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Abstract. We address the problem in Navier—Stokes isotropic turbulence of why the vorticity
accumulates on thin sets such as quasi-one-dimensional tubes and quasi-two-dimensional sheets.
Taking our motivation from the work of Ashurst, Kerstein, Kerr and Gibbon, who observed that
the vorticity vectorw aligns with the intermediate eigenvector of the strain-matixve study

this problem in the context of both the three-dimensional Euler and Navier—Stokes equations
using the variables = £ - S&€ andx = & x S& whereé = w/w. This introduces the dynamic
angle¢ (x, t) = arctar(%), which lies betweerv and Sw. For the Euler equations a closed set

of differential equations for andx is derived in terms of the Hessian matrix of the pressure

P = {p,;;}. For the Navier—Stokes equations, the Burgers vortex and shear-layer solutions
turn out to be the Lagrangian fixed-point solutions of the equivalen) equations with a
corresponding angle = 0. Under certain assumptions for more general flows it is shown that
there is an attracting fixed point of the, x) equations which corresponds to positive vortex
stretching and for which the cosine of the corresponding angle is close to unity. This indicates
that near alignment is an attracting state of the system and is consistent with the formation of
Burgers-like structures.

AMS classification scheme numbers: 76F05, 76C05
PACS numbers: 4727J, 4732C, 4715K

1. Introduction

As early as 1938 Taylor [1] showed that, in isotropic Navier—Stokes turbulence, vortex
stretching has a major effect on vorticity production and dissipation. One of the many
interesting features of high Reynolds number turbulent flows, illustrated beautifully by
modern flow-visualization methods, is the fact that vorticity is not evenly distributed
throughout a flow but has a tendency to accumulate on ‘thin sets’. The morphology of
these sets is characterized by the predominance of quasi one-dimensional tubes or filaments
and quasi two-dimensional sheets although, being fractal in nature [2—4], many individual
vortical structures may be neither precisely one nor the other. This morphology makes it
clear that thedirection of vorticity, as well as its production, plays a significant role in the
self-organization processes through which apparently intense regions of vorticity appear to
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metamorphose into approximate thin coherent structures. The challenge facing the theorist
working with the three-dimensional Navier—Stokes equations is to explain these geometric
accumulation processes and their consequences even though a detailed description of their
precise topology is beyond our reach at present. The subtle fine spatial structure of these sets
indicates that an alternative approach is needed to the conventional one of Navier—Stokes
analysis wherd.?-spatial averages are taken over the whole domain when estimating the
effect of the vortex-stretching term.

In 1951, Townsend [5, 6] indicated that something like the thin sets described above
might be relevant in turbulent flows and in the last two decades their occurrence has been a
regular theme of the literature [7—28]. They would also seem to be the visual manifestation
of the vorticity-alignment phenomenon first reported by Ashetsil [14] who observed that,
in driven simulated isotropic Navier—Stokes turbulence with a Taylor microscale Reynolds
number of 83, the vorticity vectay has a tendency to align with the intermediate eigenvector
of the rate-of-strain matrix

Sij =3 j + uji). (1)

This observation was based on a study of the probability density function (PDF) of the
cosine of the angle between their directions. This important alignment process has also been
confirmed in other numerical simulations [15, 16, 18, 20, 26, 28] as well as in turbulent-grid
flow experiments conducted by Tsinolaral [29—-32] and it has been suggested that it is a
kinematic process [33, 34]. In fact preferential vorticity alignment appears to be a universal
feature of smaller-scale structures in such flows even though larger-scale features may vary
from flow to flow. A common feature seems to be that vorticity is concentrated in tubes
of width intermediate between the Taylor and Kolmogorov microscales [14, 16, 18, 20, 28]
with viscous dissipation occurring in annular regions around the tubes which themselves
form from the roll-up of vortex sheets [26].

In isolation from each other and in an ideal sense, vortex tubes and sheets can be
thought of as Burgers vortices and Burgers (stretched) shear layers respectively for which
there are known exact solutions of the Navier—Stokes equations in certain special cases
[25,13, 24, 35]. Of course the Burgers solutions are idealized because their strain fields are
not linked back to the local vorticity field as would be the case in a real flow. Nevertheless
they have the great merit of providing us with exact solutions which allow an interpretation
of the processes involved. A Burgers vortex tube ideally has one positive and two negative
eigenvalues of the strain matrix (axial strain) while a Burgers shear-layer solution has two
positive and one negative eigenvalues (biaxial strain). Aslairak[14] reported that their
eigenvalues occurred in the rat®: 1 : —4 but, as Moffattet al [25] have pointed out,
vortex tubes can still survive in regions of biaxial strain provided they are strong enough.
As best illustrated by the graphics of Vincent and Meneguzzi [26], vortex sheets deform
neighbouring sheets, curling up like potato crisps (chips), most strongly when rolling up
into tubes. It is significant that they found that the tendency towards alignment between
w and the intermediate eigenvector $foccurred before the roll-up of sheets into tubes.
Burgers vortices have been produced in the laboratory by Andrebdl [36] from two
experimental set-ups which allow them to study the phenomenon of vortex stretching in
detail. While the Burgers solutions are extremely valuable to the theorist, it is necessary to
formulate a theory which demonstrates why a flow should evolve to such states in the first
place.

