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Abstract

A well known limitation with stretched vortex solutions of the 3D Navier–Stokes (and Euler) equations, such as those of
Burgers type, is that they possess uni-directional vorticity which is stretched by a strain field that is decoupled from them.
It is shown here that these drawbacks can be partially circumvented by considering a class of velocity fields of the type
uuu = (u1(x, y, t), u2(x, y, t), γ (x, y, t)z +W(x, y, t)) whereu1, u2, γ andW are functions ofx, y andt but notz. It turns
out that the equations for the third component of vorticityω3 andW decouple. More specifically, solutions of Burgers type
can be constructed by introducing a strain field intouuu such thatuuu = (−(γ /2)x − (γ /2)y, γ z) + (−ψy,ψx,W )

. The strain
rate,γ (t), is solely a function of time and is related to the pressure via a Riccati equationγ̇ + γ 2 + pzz(t) = 0. A constraint
onpzz(t) is that it must be spatially uniform. The decoupling ofω3 andW allows the equation forω3 to be mapped to the
usual general 2D problem through the use of Lundgren’s transformation, while that forW can be mapped to the equation
of a 2D passive scalar. Whenω3 stretches thenW compresses and vice versa. Various solutions forW are discussed and
some 2π -periodicθ -dependent solutions forW are presented which take the form of a convergent power series in a similarity
variable. Hence the vorticityωωω = (

r−1Wθ,−Wr, ω3
)

has nonzero components in the azimuthal and radial as well as the axial
directions. For the Euler problem, the equation forW can sustain a vortex sheet type of solution where jumps inW occur
whenθ passes through multiples of 2π . ©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Stretched vortices of Burgers type, which are exact solutions of the Navier–Stokes equations, are often used as
typical solutions to illustrate the tube-sheet paradigm of modern turbulence theory [1–9]. In reality they are pseudo-
3D in nature as they are composed of 2D flows superimposed on a 3D vorticity free strain field, a fact exploited
by Lundgren in his transformation [2]. Depending on whether a tube or shear layer symmetry has been chosen,
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corresponding to uni-axial or bi-axial strain [3], they have the properties that the vorticityωωω firstly lies respectively
either along the axis of the tube or in the plane of the layer and secondly that it aligns with an eigenvector of
the strain matrixS. While numerical simulations [10,11] and experiments [12] have shown that, in a spatially
averaged sense, alignment of the vorticity vectorωωω with the intermediate eigenvector ofS is favoured (for a list
of references see [13]), it is clear thatlocal vorticity accumulation and alignment processes are more complicated
than this [14,15]. For instance, the solution for the Burgers vortex has the drawback that it is stretched by a strain
field that is decoupled from the flow around it and that its vorticity is unidirectional [1–3]. Complicated vortical
structures caused by both vortex stretching and compression have a dynamic complexity that requires a more subtle
theoretical explanation (see the recent review by Pullin and Saffman [16]). It is shown in this paper that it is possible
to construct a more general class of stretched vortex solutions of the 3D Navier–Stokes (and Euler) equations which
have nonzero components of vorticity in the radial, azimuthal and the axial directions and that these components
are stretched or compressed by a strain that is dynamically coupled to the pressure field. Nevertheless, conventional
Burgers vortices are generally the final asymptotic state if the strain rateγ (t) is a positive function of time.γ (t)
itself plays a fundamental role in the coupling between the axial and horizontal components and that in turn, this
object is driven by the second partial derivative of the pressurepzz through a Riccati equation.

These results are achieved in two stages. The first stage is to consider a generalisation of what is often referred
to as ‘columnar flow’, the velocity field for which is given by

uuu = (u1(x, y, t), u2(x, y, t), γ (x, y, t)z+W(x, y, t)) (1)

with u1, u2 andγ satisfying a continuity condition. The distinguished vertical variablez appears only linearly in
u3, whereasu1, u2, γ andW are functions only of the horizontal co-ordinates and time. In polar co-ordinates the
vorticity field takes the form

ωωω =
(
ω(r), ω(θ), ω3

)
=

(
r−1(zγθ +Wθ),−(zγr +Wr), ω3

)
(2)

where ther, θ subscripts refer to partial derivatives. This shows that nonzero radial and azimuthal components are
dependent on at least one ofγ orW possessing some form of nontrivial spatial structure. In Section 2.1 it is shown
that an unusual decoupling takes place betweenω3 andW with γ satisfying a nonlinear equation which is related
to the secondz-derivative of the pressurepzz which is constrained to be spatially uniform. The second stage is to
solve these equations forω3 andW . To construct stretched vortex solutions of Burgers type it is necessary to be
more specific with the velocity field in Eq. (1) and introduce a strain field structure intou1 andu2

uuu =
(
−1

2γ (t)x,−1
2γ (t)y, γ (t)z

)
+ (−ψy,ψx,W )

