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Abstract
One of the outstanding open questions in modern applied mathematics is
whether solutions of the incompressible Euler equations develop a singularity in
the vorticity field in a finite time. This paper briefly reviews some of the issues
concerning this problem, together with some observations that may suggest that
it may be more subtle than first thought.

PACS numbers: 47.10.A−, 47.15.ki

1. Introduction

1.1. Opening remarks

The year 2007 marked the 300th anniversary of Leonhard Euler’s birth and the 250th
anniversary of his foundational paper on fluid dynamics. The meetings held in Aussois and
St. Petersburg to celebrate these anniversaries also brought into sharper focus the very great
distance needed to travel before it can be said that the behaviour of solutions of the three-
dimensional Euler equations are thoroughly understood. Our generation has been raised in an
age of ever-larger-scale computations from which has emerged the natural question whether
the vorticity field develops a singularity (blow-up) in finite time [1,2]. The general philosophy
has been that ever greater computing power, together with careful numerical integration and
data handling, will eventually provide a platform where convergence to a ‘yes’ or ‘no’ answer
to this question might be expected from a range of computations. An extensive literature
has arisen [3–22], including those where high symmetry has been imposed [23–32], but there
appears to be no conclusive agreement with a variety of contradictory results appearing in
recent years [15–22].

Lack of space precludes a full listing of the history of both computations and analysis;
indeed two recent reviews cover many aspects of this [33,34]. Nevertheless, a few remarks are
in order. The older computations of Kerr [15, 16] together with preliminary newer results by
Bustamante and Kerr [17], in which a singularity has been observed, have been contradicted by
the recent computations of Hou and Li [18,19] who have seen only super-exponential growth.
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Both computations used similar, but not identical, anti-parallel vortex tube initial conditions.
Their results largely coincide until a late stage where differences in filtering are noticeable.
Another recent contribution is that of Orlandi and Carnevale [20] who have used Lamb dipoles
as initial conditions to observe singular behaviour, and that of Grafke et al [22]. Analytical
approaches have mainly centred around conditional estimates on the magnitude and direction
of vorticity that have extended the Beale–Kato–Majda theorem [35] (see section 1.2) to include
the direction of vorticity; the most notable papers here are those by Constantin et al [44], Deng
et al [46,47] and Chae [42]. This approach has added to our local geometric understanding of
the problem while falling short of a total solution [35–48].

It is possible, however, that a question requiring a definite ‘yes’ or ‘no’ answer to the open
question of singularity formation may ignore some of the complexities inherent in the problem.
This paper does not attempt to answer this question in ‘yes’ or ‘no’ terms. Instead its aim lies
in a different direction; namely, to demonstrate that the problem may have a more sensitive
nature than first thought. The main strategy is to show that �2(t), the L2-norm of the vorticity,
and �∞(t), the L∞-norm of the vorticity, both have a potentially binary nature in time. It is
shown that the time-axis is divided into so-called ‘plus’ and ‘minus’ intervals on which certain
inequalities involving these norms are reversed. Solutions behave differently on these intervals
and their occurrence may depend on many factors that are peculiar to a particular computation
suggesting that more needs to be understood regarding their occurrence and behaviour.

1.2. Background to the Euler equations

Consider the three-dimensional incompressible Euler equations [1] for the evolution of the
vorticity field ω = curl u

Dω

Dt
= ω · ∇u (1.1)

acting on a domain which is a three-dimensional periodic box V = [0, L]3. u is the velocity
field of the fluid and the material derivative is defined by

D

Dt
= ∂

∂t
+ u · ∇, div u = 0 . (1.2)

The most important result on existence of solutions of the three-dimensional Euler equations
is the theorem due to Beale et al [35]—see also references [35–48] and the two recent
reviews [33, 34]. There are different ways of stating this theorem but its essence is:

Theorem 1 (Beale et al [35]). There exists a global solution u ∈ C([0, ∞]; Hs) ∩
C1([0, ∞]; Hs−1) of the Euler equations for s � 3 if and only if, for every t > 0,∫ t

0
‖ω(·, ξ)‖∞ dξ < ∞. (1.3)

The power of this result is two-fold. Firstly, it shows that only the L∞-norm, ‖ω‖∞, controls
the regularity of solutions. Secondly, while it does not predict a singularity in ‖ω‖∞ it restricts
those that may potentially occur of the type ‖ω‖∞ ∼ (ts − t)−p to the range p � 1; in the case
when p < 1 the theorem is violated.