For the three-dimensional Euler equations the situation is somewhat different and
complicated by the suspicion of a finite-time singularity in the vorticity field (see [37, 38]).
Constantinet al [39, 40], however, have recently shown that singularities in solutions of



Three-dimensional Euler and Navier—Stokes equations 1677

the three-dimensional incompressible Euler equations can be ruled out if the velocity is
finite and the direction of vorticity is smooth but they cannot be ruled out if the direction of
vorticity is not smooth. For instance, blow-up cannot be ruled out if two intense vortex tubes
collide at a nontrivial angle. In fact, Kerr's computations predicting such a singularity used
antiparallel vortex tubes as initial data [37, 38] (see also [41,42]). The result of Constantin
et al [39] is related to that of Bealet al [43] which has provided the main criterion for
understanding the growth of vorticity in Euler flows for more than a decade.

We begin by setting up the notation and then proceed to give some preliminary
definitions. Let us consider the incompressible three-dimensional Euler equations in vorticity
form

Dw

- = 2

o =7 2
and the Navier—Stokes equations

Dw

— = A 3

D o+ vAw 3)

with a divergence-free velocity field div = 0. The material derivative is defined in the
usual manner as
D d
— = . V. 4
Dt 0ot o “)

The vortex stretching vectar appearing in (2) and (3) is given by
0} = Wjllj j = Sija)j. (5)

o is written aso = Sw on the right-hand side of (5) becausesees only the symmetric
part of u; ;. The approach taken in this paper is to consider the dynamics of the local
angle¢ (x, t) which lies between the vorticity vectar and Sw at the pointz. Not having
independent evolution equations for the eigenvector§ oéstricts our ability to interpret
the geometry of the problem. The significance¢ofn this context is that when it takes
the value(sy = 0(xr) this means thai has aligned (anti-aligned) with an eigenvector of
S, although which one we cannot say. The so-called ‘stretching safge’ an interesting
quantity to consider§ = w/|w|)

alw, = 2T 2L g (6)

w - w w - w

which has been related to the vorticity through an elegant Biot—Savart integral [39, 40]. For
the three-dimensional Euler equations, the scalar vorticity |w| simply obeys

Dw

Dr
The scalaw is obviously an estimate for an eigenvalue of the strain mataxd lies within
its spectrum. By defining the vector

@)= 259 g sk ®)

W - w
the anglep (x, 1) betweenw and Sw can naturally be introduced &g - x = x?)

= qo. Q)

S
tang (x, t) = M — i (9)
w - Sw o
and its dynamics related to those @fand x. Gibbon and Heritage [44] have recently
discussed this angle but only in the context of the volume average over the whole flow.

The stretching rate takes account only of the symmetric p&rof the deformation matrix
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u; ; but the antisymmetric part clearly contributeso For a fluid element at a poini
certain specific values of the angpecan be interpreted as the following.

(1) Wheng = 0 the vectorsv and Sw are parallel and only stretching occurs.

(2) When¢ = 7/2 the vectorsv and Sw are orthogonal and, sincgv = Dw/Dt, this
means that in this case rotates but does not stretcfThis effect will nevertheless distend
and misalign vortex lines.

(3) The casey = 7 represents anti-alignment. In this case: 0, so vorticity collapses
rapidly to small values.

(4) When 0< ¢ < /2 both stretching and rotation occur simultaneously at each point
on a vortex line.

In order to find the most sensitive relationship betweeand x we take advantage
in section 2 of a result of Ohkitani [46, 47] for the incompressible three-dimensional Euler
equations:

Do

— = —Pw 10

D (10)
where P = {p;;} is the Hessian matrix of the pressure. This result (see first note added
in proof) comes about from a more general well known property of the Euler equations,
namely that ifu andw are velocity and vorticity solutions of the Euler equations then for
any arbitrary vectord

D 04A; 0A; 0A; n 0 DA; (11)
w2t =g 5 el
Dt @i 0x; J 0x; k 0xy J ox; Dt

from which we conclude that
D DA
—(Ww--VA) =w -V|— ). 12
2 (VA = ( > ) (12)

ChoosingA = u with a direct use of the velocity form of the Euler equations on the right-
hand side of equation (12) immediately gives equation (10). While the pressure Hessian
in (10) is a fully nonlinear term (# is related tou; ; by Ap = —u; ju;;), nevertheless
the cancellation of two terms inherent in the derivation of equation (10), each of which are
~ w|Vu|?, directly removes all the terms not explicitly dependent ®n The approach
of this paper therefore runs counter to the conventional one where the pressure is removed
by projection but the advantage gained by the fortuitous cancellation of nonlinear terms
comes at the price of having to deal with tifematrix. Previous studies on depletion of
nonlinearity have been made by Constantin and Fefferman [45] for the three-dimensional
Navier—Stokes equations and Constastial [39] for the three-dimensional Euler equations
who have considered the angle between the vorticity vectdny andw(y) at two points
x andy in the flow.