(3)

whereω3 = ψxx +ψyy with ψ = ψ(x, y, t). Despite the fact thatγ has been chosen to be spatially uniform in Eq.
(3), solutions forW which are dependent onr andθ can generate nonzero componentsω(θ) andω(r). The unusual
decoupling betweenω3 andW can be exploited advantageously by applying Lundgren’s transformation which maps
the equation forω3 to a general 2D problem in the usual way [2]. In addition, the equation forW is mapped to
the equation for the evolution of a passive scalar following this flow. The role ofγ is particularly important in this
process. One of the fundamental objects in Lundgren’s transformation is the quantitys(t) = exp

∫ t
0γ (t

′)dt ′ (see
Section 2.2), which obviously grows or decays depending on the sign ofγ . Whens increasesω3 stretches, while
ω(θ) andω(r) compress;ωωω therefore rotates to align more closely with thez-axis. Conversely, whens decreases
the opposite process occurs andωωω rotates towards the horizontal plane. This effect is orchestrated bypzz through a
Riccati equation forγ .

Perhaps the most spectacular solution of the Navier–Stokes equations is Lundgren’s approximate 2D spiral
solution forω3. It is the only solution whose energy spectrum has ak−5/3 factor [2]. In Section 3 it is shown how
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2π -periodicθ -dependent solutions forW can be found in terms of a convergent power series solution in a similarity
variable. The difference between this construction ofθ -dependent solutions forW , which are not obviously of spiral
form, and that of Lundgren forω3, is that theu(θ) term in the Jacobian is taken from the exact point source solution
for the Burgers vortex. Of course,θ -dependence inW results in a nonzeroω(r) component.

In the case of the Euler equations it is shown in Section 4 that given suitable initial conditions, a vortex sheet-like
solution can be found where a jump inW occurs every time the azimuthal angleθ passes through 2π . This produces
aδ-function in the radial component of vorticity. In addition, the example of Stuart’s vortices [17] is used to illustrate
how a solution of the basic 2D equation can be used to construct a solution of theW equation.

There exists a substantial body of literature on exact solutions of the Navier–Stokes equations of which the
Burgers solutions are the most well known. In addition, there are also steady periodic ABC flows [18] and the
Kelvin mode shear flow solutions of Craik and Criminale [19]. Takaoka has discussed a restricted case of the type
of velocity field given in Eq. (3) in order to investigate reconnection processes but hasψx andψy restricted to being
functions oft only [20]. With particular relevance to the class of flows given in Eq. (1) but withW = 0, Sullivan
[21] extended the steady solution for a viscous vortex embedded in a radially inward asymmetric stagnation point
flow over a plane boundary [1,22]. This vortex naturally divides into two cells and the solution has been extended
by Bellamy-Knights to take account of a moving separation surface between them [23].

2. Decoupling in 3D Navier–Stokes solutions

2.1. The evolution of the columnar flow velocity field

Consider the Navier–Stokes equations

Duuu

Dt
= ν1uuu− ∇p, divuuu = 0 (4)

where the total derivative is given by

D

Dt
= ∂

∂t
+ uuu · ∇. (5)

p = p(x, y, z, t) is the pressure and1 is the full 3D Laplacian operator. Letuuu = (u1, u2, u3) be a candidate
velocity field solution of Eq. (4) taken in the form

u1 = u1(x, y, t), u2 = u2(x, y, t), u3 = zγ (x, y, t)+W(x, y, t) (6)

with z appearing only inu3. With this velocity field the total derivative is now

D

Dt
= ∂

∂t
+ u1

∂

∂x
+ u2

∂

∂y
+ (zγ +W)

∂

∂z
. (7)

Note that whenever this operates on the variablesω3,W andγ (as well asu1 andu2), which are all functions of
x, y andt but notz, then it behaves as a 2D operator. We also define the 2D version of the Laplacian operator as

12 = ∂2

∂x2
+ ∂2

∂y2
. (8)

With uuu defined in Eq. (6) the vorticity vector in Cartesian co-ordinates for this flow is given by

ωωω = (ω1, ω2, ω3) = (Wy + zγy,−Wx − zγx, u2,x − u1,y). (9)
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where thex, y subscripts refer to partial derivatives. This vorticity vector must satisfy

Dωωω

Dt
= Sωωω + ν1ωωω (10)

whereS is the strain matrix whose elements are

Sij = 1
2(ui,j + uj,i). (11)

The subtle nonlocal relations that hold betweenu1, u2,W and the components ofωωωwould not, at first glance, appear
to engender optimism that any simple pattern could emerge. Remarkably, however, a decoupling occurs, the precise
nature of which is expressed in the following.

Theorem 1. With the columnar type velocity field defined in Eq. (6),ω3,W andγ satisfy

Dω3

Dt
= γω3 + ν12ω3, (12)

DW

Dt
= −γW + ν12W, (13)

Dγ

Dt
+ γ 2 + pzz(t) = ν12γ (14)

with u1 andu2 satisfying the continuity condition

u1,x + u2,y + γ = 0. (15)

Remark 1. Note that the second partialz-derivative of the pressurepzz must be spatially uniform, a constraint
necessary for the existence of such flows.

