate in this case due to the non-Markov nature of the problem. However,

following the approach in [6, Section 11] the problem can be solved explicitly due to the

special property of the logarithmic function.

Let v ∈ D be a given dual admissible control and the dual objective function becomes

E
[
Ũ
(
Y (y,v)(T )

)]
= −1− log y − E

[∫ T

0

r(t) + δK(v(t)) +
1

2
|θ(t) + σ−1(t)v(t)|2dt

]
,

where Y satisfies the SDE (7). The dual optimization boils down to the following problem

of pointwise minimization of a convex function δK(v) + 1
2
|θ(t) + σ−1(t)v|2 over v ∈ RN

for all t ∈ [0, T ]. Applying the classical measurable selection theorem (see [23, 24]), we

conclude that the process defined by

v̂(t) , arg min
v∈RN

[
δK(v) +

1

2
|θ(t) + σ(t)−1v|2

]
(30)

is {Ft} progressively measurable and therefore is the optimal control given y and is

independent of y.

Step 2: Solve the following static optimization problem

inf
y∈R

x0y − 1− log y − E
[∫ T

0

r(t) + δK(v̂(t)) +
1

2
|θ(t) + σ−1(t)v̂(t)|2dt

]
.
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We obtain ŷ = 1/x0. Hence, the optimal state process for the dual problem is the

exponential process satisfying (7). Solving the adjoint BSDE (20), we have

p̂2(t)Y
(ŷ,v̂)(t) = E

[
−Ũ ′

(
Y (ŷ,v̂)(T )

)
Y (ŷ,v̂)(T )

∣∣∣∣Ft] = 1.

Hence, we have p̂2(t) = Y (ŷ,v̂)(t)−1. Applying Ito’s lemma on p̂2, we get

q̂2(t) = Y (ŷ,v̂)(t)−1[θ(t) + σ(t)−1v̂(t)], ∀t ∈ [0, T ], a.e.

Finally, according to Theorem 12, we construct the optimal control to the primal

problem explicitly form the optimal solution of the dual problem as

π̂(t) = [σ(t)σᵀ(t)]−1 [v̂(t) + b(t)− r(t)1] , ∀t ∈ [0, T ], a.e. (31)

Remark 14. In the case where K is a closed convex cone, it is trivial to see that

δK(v̂(t)) = 0 and v̂(t) ∈ K̃ a.s for a.e. t ∈ [0, T ]. The pointwise minimization prob-

lem (30) becomes a simple constrained quadratic minimization problem

v̂(t) , arg min
v∈K̃

|θ(t) + σ(t)−1v|2, ∀t ∈ [0, T ].

Furthermore, in the case where K = RN , the complete market case, then K̃ = {0}
and v̂ = 0, the optimal control (31) reduces to π̂(t) = [σ(t)σᵀ(t)]−1 [b(t)− r(t)1] for all

t ∈ [0, T ], and we recover the unconstrained log utility maximization problem discussed in

[10].

Remark 15. From the above two examples, we contrast our method to the approach in

[6, 12, 13], which rely on the introduction of a family of auxiliary unconstrained problems

formulated in auxiliary markets parametrized by money market and stock mean return

rates [6, Section 8]. The existence of a solution to the original problem is then equivalent

to finding the fictitious market that provides the correct optimal solution to the primal

problem. On the other hand, we explicitly write out the dual problem to the original con-

strained problem only relying on the elementary convex analysis results and characterize

its solution in terms of FBSDEs. The dynamic relationship between the primal and dual

FBSDEs then allows us to explicitly construct the optimal solution to the primal problem

from that to the dual problem.

4.3 Constrained non-HARA utility maximization

In this subsection, we assume U is a non-HARA utility function defined by

U(x) =
1

3
H(x)−3 +H(x)−1 + xH(x)

for x > 0, where H(x) =
√

2
(
−1 +

√
1 + 4x

)− 1
2 . The dual function of U is given by

Ũ(y) =
1

3
y−3 + y−1
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for y > 0. Assume that K ⊆ RN is a closed convex cone and r, b, σ are constants. The

dual problem becomes

Minimize x0y + E

[
1

3

(
Y (y,v)(T )

)−3
+
(
Y (y,v)(T )

)−1]
over (y, v) ∈ (0,∞)×D.

We solve the above problem in two steps: first, fix y and find the optimal control ṽ(y);

second, find the optimal ŷ. We can then construct the optimal solution explicitly.