The main results of the paper can be summarized as follows. It is shown in section 2
that at points in the flow for whicky # 0, the material derivatives ef and:x for the Euler
equations obey

Do
D—f:xz—az—ap (13)
Dx
o = —20x — X, (14)

wherea, andx, are related to the Hessian mati#x which is a non-local quantity in the
flow [47-49]. For the Navier—Stokes equations (see section 3) the addition of viscosity
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produces differential equations of the type

D N
D_‘: = x? —a? + vAa + 2va|VE2 4+ A (15)
Dx 22
o = —2ax + vAX + 2vx|VE|*+ 1 (16)

where the terms invé|? express the misalignment of vortex lines in the differential
geometric sense [50,51]. The termmsind v contain information about the flow and are not
generally constant. In section 4, however, the exact solutions of the Navier—Stokes equations
that represent Burgers vortex tubes and shear layers are discussed and it is discovered there
that these correspond to ‘Lagrangian fixed-point’ solutions of (15) and (16) in the sense that
Do /Dt = 0 and Dy/Dt = 0, A and« are positive real constants apd= 0 and:xy = 0.

Hence for both these thin structuresand p simplify greatly and the corresponding angle

¢ is exactly zero. Using this as motivation, it is assumed in section 5 that if the flow is
regular then all the variables must come to some equilibrium in a connected region of high
vorticity. From this we want to see if the equilibrium valuescofand x correspond to a
small angular orientatiorpg. In order to do this it is assumed thatand . are constant and

then it is shown that equations (15) and (16) have two fixed-point solutand) in the
Lagrangian sense, one of which is repelling & 0) while the other ¢ > 0) is attracting.

The stability of the positive root fow shows that the system favours vortex stretching, in
agreement with Taylor’'s conclusions [1]. For> 0, the stable solution has a corresponding
small attracting angleyy which is insensitive to the relative ratio afand ||, making the
natural orientation of the vectors close to true alignment. These results are consistent with
near Burgers-like structures forming in the flow. It remains to be proved, however, that the
Burgers solutions are either unique or belong to a more general unique class of solutions
that correspond to thin sets which are true Lagrangian fixed points with small valges of

As we point out in section 2 neither Hill's spherical vortex (an exact solution of the Euler
equations) nor ABC flow belong to the class we are considering as neither are Lagrangian
fixed points of their respectivex(x) equations.

2. Stretching equations for the three-dimensional Euler equations

The scalaw and the vectoy were defined in equations (6) and (8) by forming the dot and
cross products respectively af with Sw. We repeat their definitions:

w-Sw 4, A wXxSw 4 N
o= =£-5¢  x= =€ x S¢ (17)
W - w W - w
but exclude points where = 0. The unit vectory(x, t), defined by
N X
X== (18)
X

is orthogonal to the unit vectc&; for example, ifé points along a vortex tube they lies
in the plane orthogonal to the tube. Let us also define the scalar quaptéyd the vector
Xp

ap(x,t) = ﬂ Xp(x, 1) = w (29)

W w W w

o, is an estimate for an eigenvalue of the Hessian of the preg3ute{p ;;} in the same
way thato is for the strain-matrixS. Whenw aligns with an eigenvector of thena,
becomes an exact eigenvalue Rfwhereasy, becomes zero in this case.



1680 B Galanti et al

In section 1 the definitions (6) and (8) were used to define the ahgletweenw and
o = Sw, namely ta = x/«a, as a way of characterizing the alignment or misalignment
between them. In terms of the vectgrthis angle obeysd = Sw)
S
>AC'[‘r;lr1¢)=c4J><¢7'=<.u>< w (20)
w-o w - Sw

with ¢ varying in the range & ¢ < 27x. One consequence of equation (20) is that

(0-w)? w?a?

cofp=-—=—1n. 21
¢ lo[2jw? o2 (1)
To obtain relations between these quantities we first note that
D .
% =02 —w- Pw=w?(@*sel ¢ —a,). (22)
whereas in the cross product, the termsritvanish leaving only
D(w x o)
—_— == Pw. 23
Dr w X Pw (23)

Equation (23) shows that in addition to the cancellation of nonlinear terms in Ohkitani's
relation, more nonlinearity has been lost through the cross product. The material derivatives
of @ andx can now easily be obtained through equations (6), (21)—(23),

Do
E:xz—az—ap (24)
Dx

Subject to solutions existing, the prominent feature of (24) and (25) is that they are
independent explicitly ofv and ¢ while being driven by, (z, 1) and x,(z, ). Hence

they are a set of nonautonomous ODEs, in the Lagrangian picture of fluid mechanics,
operating in a four-dimensional phase spéegey;) for i = 1, 2, 3. The three equations in

the x; can be reduced to one in the scajae= ,/x - x to give the pair of equations

Da

E:xz—az—al, (26)

Dx ,

E =20y — Xp (27)
where

Xp = X" Xp- (28)

On thea-axis wherep = 0 or r, equation (23) show that x Pw = 0. Hencex, =0

and so D¢/Dr = 0 on this axis. Consequently equation (27) operates only in the the upper
half-plane. The lower half-plane is simply a reflection of the upper irtlaeis. Whilex is

the stretching rate for the scalar vorticity equation (27) shows thatvds the contraction

rate for x with an additional pressure term. The two scalarand y are also related by

D?%w

D2
The pair of equations fai, x) given above can be merged into one by defining the complex
stretching rate

C=a+iy (30)

= (x*—ap)o. (29)
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and (26) and (27) reduce to

D¢ 2

— =0. 31
TRESRY (31)
¢, is simply the complex combinatiof), = «, +ix,. Because the-plane is only the upper
half of the complex planep is valid only in the range & ¢ < 7. Two related results,

which are consequences of equations (26) and (27), are

D([¢ ) x
Y —20¢)* — 2Ref¢ s} (32)
and
D (tang) ap Xp
T = —atar‘?(f) — ((X — E) tan¢ — ; (33)

Because of the negative cubic term, there is always the tendency im theD quarter-

plane for the angle to decrease unless the pressure terms force it to behave to the contrary.
Equations (26) and (27), however, are non-autonomous and, for Euler flows, there can be
no question ofw, and x, remaining constant as the flow develops. Nevertheless certain
tendencies can be discussed.