Remark 2. The calculations of this paper have been performed without the inclusion of rotation. Not surprisingly,
the addition of this effect makes little difference as the proof will show; the inclusion of a2���×uuu in the Navier–Stokes
equations adds no extra factor to the equation foru3 if ��� points in thek̂kk direction. The theorem therefore remains,
in essence, the same except forω3 → ω3 + 2�, which corresponds to a change in the horizontal flow problem.

Proof. The evolution of the third velocity componentu3 = γ z+W in the Navier–Stokes equations is given by

ν(z12γ +12W)− pz = D

Dt
(γ z+W) = z

(
Dγ

Dt
+ γ 2

)
+

(
DW

Dt
+ γW

)
(16)

which, on integration with respect toz, gives

−p(x, y, z, t) = 1

2
z2

(
Dγ

Dt
+ γ 2 − ν12γ

)
+ z

(
DW

Dt
+ γW − ν12W

)
+ f (x, y, t). (17)

However, from the first two components of the Navier–Stokes equations, we know thatpx andpy must be inde-
pendent ofz. For this to be true the coefficients ofz andz2 in Eq. (17) must necessarily satisfy

DW

Dt
+ γW − ν12W = c1(t) (18)

and

Dγ

Dt
+ γ 2 − ν12γ = c2(t). (19)
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c1(t) can be taken as zero without loss of generality as this term is like an acceleration of the co-ordinate frame in
thez-direction. Equation (17) shows thatc2(t) = −pzz(t). This obviously restrictspzz to being spatially uniform.
To find the evolution ofω3 we consider the strain matrixS = {Sij }

S =

 u1,x (1/2)(u1,y + u2,x) (1/2)(zγx +Wx)

(1/2)(u1,y + u2,x) u2,y (1/2)(zγy +Wy)

(1/2)(zγx +Wx) (1/2)(zγy +Wy) γ


 . (20)

Eqs. (9) and (20) show that

(Sωωω)3 = γω3 (21)

so the third component of Eq. (10) shows thatω3 decouples fromW to give

Dω3

Dt
= γω3 + ν12ω3. (22)

Finally two checks should be applied. It is straightforward to demonstrate that the evolution ofω1 = zγy +Wy and
ω2 = −(zγx +Wx) in Eq. (10) is consistent with Eqs. (12)–(15). It is also straightforward to demonstrate that the
Poisson equation−1p = ui,j uj,i is also consistent with Eqs. (12)–(15). �

2.2. Results for a strain field

It is instructive to be more specific and breaku1 andu2 into a strain part and a 2D part in the conventional way

u1 = −γ
2
x − ψy, u2 = −γ

2
y + ψx (23)

by introducing a stream functionψ(x, y, t). The variableγ , which now can be identified as the strain rate, is taken
as a function of time onlyγ = γ (t). The continuity condition is now satisfied. Equations (12) and (13) in Theorem
1 now become

Dω3

Dt
= γ (t)ω3 + ν12ω3, (24)

DW

Dt
= −γ (t)W + ν12W, (25)

where the total derivative is given by

D

Dt
= ∂

∂t
− γ

2

(
x
∂

∂x
+ y

∂

∂y

)
+ Jx,y(ψ, ·). (26)

New co-ordinates can be found by Lundgren’s transformation [2]

s(t) = exp

(∫ t

0
γ (t ′)dt ′

)
(27)

ξ = s1/2x, η = s1/2y, τ =
∫ t

0
s(t ′)dt ′. (28)

The vorticity componentω3 and the velocity componentW can be rescaled into new variables thus

�3(ξ, η, τ ) = s−1ω3(x, y, t) and W(ξ, η, τ ) = sW(x, y, t). (29)
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In the(ξ, η) variables define the 2D Laplaciañ12 as

1̃2 = ∂2

∂ξ2
+ ∂2

∂η2
(30)

and the operatorD/Dτ as

D

Dτ
= ∂

∂τ
+ Jξ,η(9, ·) (31)

where9(ξ, η, τ ) = ψ(x, y, t). It is now easily shown that Eqs. (24) and (25), together with Eq. (26), can be
transformed into the scaled variables�3 andW expressed in the new co-ordinate system(ξ, η, τ ). The result can
be summarised as follows:

Theorem 2. The quantity�3(ξ, η, τ ) evolves according to the 2D Navier–Stokes problem

D�3

Dτ
= ν1̃2�3 (32)

with�3 = 1̃29, whereasW(ξ, η, τ ) is a passive scalar and is found from solving the 2D linear problem

DW

Dτ
= ν1̃2W. (33)

The strain rateγ (t) is governed by the Riccati equation

γ̇ + γ 2 + pzz(t) = 0. (34)

Remark 3. As Lundgren has shown[2], Eq. (32) is the standard 2D Navier–Stokes equation expressed in the
(ξ, η, τ ) variables. Solutions of this can then be mapped back into the original 3D problem.W is a passive scalar
driven by this flow and is solved from the linear Eq. (33)once derivatives of9 have been determined from Eq. (32).
In Sections3 and4 we show how this might be exploited through some examples.