For technical reasons it is necessary to define an additive constant frequency �0 = T −1

where T is some time scale of a computation3. �2 and �∞ are defined by

�2(t) = L−3/2‖ω(·, t)‖2 + �0 �∞(t) = ‖ω(·, t)‖∞ + �0 . (1.4)

Thus �0, �2 and �∞ are ordered for all t � 0 such that �0 � �2(t) � �∞(t).
3 It is not strictly necessary for �0 to be defined in this way: for instance, for rotating Euler, �0 could simply be
twice the Earth’s frequency of rotation with T chosen independently.
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2. The potentially binary nature of the time-axis

Weak solutions of the Navier–Stokes equations in the Leray sense [49,50] have no counterpart
for the three-dimensional Euler equations, although special weak solutions have been
constructed [51,52]: for progress in this area see the recent paper by Lellis and Székelyhidi [53].
Formally, therefore, we assume that solutions exist on a chosen interval [0, T ] where, in
practical terms, T could be taken to be the final time in a computation. Now consider two
parameters α + µ = 1 whose inverses α−1 and µ−1 are used as the exponents in a Hölder
inequality ∫ T

0
�α

2 dt �
∫ T

0
�α

∞ dt =
∫ T

0

(
�∞
�2

)α

�α
2 dt

�
(∫ T

0

(
�∞
�2

)α/µ

dt

)µ (∫ T

0
�2 dt

)α

. (2.1)

Thus we have ∫ T

0

(
�∞
�2

)α/µ

dt �
(∫ T

0
(�−1

0 �2)
α dt

) (∫ T

0 (�−1
0 �2)

α dt∫ T

0 (�−1
0 �2) dt

)α/µ

. (2.2)

In the bracket on the right-hand side the numerator is bounded below by T because �2 >

�0 = T −1. In the denominator either �2 can be used as it stands or it can be replaced by �∞
because �2 � �∞. Both options are required later so the m-label is used with the two options
m = 2 or m = ∞. The m-labelling potentially extends to µ = µm and α = αm. Then (2.2)
becomes (t has been exchanged for ξ in the integral in the denominator)

∫ T

0




(
�∞(t)

�2(t)

)αm/µm

−
(

[T �2(t)]µm∫ T

0 �m(ξ) dξ

)αm/µm


 dt � 0. (2.3)

The construction of a positive integral of a difference was first used in [54] for the Navier–Stokes
equations and again in [55–57].

On what are designated as m(±)-intervals, (2.3) shows that there are potentially intervals
of the time-axis4 where the integrand is positive/negative. Because the integral is positive, the
m(−)-intervals cannot dominate. For technical reasons these are studied first.

2.1. Behaviour on m(−)-intervals

Consider now m(−)-intervals where

T �∞(t)

∫ T

0
�m(ξ) dξ < [T �2(t)]

1+µm (m(−)-intervals). (2.4)

The starting points of these are labelled as t = tm(µm, T ). An important question is under
what circumstances, if any, are there functions �∞(t) and �2(t) that satisfy (2.4)? Defining
the dimensionless integral θm(t) as

θm(t) =
∫ t

0
�m(ξ) dξ, (2.5)

the inequality �2 � �∞ turns (2.4) into

θm(T ) < [T �2(t)]
µm t � tm(µm, T ) . (2.6)

4 The ±-intervals are also dependent on initial data but this is suppressed notationally.
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When m = 2, (2.6) is in the right form as it stands but when m = ∞ a modification is taken
in which �2 is replaced on the right-hand side by �∞. Then the two options are expressed by

θm(T ) < [T �m(t)]µm m = 2 or ∞ . (2.7)

If no singularity occurs anywhere in [0, T ] then θm(T ) = ∫ T

0 �m(ξ) dξ takes a fixed finite
value for each T : it contains the whole history of �m(t). Differentiation of the equality (2.5)
and using new dimensionless variables based on

�m(τm) = θm(t), τm = �0(t − tm), τ ∗
m = �0(T − tm) (2.8)

makes (2.7) into
d�m

dτm

> [�m(τ ∗
m)]1/µm 0 � τm � τ ∗

m. (2.9)