(1) In the left-hand quarter-plane equation where: 0 (7) shows that vorticity must
be very small here. Initially if one starts in the regien< 0 then equation (27) shows that
x can undergo rapid growth with — /2. This is also reflected in equation (32) and
equation (33) where the terms2«|¢|? and —« tar® ¢ force rapid growth inj¢| and tanp
respectively. Ify increases in this way then (26) shows that there is also the tendency for
« to increase also. Consequently there is a natural tendency for orbits to pass from the left-
to the right-hand half-plane unless the pressure acts to prevent it.

(2) In thea > 0 quarter-plane the opposite process occurs. Heug, # «? andy, > 0
for a sufficiently long time thegp — 0, which is the state of exact alignment.dlf > «?
then how far¢ decreases depends upon specific values,aind x,.

We conclude that the system has a natural tendency to reject negative valuasle§s
forced by the pressure Hessian to behave otherwise. This means that the system tends to
prefer regions where stretching is positive. It is noteworthy that in rejectingrthe O
region an orbit must pass through tlgeaxis into the region ofr > 0. This process can
be reversed if the pressure behaves in a contrary manner but this behaviour can only be
properly elucidated from data and this analysis is in progress.

What of exact solutions of the Euler equations? As we shall see in section 4, the
Burgers vortex solution of the Euler equations is a Langrangian fixed point of (26) and (27)
with o« = constanty = 0 with a corresponding angl¢ = 0. Hill's spherical vortex, on
the other hand, also has = 0 but this doesot correspond to a Lagrangian fixed point
as fluid packets do not have values wffor which De/Dt = 0, based on the fact that
u - Va # 0. To see this consider a vorticity field = (w,, wg, w,;) Wherew, = w, = 0
and wy = Ar inside the sphere and zero outside it [52]. Then= Az/5, x = 0,

@, = A%4r? — 1¥°]/50 andx, = 0. The solution for ABC flow for whichu = w
with u; = w; = Sinz 4+ €0Sy, us = w, = Sinx + €0Sz, uz = w3 = Siny + cosx, does not
have constant values far or x. This means that neither is constant nor are the material
derivatives ofe andx zero.

3. The stretching variables and the Navier—Stokes equations

For the Navier—Stokes equations, the task is to see how the addition of viscosity changes the
two equations for and:x in (24) and (25). In vorticity form the Navier—Stokes equations
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are

Dw:

D_wtj = Sjrwp + vAw; (34)
and the equivalent of (7) for the scalar vorticity= |w| is

D n

D—(;) =aw+ v€ - Aw. (35)
From the definitiort = w/w

D¢; v VoA

D_tj = Sjkbx — a§j + Zij - 5(5 - Aw)é;. (36)

It is convenient to turn derivatives o into derivatives ofé. To achieve this we use the
fact that? = 1 leading tog; Ag; + |V&;|> = 0. From the relations = w;§; andw; = w§;
we have

Aw = w|VER+ - Aw (37)
and

Aw; A

% = A& +2V(Inw) - VE + sjj‘”. (38)
Dividing (37) by w, multiplying by &; and then adding to (38) enables us to rewrite (36) as

D¢; n

D_tj = Sjiér — a&; + VAL + v|VE[%E + vB; (39)
where the vecto3 has components

9 AE;
= —(njw® =L, 40
B 8xk( |w] )axk (40)

|V£| is the ‘misalignment’ of the vectaf in the Frenet-Serret frame (see [50, 51] and the
calculation in the appendix). Equation (40y the key to the calculations in the rest of
this section because, apart from the logarithmic derivative,iit contains onlyé and its
derivatives. The strain matrix evolves according to

DS;; wiw; w28

D_[ = —SikSkj — 4j + 2 S Pij + vASij (41)
and so,
D .
D_I(Sij";:j) = — P& — aSi& + v{(AS)E + Sij A& + |VE2Sii& + Sij Bl (42)

This, together with (39), can be combined to give,

D R
o G = X2 — a? + 20|VEPa + Vg (AS)E + &S AE + A& SijE;)

+v{&:Si;B; + BiSij&} — & Pij§;- (43)
Out of the Laplacian terms in (43) it is desirable to forxw

Do n

or =X2—a2+vAoz+2v|V£|2a+ZAjj (44)
where

Ajp =v(&Si;iB + BiSij&) — 2vT; — & P& (45)

1 This expression is not valid at stagnation points where: 0; neither is& defined at these.
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and whereT}; is defined as

0§ 08y, 0§ 3§ 98;; &
T x| oxe o 0xg o
with g; is defined in (40). We have isolated in (44) as many specific termsda possible

and in forming the Laplacian terla we have separated the highest derivatives @fom
the rest which lie inTj;. Forx a similar result holds which is

Tj

(46)