Remark 4. Whenγ < 0 it is possible that the domaint ∈ [0,∞] could map on to a finite section of theτ -axis. For
example, ifγ = −γ0 = constantwith γ0 > 0 thens = exp(−γ0t) andτ = γ−1

0 [1 − exp(−γ0t)]. Hencet ∈ [0,∞]
maps ontoτ ∈ [0, γ−1

0 ]. If γ is such thats decays less strongly then theτ -axis could be infinite.

2.3. A Riccati equation forγ

Eq. (29) shows that the sign ofγ determines whetherω3 andW grow or decay. The strain rateγ satisfies an
equation of Riccati type which can be linearized. Actually the linearizing transformation is none other than Eq.
(27). Indeeds satisfies

s̈ + {pzz(t)}s = 0. (35)

Thuss(t) is an eigenvector of the classical Sturm–Liouville equation corresponding to a zero eigenvalue. It is known
(see for example [24]) that ifpzz(t) remains positive for allt thens will develop a zero in finite time, in which case
γ → ±∞. We illustrate the relationship betweenpzz, s andγ by considering some explicit examples. Let

pzz(t) = −a2 = const (36)

then Eq. (35) yields

s = exp(±at) or s = coshat (37)
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Hence

γ = ±a or γ = a tanhat. (38)

The second form ofγ above satisfiesγ → a as t → ∞. We note that a zero ins will appear from the other
hyperbolic solution whereγ blows up att = 0. Another form ofpzz which also gives an explicitγ is

pzz = a2(2sech2at − 1) (39)

which is positive att = 0 but becomes negative ast increases. In this cases = sechat and so

γ = −a tanhat. (40)

Clearlyγ → −a ast → ∞. The case whenγ is spatially dependent is discussed in Section 5
It is worth noting that no other second spatial derivative other thanpzz(t) drivess(t) which, in turn, controls

the growth or decay of the azimuthal and vertical vorticity components. The restriction thatpzz must be spatially
uniform does not apply top = p(x, y, z, t) itself as Eq. (17) shows thatp is a function of all three spatial variables
with the horizontal partf (x, y, t) being found by solving a 2D Poisson equation.

3. Solutions of the Navier–Stokes equations

In addition to the transformation that reduces the evolution ofω3 to a 2D problem, Lundgren also produced
spiral solutions of the Euler and Navier–Stokes equations [2] (see also [16]). These solutions are for�3, and are
therefore obtained from Eq. (32). Since this equation is decoupled fromW, the spiral solution is still appropriate
here withW passively following this flow. Here we briefly discuss this solution in the context of this paper, to see
if it is appropriate to use it when looking for exact solutions forW. Indeed, how the Navier–Stokes spiral solution
is constructed gives an idea of howθ -dependent solutions forW might be found.

In the inviscid case, Lundgren’s idea was to look for a solution of Eq. (32) for�3 in the form of a set of Dirac
δ-functions [2]

�3(ρ, θ, τ ) = 2π
∑
j

0j (ρ)δ
[
θ − �̃(ρ)τ − θj

]
(41)

whereρ is the 2D radial variable in theξ − η plane such thatρ2 = ξ2 + η2. Equation (41) could be envisaged as
representing a set of radial vortex sheets at anglesθj and strengths0j . �̃(ρ) = ρ−1u(θ) is taken to be theaverage
angular velocity. Clearly the sheets in Eq. (41) have a spiral structure of the formθ = �̃(ρ)τ .

Viscous corrections to this for the Navier–Stokes equations were obtained by considering the full equation for
�3

∂�3

∂τ
+ �̃(ρ, τ )

∂�3

∂θ
= ν

(
∂2�3

∂ρ2
+ 1

ρ

∂�3

∂ρ
+ 1

ρ2

∂2�3

∂θ2

)
(42)

with theθ -dependence being 2π -periodic. The angular velocitỹ� = ρ−19ρ was taken to be independent ofτ on
the grounds that it is a rapidly decaying function ofτ and so can be replaced by its asymptotic value�̃(ρ). Lundgren
then demonstrated that the viscous corrections to the Fourier series solution of Eq. (42) matched the Fourier series
representation of Eq. (41) in the limitν → 0.

