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Abstract
For the class of cylindrically symmetric velocity fields

U(r, z, t) = {u(r, t), v(r, t), zγ (r, t)},
two infinite energy exact solutions of the three-dimensional incompressible
Euler equations are exhibited that blow up at every point in space in finite time.
The first solution is embedded within the second as a special case and in both
cases v = 0. Both solutions represent three-dimensional vortices which take
the form of hollow cylinders for which the vorticity vector is ω = (0, ωθ , 0). An
analysis on characteristics shows how more general solutions can be constructed
and analysed.

PACS numbers: 47.27.Ak, 03.40.Gc

1. Introduction

An important open question in inviscid fluid turbulence is whether the three-dimensional
incompressible Euler equations

∂U
∂t

+ U · ∇U = −∇P, div U = 0, (1)

develop a singularity in finite time. The pre-eminent theoretical result belongs to Beale et al [1]
who showed that for the vorticity field ω = curl U, the time integral of the maximum norm,∫ t

0 ‖ω‖∞ dτ , must control any singularity that might develop in any variable, even in arbitrarily
high derivatives. The reader is also referred to references in Majda and Bertozzi [2]. Kerr [3]
has provided numerical support for the existence of a singularity by observing growth in the
maximum norm (peak vorticity) like ‖ω‖∞ ∼ (t0 − t)−1 from initial data consisting of a pair of
perturbed parallel anti-parallel vortex tubes in a three-dimensional periodic domain. Pelz and
Gulak [4] have pursued a different route by considering high symmetry flows; they used Kida’s
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initial condition to follow the development of a real-time singularity using Padé methods of
analysis. A further refinement of the BKM-criterion has been made by Constantin et al [5] who
reduced the ‖ω‖∞-norm to a finite Lp-norm (1 � p � ∞) at the price of needing to control
the direction of vorticity. They showed that singularities are only possible if the misalignment
between vortex lines is too great.

The above questions regarding the existence of singularities lie in the context of finite
energy flows where a potential singularity would be localized in space. A different problem is
that of singularities in infinite domains where blow-up might occur in some sections of the full
three-dimensional domain, or even at every point. This latter class of singularities are infinite
energy in nature; one of the tasks of this paper is to show that the three-dimensional Euler
equations have exact solutions of this type. For the restricted class of velocity vectors where
the z-coordinate appears only linearly in w and not elsewhere

U(r, θ, z, t) = {u(r, θ, t), v(r, θ, t), w(r, θ, z, t)} , (2)

w = zγ (r, θ, t) (3)

with u and v as radial and swirling components of velocity, respectively. The first and simplest
cylindrically symmetric exact solution is

γ (r, t) = − e−αr2

t0 − t
(4)

with corresponding velocity components

u(r, t) = 1

2αr

(
1 − e−αr2

t0 − t

)
, v = 0 (5)

for any α � 0. This solution becomes singular at a finite time t0 > 0 and satisfies the boundary
conditions γ, u → 0 as r → ∞ for 0 � t < t0. When t0 < 0 solutions simply decay to
zero. The second cylindrically symmetric exact solution, which has the first embedded within
it, contains a further arbitrary parameter β � 0

γ (r, t) = 1

1 + βt

{
β − δe−α(1+βt)r2

1 − (δ − β)t

}
. (6)

Together with v = 0, the corresponding expression for u is

u(r, t) = 1

2(1 + βt)

{
−βr +

δ(1 − e−α(1+βt)r2
)

αr(1 + βt)[1 − (δ − β)t]

}
. (7)

These expressions for γ and u reduce to (4) and (5) when β = 0 and t0 = δ−1. The singularity
time t∗ in this more general solution depends upon the relative signs and values of β and δ; the
alternatives are listed in table 1. In general, neither of the expressions for γ and u decays to zero
as r → ∞ at some fixed pre-singular time. Nevertheless, they may represent an acceptable
local cylindrically symmetric flow when embedded in a larger structure. Experience shows
that exact solutions are always valuable for a variety of reasons.
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Table 1. Singularity times t∗ for the more general exact solution (6) and (7).

β < δ β > δ β = δ

β > 0, δ > 0 t∗ = 1

δ − β
No singularity No singularity

β < 0, δ < 0 t∗ = − 1

β
t∗ = − 1

β
t∗ = − 1

β

β < 0, δ > 0 t∗ = 1

δ − β

β > 0, δ < 0 No singularity

Figure 1. Plot of ω for the solution (6) and (7) at z = 1 with α = 1 and β = 1
2 .

The full three-dimensional vorticity field corresponding to cylindrically symmetric
velocity fields as in (2) and (3) is

ω = (0, ωθ , 0), ωθ = −z
∂γ

∂r
, (8)

so both solutions represent stretched vortex rings that take the specific form of infinite hollow
cylinders. It is also easy to calculate the pressure field and show that it is regular at r = 0.
In section 2 a proof is given of the veracity of the two exact solutions, putting this in context
with previous work (figure 1). The particle paths corresponding to these two solutions can be
found from an analysis on characteristics which is performed in section 3. This also shows
how simple the problem becomes when cast in the form

γ = γ0

1 + tγ0
, (9)

where γ0 is a function of φ(t, r), a characteristic variable. Both exact solutions correspond to
v = 0 but in section 4 it is shown how a class of corresponding non-zero solutions for v can
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be constructed that are regular at r = 0. These solutions have extra components of vorticity in
addition to the azimuthal one in (8). Characteristic analysis also raises the question regarding
the singularity process for initial data more general than the Gaussian-shaped profiles of γ in
(5) and (6).