% = 20y + vAx; + 2v|VEx + EijkAkj- (47)
In summary, if we define

i = eijnAyj and A=) Ay (48)
then equations (44) and (47) become

?)_(:sz—a2+vAa+2\JIVé|2a+K (49)
and

% = —2ux+vAx+2v|Vé|2x+u. (50)
As in the Euler equations in section 2 this can be reduced to one equation in theyscalar

Ii)—): :—2xoz+vA)(+v<2|Vé|2—|V§(|2>X+,& (51)
where

i=x-p (52)

4. Burgers vortex and shear-layer solutions

We now postpone our discussion of the x) equations for the Navier—Stokes case until
section 5 and return to the Burgers vortex and stretched shear-layer solutions. It is pertinent
to ask whether equivalent Langrangian fixed-point solutions exist for both the Euler and
Navier—Stokes equations. Despite the caveats made in section 1, the simplicity of the
Burgers solutions makes them candidates for this. In the following two subsections the
basic formulae for the axisymmetric Burgers vortex (see [25, 13,24, 35] and second note
added in proof) and the Burgers shear layer (see [13, 24, 35]) are worked out. Then in
section 4.3 we see how these are applied to (they) equations (49) and (50) for the
Navier—Stokes equations and find that they do indeed correspond to fixed-point solutions.
In the paper by Majda [13] a series of simple examples is given which includes pure rotation,
a swirling drain and the two Burgers solutions (see [13, section 1C]). The two expressions
for the vorticity w(x, ¢) for the latter pair of examples are based on Mfdimensional

heat kernel but for the sake of simplicity in the following two subsections we use the time
asymptotic limit of this.

4.1. Burgers vortices

Consider a strain field = (-5, — %7, v2)T with a superimposed two-dimensional velocity
field (—yf(r), xf(r),0)T where the functionf () will be fixed later on. The variable is
given byr? = x? + y2. Then the full velocity field is

T
u= (=5 =y -5 +xf ). 72) (53)
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and it is easily seen that the vorticity is

w=(0,0,ws)” (54)
wherews = 2f + rf’. Moreover the strain-matri$ is given by
f 2=y f
S = (x = )f ~L 4 nr'f 0 (55)
0 0 y

Immediately we see thatz = (0,0,1)" and i3 = y and the other two eigenvalues can
easily be computed

—yxrf’
2
with their corresponding eigenvectors lying in the horizontal plane. Now for the Euler
equations one can simply tae= ri fO’ sw3(s)ds and sow = (0, 0, ws(r))T. For instance,
there is a solution of the three-dimensional Euler equations on compact support whose
amplitude increases exponentially while its support decreases exponentially [19].
For the Navier—Stokes equations, however, there exists a fornf(of in which
dissipation and stretching balance which, in the limit oo, is given by [13]

Ar2 = (56)

_ a2

wherea = y/4v. This is a profile which has its maximum when= 0. Note that when

r = 0 thenf(0) = a, w3(0) = 2a whereasf’(r)],—o = 0. Nearr =0, rf' ~ —2a%%> < 0

and so we have two negative eigenvalues and one positive for this form of solution. Also
the total strain at =0 is

2_} 2 N2 _3Lz
;S,-,— S @Y+ ()0 = - (58)

Hence ifv « 1 thena > y and so the vorticityw3(0) = 2a is much larger than the total
strain. Anx — y plane contrast cross-section of the vorticity field for a Burgers vortex is
produced in figure X).

4.2. The Burgers shear-layer solution

Consider a jetu = (0, —yy, yz)" which compresses in the-direction but expands in the
z-direction. Now impose a velocity field(y) on thex-direction so that

u= @), -yy, v (59)
w = (0,0, w3g)” (60)

wherews = —v'(y). For the Navier—Stokes equations, in the limit> oo, if v(y) is taken
to be

= - /y (0) expx 2)d (61)
[ — X —
vo) Vo Joso v(© SO

with @ = y/4v then

w3z = \/?exp(—Zayz) / wo(s) ds. (62)
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(b)

X X

Figure 1. (a) Thex — y cross section of a Burgers vortex with theoordinate pointing out of
the paper in which direction the vorticity vectan, = (0, 0, w3)”, points. The whiter the area
the higher the vorticity. if) Thex — y cross section of a Burgers stretched shear layer. Aa)in (
the z-coordinate points out of the paper in which direction the vorticity veetos (0, 0, w3)7,
points. The whiter the area the higher the vorticity.

This theBurgers shear-layefor which the strain matrixs is given by

’

0o % 0
s=y -y o]. (63)
0O 0 vy

As before we see that; = (0,0, 1)” andi; = y and the other two eigenvalues are
_ =P HAY?
o 2

with their corresponding eigenvectors lying in the horizontal plane. In this case the total
strain is

A1 (64)

) ) v/2
Y s2 =22+ - (65)
i,j

Whenv « 1 thena > y and thereforgv’|? > y2. Hence when the vorticity is high
then so is the total strain, in contrast with the vortex tube in the previous subsection. An
x—y plane contrast cross section of the vorticity field for a Burgers stretched shear layer is
produced in figure 1),