In theory, this spiral solution for�3 could also be used forW but in practice the inviscid limit leads us into
trouble in this case. It must be remembered thatW is a velocity field and therefore the radial component of vorticity
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contains aWθ term. In the inviscid limit this means we would have a derivative of aδ-function, leading us into
difficulties with generalised functions. To find simplerθ -dependent solutions forW requires a modification of the
idea used in Eq. (42) to which we turn in Section 3.2. Before this, however, we discuss axisymmetric solutions for
�3 andW.

3.1. Axisymmetric solutions forW

Equation (32) implies that axisymmetric solutions for�3 can be found from the diffusion equation

∂�3

∂τ
= ν

(
∂2�3

∂ρ2
+ 1

ρ

∂�3

∂ρ

)
. (43)

A point source solution of this equation is

�3(ρ, τ ) = a

τ
exp

[
− ρ2

4ντ

]
. (44)

This is the particular solution often used for the Burgers vortex where the parametera is any dimensionless constant.
As an example letγ = γ0 = constant whereγ0 > 0. Thens = exp(γ0t) andτ = γ−1

0 (exp(γ0t)− 1). Thus

ω3 = s�3 = aγ0 exp(γ0t)

exp(γ0t)− 1
exp

{
− γ0 exp(γ0t)r

2

4ν(exp(γ0t)− 1)

}
. (45)

In the large time limit

lim
t→∞ω3 = aγ0 exp

{
−γ0r

2

4ν

}
. (46)

ForW, the equivalent axisymmetric point source solution of Eq. (33) is

W(ρ, τ ) = `

τ
exp

{
− ρ2

4ντ

}
(47)

where, for dimensional reasons, we must takea ≡ `, a length, which could be any natural scale in the flow. The
azimuthal vorticity componentω(θ) is given by

ω(θ) = −∂W
∂r

= −s−1/2∂W

∂ρ
(48)

so it follows that

ω(θ)

r
= `

2ντ2
exp

[
− ρ2

4ντ

]
. (49)

If γ = γ0 > 0 we conclude that whereasω3 equilibrates to a finite constant value at any finite radiusr, in contrast,
ω(θ) decreases to zero.

Reversing the sign ofγ so thatγ = −γ0 = constant (γ0 > 0) we discover thats = exp(−γ0t) and τ =
γ−1

0 (1 − exp(−γ0t)). Henceτ → γ−1
0 ast → ∞ ands → 0. In consequence

lim
t→∞

ω(θ)

r
= `γ 2

0

2ν
and lim

t→∞ω3 = 0. (50)

These two examples in whichγ takes opposite signs illustrates the point thatω3 andω(θ) stretch or compress in
opposite fashions.
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3.2. Solutions forW dependent onθ

In looking for asymmetric solutions forW we use axisymmetric solutions for�3 (and hence9) to find solutions
forW that are dependent onθ . It is not generally valid for a Navier–Stokes flow to admit solutions which jump each
timeθ passes through 2π because of the problems arising from theWθθ term in the Laplacian. Solutions which are
2π -periodic inθ are more suitable. To achieve this goal consider solutions of Eq. (33) forW in terms ofρ, θ

∂W

∂τ
+ 1

ρ
Jρ,θ (9,W) = ν

(
∂2W

∂ρ2
+ 1

ρ

∂W

∂ρ
+ 1

ρ2

∂2W

∂θ2

)
. (51)

To calculate9ρ in the Jacobian we integrate�3 = 1̃29 to obtain

1

ρ

∂9

∂ρ
= 1

ρ2

∫ ρ

0
�3(ρ

′, τ )ρ′ dρ′. (52)

and use the point source solution (44) to obtain

1

ρ

∂9

∂ρ
= ν

f (ζ )

ρ2
(53)

where

ζ = ρ2

ντ
(54)

and

f (ζ ) = 2a

{
1 − exp

(
−ζ

4

)}
. (55)

This procedure is similar to that used in Eq. (42) except that we are using the point source solution instead of the
�̃(ρ) factor used by Lundgren. Hence we have an inbuiltτ -dependence in the coefficientu(θ). The partial differential
equation (51) in three variables(ρ, τ, θ) can now be transformed into one in two variables(ζ, θ)

∂2W

∂ζ 2
+

(
1

4
+ 1

ζ

)
∂W

∂ζ
+ 1

4ζ 2

(
∂2W

∂θ2
− f (ζ )

∂W

∂θ

)
= 0. (56)

In order to find separable solutions of this it is convenient to consider the complex functionV related toW by

W = Re{V} (57)

which satisfies

∂2V

∂ζ 2
+

(
1

4
+ 1

ζ

)
∂V

∂ζ
+ 1

4ζ 2

(
∂2V

∂θ2
− f (ζ )

∂V

∂θ

)
= 0. (58)

Now we look for separable solutions which are 2π -periodic inθ

V = U(ζ )einθ (59)

wheren is an integer. The complex functionU(ζ ) satisfies

d2U

dζ 2
+

(
1

4
+ 1

ζ

)
dU

dζ
−

(
n2 + inf (ζ )