A trivial integration gives

�m(τm) > �m(0) + τm[�m(τ ∗
m)]1/µm. (2.10)

Because �m(τm) � �m(τ ∗
m) an increasing �m(τm) can only exist in this interval for a finite

time τmax
m which is defined as the solution of

�m(τ ∗
m) = �m(0) + τmax

m [�m(τ ∗
m)]1/µm. (2.11)

Defining f ∗
m = �m(τ ∗

m)/�m(0) � 1, τmax
m becomes

τmax
m = 1

[�m(0)]1/µm−1

(
f ∗

m − 1

[f ∗
m]1/µm

)
. (2.12)

The effect of the initial condition (i.e. at t = tm) is encoded in the first factor, while the effect
of the final condition (at t = T ) is encoded in f ∗

m � 1. For a fixed initial condition �m(0),
τmax
m has a maximum attained at f ∗

m,max = 1/(1 − µm), where

τmax
m

∣∣
f ∗

m,max
= µm(1 − µm)1/µm−1

[�m(0)]1/µm−1
→ 1 as µm ↗ 1 . (2.13)

(2.10) and (2.11) show that the m(−)– interval widths can be no greater than τmax
m .

2.2. Behaviour on m(+)-intervals

We now consider those regions of the time-axis, designated as m(+)-intervals, where

T �∞(t)

∫ T

0
�m(ξ) dξ � [T �2(t)]

1+µm (m(+)-intervals). (2.14)

(2.14) may be re-expressed as

�∞(t)

�2(t)
� [T �2(t)]

µm

(∫ T

0
�m(ξ) dξ

)−1

. (2.15)

There is a universal lower bound of unity on the ratio �∞/�2 but it is clear that once �2(t)

has increased such that

(T �2)
µm >

∫ T

0
�m(ξ) dξ (2.16)

then the lower bound in (2.15) is raised away from unity and values of �∞(t) and �2(t) must
diverge rapidly, resulting in different growth rates. For m = 2, ∞ (having used �2 � �∞),
(2.16) becomes (2.7). It has already been shown in section 2.2 that a solution exists only for a
finite time so this divergent behaviour can only be intermittent.

The nature of the integral over T in (2.3) makes it plain that the 2(±)-intervals do
not necessarily fall in precisely the same positions as the ∞(±)-intervals although it might
be expected that they are related. Comparing (2.14) and (2.4), and using the inequality
�2(t) � �∞(t), it is easy to prove the following conditional result
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Lemma 1. If µ2 � µ∞ then:

(1) Every ∞(−)-interval is contained in some 2(−)-interval.
(2) Every 2(+)-interval is contained in some ∞(+)-interval.

2.3. Singular behaviour?

A final question is whether (2.4) and (2.14) are formally consistent with the occurrence of
singular solutions if T is chosen large enough? (2.14) is consistent with

1. �∞(t) blowing up (θ∞(T ) = ∞) with �2(t) remaining finite (θ2(T ) < ∞) on both 2 (+)

and ∞(+)-intervals.
2. �∞(t) and �2(t) both blowing up simultaneously on both 2 (+) and ∞(+)-intervals.

3. Conclusion

The brief observations in this paper may have some bearing on the subtle yet contradictory
differences appearing in the different computations referenced in section 1. While few
definitive conclusions have been drawn and detailed conclusions have been left for further
discussion, the analysis has shown that the potential occurrence of m±-intervals in computed
solutions for �m (m = 2, ∞) may have unintended consequences, as it is likely that their
existence, width and distribution will be dependent upon initial data, the nature of the numerical
scheme employed and any other processes that may differ with each computation. Numerically
it may be useful to compare the time evolution of �∞(t) and �2(t) in a computation over a
chosen [0, T ] to check which type of intervals appear. If m(−)-intervals exist then the subset
m(+) is closed which potentially could make it a fractal set, thereby adding to the difficulties
inherent in the problem. However, given the positivity of the integral it is possible that no
m(−)-intervals may ever be seen, although this in itself could be an interesting result.

Our conclusion is that these results call for caution in how three-dimensional Euler
computations are interpreted, although we agree that a geometric understanding of solutions
may ultimately be the way to make progress with the ‘yes’ or ‘no’ question posed in section 1
[44, 46, 47].
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