4.3. The(a, x) equations for both tube and shear layer

Taking the third component of the velocity version of the Navier—Stokes equations it is easy
to show in both the above cases

d
L __y, (66)
0z

and hence

a, =—y X, =0. (67)
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In addition, using the solution fap and the form ofS, in both cases

a=y x=0 (68)
with corresponding angle
¢=0 (69)

reflecting the fact that there is exact alignment betweeand ez with this fixed point
sitting on thex-axis. Clearly, in terms of the anglee can make no distinction between
the tube and the shear layamnor is there any distinction between the cases of alignment or
anti-alignment ofv and an eigenvector . Moreover, the unit vectoré andx are given

by £ = k andx = 0 soV£ = 0. This means that whep = 0 and = y2, the relevant

(o, x) equations given in (49) and (50) are satisfied by equations (67) and (68) for which

Dt Dt

The problem of stability is considered in the next section; there we will show that this fixed
point is indeed stable providedand i« remain constant. Given the fact that both Burgers
cases are essentially two-dimensional velocity fields superimposed on three-dimensional
strain fields, any example of this type will produce a strain magriwith a similar block
diagonal form as in (55) and (63) with a corresponding eigenvegtavhich is parallel to
the vorticity vectorw. All examples of this type therefore hage= 0. Moffatt et al [25]
have used asymptotics on the Burgers vortex where they allow a certain small asymmetry
from the axisymmetric solution (57) but they point out that only the exact symmetric solution
is known.

What is not proved, however, is that if the system is attracted to a stable Lagrangian
fixed-point solution with an orientation negar= 0 then this must automatically correspond
to either of the Burgers-like solutions sketched above; there may be other unknown structures
which fall into this category (see the comments at the end of section 2 on Hill's spherical
vortex). The lack of certainty in the topology reflects the problem of not having enough
dynamic angles in the system.

D D
*_o ZX_o (70)

5. A mechanism for the formation of thin structures in Navier—Stokes flows

So far we have made no assumptions. Let us now discuss some approximations and put
forward the following theoretical picture which is consistent with the formation of thin
structures in isotropic Navier—Stokes turbulence. Over all calculations of this type lies the
heavy shadow of the technical question of regularity, which is still an open problem. The
fact that alignment in mature turbulent flows is being discussed, however, means that a
sufficient degree of regularity is being imputed to the solutions anyway. From now on we
assume that the flow is regular and that all the necessary quantities are bounded. From
section 4 we know that when the flow assumes a Burgers struatane] . take the values

In the following, however, we dmot assume that and u take the values given in (71)

as this is tantamount to assuming the answer. Nevertheless, the highly simplified form
that » and . take when the flow assumes a Burgers state motivates asstame that the
variablese, p, 2 and i have reached a simultaneous equilibrium in some connected region
of vorticity whose growth has been controlled by dissipatidiirst, we want to see if the
‘fixed point’ values taken by andx at this equilibrium correspond to a small anglgand
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secondly whether this fixed point is stable. To investigate this stability question we begin
by assuming that and i are constant in the four equations in (49) and (50)

Do

D—t:)(z—az—}-vAa—i-k (72)
D
D_>t< = —2ax +VvAX+p (73)

where, for reasons of simplicity, we have written these without the qua]ﬁt'@z. These
terms are the least important and are dealt with later in the appendix. Fixed points in
(@0, Xp) Occur at

205 =+ V2 + 212 Xio = 2% (74)

0

whereu = |pu|. Hence there are two fixed points in four-space, corresponding to the two
roots of ag in (74). Without the Laplacian term it is easy to show that the eigenvalue
stability problem is

(A + 200)?[(A + 200)® + 4x8] = 0 (75)
thereby giving the four roots
A = —2aq (twice) A = —2(ag £ ixo). (76)

These roots correspond to an unstable fixed point for the negative roatpfand a
stable one for the positive root. In the latter case, there is exponential contraction in
two of the directions in the four-space with a stable spiral in the other two directions.
When the Laplacian is included we look at the stability of linearized solutions of the
type exgik - x + At) around (xg, xg). The only difference this makes to (76) is that
209 — 200 + vk?. We conclude that providedy > 0 the equilibrium solution is stable to

the disturbance of all wavenumbers. For the half-plane the two fixed points are

V20 =+ [k +V 2+ Az]l/z V250 = [—A +V 2+ kz] 1/2. (77)

The stable spiral is shown in figure 2 which is projected onto the varigbleand «.
Definingm to be
"
m=—
|A]
the anglegg corresponding to the stable fixed point is (thesign is forA > 0 and the—
sign forA < 0)

(78)

24171
m

which can be simplified to
tan 205 = +m. (80)

Now the exact Burgers solutions both correspone:te- 0 and, because = y > 0, they
correspond to aattracting fixed point of the system. We note, however, that when it takes
nonzero valuesy is dependent only on thetio of © and|A|. Although we have no hard
information on the magnitude of:, in fact the anglep; is relatively insensitive to this
magnitude. Fom > 0, if m ~ 0 then¢y ~ 0 but if m =~ 1 then¢y ~ n/8. Even if

m = oo theng; = w/4. Hence at Worstgzsar lies in a 45 cone. Therefore, even when

m > 0 we are still close to alignment. More generally,and 1 derive respectively from
forming the vector and scalar products of the same set of functions so, in an isolated region
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20—
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Figure 2. Orbits in thea—x phase space projected onto they; plane. The spiral structure at
the two fixed points is just evident.