Step 1: The DPP implies that the dual value function v(t, y) satisfies the following

HJB equation{
∂
∂t
v(t, y)− ryvy(t, y) + 1

2
infv∈K̃ |θ + σ−1v|2y2vyy(t, y) = 0,

v(T, y) = 1
3
y−3 + y−1,

for (t, y) ∈ [0, T ]× [0,∞). Let v̂ be the minimizer of infv∈K̃ |θ+σ−1v|2 and θ̂ , θ+σ−1v̂.

Assume |θ̂| > 0. Using the Feynman-Kac formula, we can easily find

v(t, y) =
1

3
y−3e(3r+6|θ̂|2)(T−t) +

1

y
e(r+|θ̂|

2)(T−t).

Step 2: Consider the following scalar convex minimization problem

inf
y>0

(x0y + v(0, y)).

The minimizer ŷ satisfies the equation

x0 − ŷ−4e(3r+6|θ̂|2)T − ŷ−2e(r+|θ̂|2)T = 0.

Hence, we have

ŷ =
1√
2x0

[
e(r+|θ̂|

2)T +

√
e2(r+|θ̂|2)T + 4x0e3(r+2|θ̂|2)T

] 1
2

and the optimal state process for the dual problem is given by

Ŷ (t) = ŷe−(r+
1
2
|θ̂|2)t−θ̂ᵀW (t). (32)

Using the martingale property of p̂2Ŷ , see (21), we have

p̂2(t)Ŷ (t) = E
[
Ŷ (T )−3 + Ŷ (T )−1|Ft

]
= ŷ−3e3(r+

1
2
|θ̂|2)T e3θ̂

ᵀW (t)e
9
2
|θ̂|2(T−t) + ŷ−1e(r+

1
2
|θ̂|2)T eθ̂

ᵀW (t)e
1
2
|θ̂|2(T−t).

Substituting (32) back into the above equation and rearranging, we have

p̂2(t) = a1S1(t) + a2S2(t),

where a1 = ŷ−4e3(r+2|θ̂|2)T , a2 = ŷ−2e(r+|θ̂|
2)T , S1(t) = e(r−4|θ̂|

2)t+4θ̂ᵀW (t), and S2(t) =

ert+2θ̂ᵀW (t). Applying Ito’s lemma, we have

dp̂2(t) = [rp̂2(t) + q̂ᵀ2(t)θ̂]dt+ q̂ᵀ2(t)dW (t),
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where

q̂2(t) = (4a1S1(t) + 2a2S2(t))θ̂, t ∈ [0, T ].

Finally, according to Theorem 12, we can construct the optimal solution of the primal

problem explicitly as{
π̂(t) = [σᵀ]−1q̂2(t)p̂

−1
2 (t),

X π̂(t) = p̂2(t) = ŷ−4e3(r+2|θ̂|2)T e(r−4|θ̂|
2)t+4θ̂ᵀW (t) + ŷ−2e(r+|θ̂|

2)T ert+2θ̂ᵀW (t).

Remark 16. Suppose that after attaining the dual value function v, we try to recover

the optimal solution to the primal problem directly. By the duality relation between the

primal and dual value functions, see [2, Theorem 2.6], the primal value function is given

by

u(t, x) = v(t, ŷ(t, x)) + vy(t, ŷ(t, x))ŷ(t, x) =
2

3

(
ŷ(t, x)−1e(r+|θ̂|

2)(T−t) + 2xŷ(t, x)
)
,

where ŷ(t, x) is the solution of equation vy(t, y) + x = 0 and is given by

ŷ(t, x) =
1√
2x

[
e(r+|θ̂|

2)(T−t) +
√
e2(r+|θ̂|2)(T−t) + 4xe3(r+2|θ̂|2)(T−t)

] 1
2

Hence, to find the optimal control π̂, we would need to solve the following optimization

sup
π∈K

(
x (r + πᵀσθ)ux(t, x) +

1

2
x2πᵀσσᵀπuxx(t, x)

)
to get an optimal feedback control π̂(t, x). To find the optimal wealth process X π̂, we would

need to substitute π̂(t, x) into (3) and solve a highly complicated nonlinear SDE. However,

in the approach we proposed, the optimal adjoint process of the dual problem can be written

out explicitly as conditional expectations of the dual process. The optimal solution to the

primal problem can be constructed explicitly thanks to their dynamic relation as stated in

Theorem 12.

5 Conclusions

In this paper, we study the constrained utility maximization problem following the convex

duality approach. After formulating the primal and dual problems, we construct the

necessary and sufficient optimality conditions for both the primal and dual problems

in terms of FBSDEs plus some additional conditions. Such formulation allows us to

establish the explicit connection between the primal and dual optimal solutions in a

dynamic fashion. Finally we solve three constrained utility maximization problems to

illustrate our dynamic convex duality FBSDE approach.
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