4ζ 2

)
U = 0 (60)
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wheref (ζ ) is defined in Eq. (55). This ordinary differential equation has a regular singular point atζ = 0 and
an irregular singular point at infinity. Neglecting the exponential part off (ζ ) when |ζ | is large, the appropriate
asymptotic expansion in the latter case is [25,26]

Un = e−ζ/4
∞∑
p=1

bp

ζp
. (61)

In the finiteζ -plane,U possesses a convergent power series solution whose form is dictated by its associated indicial
equation. For smallζ ,f (ζ ) takes the formf (ζ ) ∼ aζ/2 so the two roots of the indicial equation,±(1/2)n, differ by
an integer. Thus one of the two solutions has a logarithmic singularity atζ = 0. Excluding this solution, it follows
that the physically admissible solution of Eq. (60) is given by the series

Un = ζ n/2
∞∑
m=0

amζ
m, n 6= 0 (62)

which converges for all finiteζ . Therefore our admissible solution forW is

W = Re
∑
n6=0

Un einθ . (63)

4. Results for the Euler equations

For the flow with the velocity field given in Eq. (1), and in the case of zero viscosity, an immediate corollary of
Theorem 1 is

D (ω3W)

Dt
= 0. (64)

This result is independent ofγ and demonstrates in the simplest manner possible howω3 andW must increase and
decrease in an opposite fashion. To see howω3 andW evolve individually we must restrict the flow to that of the
strain field of Eq. (23). In this case, Eqs. (32) and (33) in Theorem 1 reduce to

D�3

Dτ
= ∂�3

∂τ
+ Jξ,η (9,�3) = 0 (65)

and

DW

Dτ
= ∂W

∂τ
+ Jξ,η (9,W) = 0 (66)

where�3 = 9ξξ +9ηη. Eq. (65) is no more than the standard 2D Euler problem in Lundgren’s variables. Equation
(66) forW is the equation of a 2D passive scalar following this flow. Many solutions of the 2D Euler equations
are catalogued in Saffman’s book [4] and also in [27–31]. Hence we look here at only two examples. In the first
example we consider Eq. (66) in(r, θ, t) co-ordinates to look at the evolution of a passive vortex sheet. In the second
we consider the case of Stuart’s vortices using(ξ, η, τ ) variables.

4.1. Solutions forW representing a vortex sheet

Consider Eq. (66) forW written in terms ofr, θ, t andψ

∂W

∂t
−

(γ r
2

) ∂W
∂r

+ 1

r
Jr,θ (ψ,W) = 0. (67)
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We take a similar approach to that of the previous section for the Navier–Stokes equations where axisymmetric
solutions forω3 andψ from Eq. (65) were used to look for asymmetric solutions forW. Eq. (67) is a linear first
order equation with variable coefficients

∂W

∂t
−

(γ r
2

) ∂W
∂r

+
(

1

r

∂ψ

∂r

)
∂W

∂θ
= 0. (68)

No discontinuities occur if initial data is 2π -periodic but if it is not thenW must undergo a jump every timeθ
passes through 2π . Henceω(r) = r−1∂W/∂θ must have aδ(θ)-function structure representing a vortex sheet. In
terms of characteristics in the(r, θ) plane, rays will satisfy

dr

dt
= −γ r

2
,

dθ

dt
= 1

r

∂ψ

∂r
. (69)

On these raysr = s−1/2. Thus whens is increasing the sheet rolls up whereas whens is decreasing the sheet rolls
out and the evolution ofθ(t) on these rays is driven byψr . The whole structure is passive as it obviously advects
with the 2D part of the flow. One physical analogy is that the sheet is akin to a flag, attached to a flagpole, the
latter representing the tubular structure inω3. It is worth noting that as well having aδ(θ)-function structure inω(r)

representing a vortex sheet, across which the pressure is continuous, we also have a jump inθ in ω(θ) = −∂W/∂r.

4.2. Stuart’s vortices

The steady ‘cat’s eye’ type solution (static in the sense of being independent ofτ ) has been discussed by Stuart
[17] who took�3 as a function of9 only. This choice makes the Jacobian nonlinearity in Eq. (65) identically zero.
Specifically he took

�3 = 9ξξ +9ηη = e−29. (70)

The choice of the exponential on the right hand side makes Eq. (70) into Liouville’s equation which can be solved
exactly

9 = log
(
C coshη +

√
C2 − 1 cosξ

)
. (71)

When 1 ≤ C ≤ ∞ the stream lines have a cat’s eye structure. In the limitC → 1 this gives the 2D velocity
component∂9/∂η = tanhη which corresponds to a homogeneous shear layer profile. The limitC → ∞ gives the
stream function for a 2D array of point vortices. For theW equation we know thatW is a passive scalar following
this flow; because of this we have the freedom to chooseW also as an arbitrary function of9. A convenient choice
isW = �3 = e−29 which means that

W =
(
C coshη +

√
C2 − 1 cosξ

)−2
. (72)

This solution has aW = sech2η profile in theC = 1 limit. The two components of vorticityω1 andω2 now become

ω1 = s−1/2�1 = −2s−1/2C sinhη(
C coshη + √

C2 − 1 cosξ
)3

(73)

and

ω2 = s−1/2�2 = −2s−1/2
√
C2 − 1 sinξ(

C coshη + √
C2 − 1 cosξ

)3
. (74)
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Not surprisingly these two components become significant whens is decreasing. While they are independent of the
‘time’ variableτ they are not steady in real timet which is built intoξ andη throughs(t).