of vorticity 2, we might expect that on the spatial average over a random set of points in
@, m would take the value: ~ 1. It is also possible that becaugss formed from a cross
product whilex is formed from a dot product then at the natural angle of alignmentithe
term would be the weaker of the two making< 1. We therefore conclude that, over the
spatial average within a small intense region fos 0,

¢y ~7/8 (81)

but thatps may indeed be somewhat smaller than this. Experiments [29-32] and simulations
[14, 16, 18, 26, 20, 28] generally measure the cosine of the afgtdten observing that a
bunching around cas ~ 1 in their PDFs is a demonstration of alignment. Bgr~ /8

we have

cos¢y ~ 0.92 (82)

This value ofm therefore produces fairly close alignment. This is consistent with the region
finding an equilibrium shape near to a thin Burgers-like structure (for which the exact value
of m is zero) which corresponds o> 0. Wheni < 0, however,

bo =7/2— g (83)

and the equivalent value @f; is 37/8. Hence vortex lines are badly misaligned in this
case.

6. Conclusion

The thin vortical structures which are observed in numerical simulations of turbulence
have been one of the most intriguing visual manifestations of the complexity for which
turbulence, for better or for worse, has become a byword in the last two decades. Our
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results are consistent with near Burgers-like structures (see figure 1) forming out of those
connected parts of the flow whekeand . equilibrate and where > 0. The fact that the

stable equilibrium occurs in a region af > 0 means that there is a preference for vortex
stretching [1, 14,53]. To say that these regions consist of precisely tubes and/or sheets is
to oversimply the matter; more generally the individual structures probably have a fractal
dimension which lies somewhere between one and two corresponding to tubes and between
two and three corresponding to sheets [2—4, 54]. Nevertheless, tubes and sheets as extreme
limits of the topology suffice as an approximate description despite the fact that their local
interactions and constant metamorphosis produces levels of geometric complexity which
are beyond our understanding at the moment. This raises several questions regarding the
geometric consequences of vorticity alignment.

(1) Can all solutions for whicly ~ 0, which are also Lagrangian fixed points of the
(o, x) equations, be categorized as ‘thin’ in the sense that they are quasi one-dimensional or
two-dimensional? While we have characterized these structures by thegatgle) which
lies betweenw and Sw, are there other dynamic angles which characterize the topology
more specifically?

(2) Are the Burgers solutions or their generalizations unique among the set of thin
solutions?

(3) What is the behaviour ofi = p/|A| defined in (78) and what determines the sign
of A? The assumption that and p are roughly constant in some regions is based on the
assumption that (consistent with the fact that they behave this way for the two Burgers
solutions) a balance occurs at the deepest scales between the pressure and the viscous terms
expressed througR, S, VS andVw. Such an assumption would be hard to prove directly
while no regularity proof exists.

(4) How area andx affected when there are local interactions; for instance, when two
sheets interact and wrap up to become tubes [26]? It is possible that large values of
correspond more to sheets than tubes since the former have higher strain. The experiments
of Andreotti et al [36] creating Burgers vortices suggest that the tubes formed from the
roll-up of sheets have a long lifetime compared with the roll-up time. This suggests that
two time scales may be involved; the first being the time it takes for he orlit, i) space
to stabilize and the second the time over whichnd i remain constant before themselves
decaying due to dissipative effects.

(5) What role does the Hessian matixplay in these processes? Is there a consistent
pattern in the sign oé,?

As far as (1) is concerned, it is clear that one angle is by no means sufficient to adequately
describe the topology. There are two other apparent natural angles in the system. The first
of these is based on the matix ; instead ofS;; which we discuss only in the Euler case.
Define

a(u)) — W w;, jWj — w: (w-Vw (84)

w - w w - w

and then use the general result (12) to show that

=w - Va. (85)

Equation (85) shows that points moving with the flow in regions wheee constant (or
even just spatially independent) also hawe as a constant of the motion. Now define
@ _ wX (w:Vw

(86)
w - w
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then
Dx @ 2 -V
X" (6 V)x 4 20 @y — 20y @ 4 22X W Ve 87)
Dt W w
When¢ = 0 theno = Sw = aw andx = 0 and so
Dx(w)
=0. 88
DF (88)

In consequence the angle betweenw and (w - V)w for points travelling with the flow is
given by
constant
tany = ————
al

)

(89)

¥ therefore decreases in regions whef® is stretching. The second angle concerns the
Hessian matrix of the pressure

tangp = lw x Po] (90)
w:+ Pw
but we have no separate knowledge of the evolutionPof In fact P and S are less
independent than one would think. A consequence of equation (23) is thatwiadigns
with an eigenvector of thenw also aligns simultaneously with an eigenvectorrof
The lack of knowledge ofz raised in (3) above is balanced in part by the insensitivity
of ¢, the attracting angle, to the value mfthrough the relationi( > 0)

tan 2 = m. (91)

There is no reasona priori, why exact alignment aizn = 0 should be attracting.
Nevertheless, values @f > 0 produce attracting orientations which are still close enough

to alignment to suggest that we are near a thin structure which we conjecture is perhaps
twisted in some way. As we showed in the last section, different regions may take different
spatial values ofz but their associated angles may still be close enough to look the same in
observations or simulations. Geometrical information about the local and relative orientation
of vortex lines in the sense of the Frenet-Serret equations [50, 51] is obviously contained
in m, but these need information dviw which we do not have. It is possible that more
can be said about using a scaling argument.

What the formulation of this paper does not do is differentiate between tubes and
sheets; the alignment process is the same for both and we have no other information which
distinguishes them. In fact, one very important set of processes, not accounted for by the
dynamics of¢ alone, are the interaction processes between one sheet and another. The
Kelvin—Helmholz instability, which is an Euler phenomenon, is a well known mechanism
through which it is thought that two dimensional sheet-like objects wrap up to become tubes
[38, 26,27, 20,55]. Such local interaction processes are extremely subtle and if they are to
be accounted for dynamically then certainly more than one angle would be needed.

The thin structures observed in simulations take up no more than a few per cent of the
total flow volume indicating that vorticity is not distributed evenly. This may be one of
the reasons behind the failure to prove regularity. The methods used have been based upon
attempts to control thglobal enstrophy, [, lw|?2dV, which have foundered on the problem
of the dissipation being too weak to control the estimated nonlinear terms (see references
in [56]). These latter terms have their origin in the vortex stretching tgrm;S;;w; dV,
and have to be estimated by standard Sobolev inequalities. The failure to control the global
enstrophy for more than a finite time by this method probably has its origins in the use of
volume integration in whiclL?-norms average over, and perhaps miss, the spatial structures
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where the nonlinearity has been strongly depleted by alignment. Constantin’s Biot—Savart
integral formula forx in terms of a triad of vectors related foillustrates how nonlinearity
is depleted inside the volume integral when significant alignment takes place [40].

The general picture that emerges from this analysis is that the varighlgy seem
to form a natural pair of variables in which to express the dynamics of vortex formations.
In both the Euler and Navier—Stokes cases negative valuesaoé repelling and, without
interference from the pressure, would limit to zero. Any initial state corresponding
to a negative value o would require the system to go through the= 7 /2 stage
before becoming a Burgers-like shear layer or tube if indeed it is driven that far. The
difference between the two is that for the Euler equations there is no stable equilibrium
point provided by the viscosity and the whole process could reverse, although Ohkitani and
Kishiba [47] report that they observe an alignment betweeand the third eigenvector
of P. A systematic study of simulation data for the three-dimensional Euler equations is
underway to understand the properties of the more general behaviour of the Hessian matrix
P.

One curious conclusion from (26) in the Euler equation case, for a Lagrangian particle
element initially atX = x(0), is that if« (X, 0) < 0 and¢ (X, 1) < 7 /4 with «, > 0 then
o — —oo in a finite time. In contrast, i&(X,0) > 0 and¢(X,?) > n/4 with o, < 0
thena — oo in a finite time. This is consistent with the results of Ng and Battercharjee
[57] who have studied the Euler equations under high-symmetry conditions which makes
the problem quasi one dimensional.

Past simulations have shown that initiadlyaligns with the largest eigenvector §fbut
as the turbulence becomes more maturaligns with the second eigenvector [14, 16, 26] as
a global average. Tsinobet al [32] have recently reported, however, thatally they see
significant alignments between andboth the first and the second eigenvectorsSofThey
also report that the vorticity does not have to be too intense and they produce evidence to
suggest that the background field is not Gaussian.
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Appendix. The effect of the misalignment terms

For the |V§|2 terms left out of the discussion in section 5, it would be preferable if we
had five evolution equations im, x; and V¢ and not just four but we have been unable to
discover any delicate cancellations in the material derivative of the last variable. Instead,
we include this as a constant term in the equilibrium-point analysis above. For a vortex
line, V/;-“ is called the misalignment and plays an interesting role. Constah#h[50] note

that

IVEI2 = |(€ - VIEP + (- VIE? + (b - V)E|? (92)

where the first term on the right-hand side of (92) is the square of the curvature and
the second and third are the squares of the lack of parallelity between a vortex line and
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neighbouring lines in the normah) and binormal(b) directions respectively. Galangit
al [51] have produced theoretical and numerical arguments which indicate that the stronger
the vorticity and the greater the curvature of a vortex line the stronger the stretching and
therefore the more liable it is to straighten. To show how this is the case we define

a = v|VE)? a=a—a A =xr+d’ (93)
The («, x) equations become

Da 2_ 2, 7%

— =X A 94
o X T (94)
Dx

—— =-2a . 95
D; X+ p (95)

The stability problem is unchanged and fixed points come from
L (24 )V

2

From (96),&(2, > % > a? wheni > 0 and sowg > 2a for positive values ofy. Moreover,
when considering the angle of orientation of the equilibrium p@intve see that

nl _ I
Al IA+a?

(96)

@i =

tan 2po = (97)

Hence
tan 2pp < tan 2. (98)

Equation (98) shows that nonzero valueq‘6€|2 act to make the angle smaller than when

it is excluded. Of course the angleand |Vé|2 are different ways of expressing the same
effect. We actually need another differential equation to form an accurate picture and this,
in turn, needs information oS andVw. The above calculation shows that for tfe x)
equations alone large values|&f€|? force stronger alignment i, thereby confirming the
effect seen in [51].

Note added in proof 1In a private communication, P Constantin has informed us that the result in equation (10)
has been known privately in unpublished form since 1983.

Note added in proof 2.See also the paper by Andreotti B (1997) Studying Burgers’ models to investigate the
physical meaning of the alignments statistically observed in turbulBhgs. FluidsA 9 735-42.
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