5. Conclusion

The conclusion reached in this paper is that it is possible to extend the Burgers vortex to a more general class of
vortices which have horizontal components of vorticity which interact with the axial component in an oppositional
manner. While we have produced analytical solutions forW in Section 3 in order to illustrate the stretching and
compressive processes involved, it is obvious that becauseW is a passive scalar, a class of numerical solutions
could be found which would depend on the underlying 2D flow problem for�3 and on the initial conditions forW.
The stretching and compressive processes in the problem are driven byγ which, in turn, is controlled bypzz(t).
Apparently this is an arbitrary function but we interpret its physical role as simply being the way the vortex connects
with, and is influenced by, the rest of the flow. Having to keepγ uniform in space unfortunately defeats the object
of trying to establish a connection between the strain and the vorticity field. This would requireγ to have some
form of spatial structure. Hence we replace Eq. (23) with

uuu = (−βx,−βy, γ z)+ (−ψy,ψx,W), (75)

whereβ = β(r, θ, t) andγ = γ (r, θ, t). Theorem 1 still holds but the continuity condition needs to be recomputed
to give

γ = 2β + r
∂β

∂r
(76)

whenceβ becomes

β = 1

r2

∫ r

0
r ′γ (r ′, θ, t)dr ′ + 0(θ, t)

r2
. (77)

One must however revert to using the total derivative in Eq. (14) so the equation forγ is now

∂γ

∂t
− βr

∂γ

∂r
+ 1

r
Jr,θ (ψ, γ )+ γ 2 + pzz(t) = ν12γ. (78)

Eqs. (77) and (78) are a pair of integro-partial differential equations inr, θ and t driven bypzz(t). It is an open
question whether this equation has any spatially dependent solutions forγ , even axisymmetric ones, whenpzz(t)
is uniform in the spatial variables. The possibility of using Lundgren’s transformation is also sacrificed becauseγ

ands are space dependent.
The spatial uniformity ofpzz(t) required by Theorem 1 is a dramatic constraint. In Navier–Stokes turbulence,

vortices are observed to have finite lifetimes and the mechanisms proposed in this paper may have a bearing on
this. The ideal flows discussed here are infinite in domain and energy but, in reality, one could expect flows of
this type to havepzz spatially uniform only over a finite region. It would be interesting to investigate what global
conditions might be needed to achieve this. If the spatial uniformity constraint onpzz(t) failed in a given region
then a vortex tube could break down and its vorticity concentration dissolve. Moreover, whenγ is uniform in space
the vorticity solutions displayed in this paper are uniform in the variablez and are therefore tube-like in character
with a uniformity inz. Helical structures in 3D flows [32] are much more difficult to find and require a more subtle
z-structure in the velocity and vorticity field than that used in Eq. (1). For the latter, if asymmetric solutions are taken
forW as in Section 3 then these tubes will possess a rich internal radial and azimuthal structure. The inclusion of the
componentW , however, means thatωωω typically lies neither in the horizontal plane nor along thez-axis, nor will it
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align with an eigenvector ofS as it does for the standard Burgers solutions. Let us illustrate this with two examples.
Consider the stretching rateα which is defined in terms of the strain matrixS. This object has been discussed in
some detail in [13] and can be expressed as a Biot–Savart type of integral [33,34]

α = ωωω · Sωωω
ωωω ·ωωω . (79)

Consider firstγ = γ0 = constant whereγ0 > 0. We know in this case thats is increasing exponentially soω3

grows butW decays. In the large time limitωωω will rotate to the vertical position andα → γ0. Consider now the
second case whenγ = −γ0 = constant withγ0 > 0. s decreases exponentially soω3 decays butW grows. In the
large time limitωωω will move into the horizontal plane andα → γ0/2. The two examples discussed above are ideal
cases in whichγ remains constant in magnitude and sign and in both casesωωω will asymptotically align with an
eigenvector ofS. In a real flow, however,γ will vary with time and thereforeωωω will rotate between thez-axis and
the horizontal plane, thereby moving out of alignment with the eigenvectors ofS. In a given region, however, if the
strain is uniaxial for large times thenγ ends up as a positive function. In this case, the axial component of vorticity
wins out and the conventional Burgers vortex is the final asymptotic state.

Acknowledgements

We are thankful to Darren Crowdy, Rupert Ford, John Gibbons, Darryl Holm, Bob Kerr, Robert Krasny, Frank
Leppington, Derek Moore, Koji Ohkitani, Trevor Stuart and Arkady Tsinober for helpful conversations.

References

[1] J.M. Burgers, A mathematical model illustrating the theory of turbulence, Adv. Appl. Math. 1 (1948) 171.
[2] T. Lundgren, Strained spiral vortex model for turbulent fine structure, Phys. Fluids 25 (1982) 2193.
[3] H.K. Moffatt, S. Kida, K. Ohkitani, Stretched vortices – the sinews of turbulence; large-Reynolds-number asymptotics, J. Fluid Mech. 259

(1994) 241.
[4] P.G. Saffman, Vortex Dynamics, Cambridge University Press, Cambridge, 1993.
[5] U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov, Cambridge University Press, Cambridge, 1995.
[6] A. Majda, Vorticity and the mathematical theory of incompressible fluid flow, Comm. Pure and Appl. Math. 39 (1986) 187.
[7] A. Majda, Vorticity, turbulence and acoustics in fluid flow, SIAM Rev. 33 (1991) 349.
[8] T. Kambe, A class of exact solutions of the Navier–Stokes equations, Fluid Dyn. Res. 1 (1986) 21.
[9] G. He, S. Chen, R.H. Kraichnan, R. Zhang, Y. Zhou, Statistics of dissipation and enstrophy induced by localised Burgers vortices, Phys.

Rev. Lett. 81 (1998) 4636.
[10] W. Ashurst, A. Kerstein, R. Kerr, C. Gibson, Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes

turbulence, Phys. Fluids 30 (1987) 2343.
[11] A. Vincent, M. Meneguzzi, The dynamics of vorticity tubes of homogeneous turbulence, J. Fluid Mech. 258 (1994) 245.
[12] A. Tsinober, E. Kit, T. Dracos, Experimental investigation of the field of velocity gradients in turbulent flows, J. Fluid Mech. 242 (1992)

169.
[13] B. Galanti, J.D. Gibbon, M. Heritage, Vorticity alignment results for the 3D Euler and Navier–Stokes equations, Nonlinearity 10 (1997)

1675.
[14] A. Tsinober, L. Shtilman, H. Vaisburd, A study of properties of vortex stretching and enstrophy generation in numerical and laboratory

turbulence, Fluid Dyn. Res. 21 (1997) 477.
[15] A. Tsinober, Dynamics and statistics of concentrated vortices in turbulent flows, in: EUROMECH lecture, Colloquium 364, Marseille,

France, 1997.
[16] D.I. Pullin, P.G. Saffman, Vortex dynamics, Ann. Rev. Fluid Mech. 30 (1998) 31.
[17] J.T. Stuart, On finite amplitude oscillations in laminar mixing layers, J. Fluid Mech. 29 (1967) 417.
[18] S. Childress, New solutions of the kinematic dynamo problem, J. Math. Phys. 11 (1970) 3063.
[19] A.D. Craik, W.O. Criminale, Evolution of wave-like disturbances in shear flows: a class of exact solutions of the Navier–Stokes equations,

Proc. R. Soc. London, Ser. A 406 (1986) 13.



510 J.D. Gibbon et al. / Physica D 132 (1999) 497–510

[20] M. Takaoka, Straining effects and vortex reconnection of solutions to the 3-D Navier–Stokes equations, J. Phys. Soc. Jpn 60 (1991) 2602.
[21] R.D. Sullivan, A two-cell solution of the Navier–Stokes equations, J. Aero/Space Sci. 26 (1959) 26.
[22] N. Rott, On the viscous core of a vortex line II, Z.A.M.P. 10 (1959) 73.
[23] P.G. Bellamy-Knights, An unsteady two-cell vortex solution of the Navier–Stokes equations, J. Fluid Mech. 41 (1970) 673.
[24] E. Hille, Lectures on Ordinary Differential Equations, Addison-Wesley, London, 1969.
[25] E.L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1944.
[26] E.T. Whittaker, G.N. Watson, Modern Analysis, Cambridge University Press, Cambridge, 1935.
[27] P.G. Saffman, G. Baker, Vortex interactions, Ann. Rev. Fluid Mech. 11 (1979) 95.
[28] S. Kida, Motion of an elliptic vortex in a uniform shear flow, J. Phys. Soc. Jpn 50 (1981) 3517.
[29] D.W. Moore, P.G. Saffman, Axial flow in laminar trailing vortices, Proc. R. Soc. London, Ser. A 333 (1973) 491.
[30] A.G. Robinson, P.G. Saffman, Three-dimensional stability of vortex arrays, Stud. Appl. Math. 70 (1984) 163.
[31] J.D. Buntine, D.I. Pullin, Merger and cancellation of strained vortices, J. Fluid Mech. 205 (1989) 263.
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