2. Previous work and the proof of (6)

How can it be proved that equations (6) and (7) for γ and u are corresponding solutions of
the Euler equations and what is the historical context? Stuart [6] considered solutions of the
three-dimensional problem that had linear dependence in two variables x and z. The resulting
differential equations in the remaining independent variables y and t displayed finite time
singular behaviour. Childress et al [7] likewise analysed the two-dimensional problem in a
similar manner. Gibbon et al [8] considered the three-dimensional problem as in (2) with an
extension to w in which w = zγ (r, θ, t) + σ(r, θ, t). The exact solutions stated above lie
within this class with σ = 0. Their veracity can be confirmed by looking at the work in [8] in
the context of cylindrical co-ordinates. The two-component velocity field u(r, θ, t) = (u, v)

allows a two-dimensional material derivative
D

Dt
= ∂

∂t
+ u · ∇, (10)

to be defined, where ∇ is now a two-dimensional operator. The third component of the Euler
equations, (1), upon integration with respect to z, gives an expression for the pressure P that
is quadratic in z

P (r, θ, z, t) = 1

2
z2

(
Dγ

Dt
+ γ 2

)
+ z

(
Dσ

Dt
+ γ σ

)
+ p(r, θ, t). (11)

A contradiction can only be avoided if the coefficients of z2 and z in (11) are uniform in space
although they can be arbitrary functions of time. The first of these arbitrary functions of time is
designated as f (t) while the second will be put equal to zero; but see (43)–(45). The variables
γ and u satisfy

Dγ

Dt
+ γ 2 = f (t), (12)

Du
Dt

= −∇p, div u = −γ. (13)

In addition, σ and ω3, the third component of the vorticity vector, satisfy

Dσ

Dt
= −γ σ,

Dω3

Dt
= γω3. (14)

The result for ω3 can be demonstrated by direct calculation using the vortex stretching vector
ω · ∇u. Equations (12)–(14) are those derived in [8]. It has subsequently been pointed out
in [9] that a time-independent version of these equations with σ = 0 can also be found in an
appendix in Oseen [10].

Equations (12)–(14) have some interesting properties which have been discussed by
Gibbon et al [8]. This was originally motivated by the work of Moffatt et al [11], who have
performed an extensive analysis of the Burgers vortex. In regions where γ > 0, equation (14)
shows that ω3 stretches and σ compresses, thereby producing a dynamically stretched vortex
with a rich internal structure. In contrast, in regions where γ < 0, the reverse process occurs
and a ring-like object is produced. The dynamics of γ is therefore an important issue. If f (t)

is left undetermined, γ could be chosen as an arbitrary function of time and uniform in space.
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Delbende et al [12] have exploited this by choosing γ such that it goes through a compressive
phase (0 � t � t∗) and then a stretching phase (t∗ � t) and found that the resulting Burgers
vortices have a braided character.

The exact solution (6) corresponds to f (t) = 0 with σ = 0. Direct substitution
shows that the three conditions in (12) and (13) are satisfied. ω3 = 0 so equation (14)
is redundant. Once this step has been achieved, the first solution (5) is automatically true
because it corresponds to the special case β = 0.

The appropriate domain for the two exact solutions (6) and (5) corresponding to f (t) = 0
is infinite but this choice of f (t) needs to be reconsidered when a finite boundary is imposed.
Ohkitani and Gibbon [9] considered a cross-sectional domain A with periodic boundary
conditions imposed; in this case a circular boundary of radius L. The imposition of such
a boundary changes the problem because the divergence theorem with periodic boundary
conditions applied to the incompressibility condition div u = −γ means that γ is a mean-zero
function, namely∫

A
γ dA = 0. (15)

In turn, this constraint applied to the equation for γ in (12) makes

f (t) = 2(πL2)−1
∫

A
γ 2 dA (16)

and so γ satisfies

Dγ

Dt
+ γ 2 = 2

πL2

∫
A

γ 2 dA. (17)

Numerical integration of (17) by Ohkitani and Gibbon [9] suggested that γ → −∞ in finite
time. Constantin [13] subsequently used integration along characteristics to prove that γ does
indeed blow up to −∞ but he also showed that the process is, in fact, two-sided in the sense
that γ → +∞ simultaneously elsewhere in the domain. The positive blow-up is a process that
begins only at a very late stage. Similar numerical behaviour has been observed by Gibbon
and Ohkitani [14] in the equations for ideal magnetohydrodynamics but no analytical proof of
blow-up has yet been found.

3. Characteristics

In order to expose the nature of solutions of the incompressible Euler equations (1), at least for
cylindrically symmetric cases of the form (2) with θ omitted, it is helpful to study the relevant
scalar equations afresh.

We consider the velocity field to have the form (2), with no dependence on θ and with the
pressure given by

p = p(r, t). (18)

An extension to the case where p → 1
2z2f (t) + p(r, t) as in (11) is readily achievable, but

here we restrict attention to (18). In cylindrical co-ordinates, equations (13) and (12), with
f (t) = 0, yield

∂u

∂t
+ u

∂u

∂r
− v2

r
= −∂p

∂r
, (19)

∂v

∂t
+ u

∂v

∂r
+

uv

r
= 0, (20)
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∂γ

∂t
+ u

∂γ

∂r
+ γ 2 = 0, (21)

1

r

∂(ru)

∂r
+ γ = 0. (22)

It is seen that (21) and (22) decouple; if u and γ were known, v would readily follow from
(20) and p from (19). If we eliminate γ by use of (22) in (21), we obtain

∂2u

∂t∂r
+ u

∂2u

∂r2
+ lower derivatives = 0, (23)

an equation which has a hyperbolic operator. The characteristics are given by

dr

dt
= u, dt = 0, (24)

the former of which gives the particle paths. Although the flow is incompressible, it is of
hyperbolic character, a consequence of the presence of vorticity. Indeed the vorticity field is
given by

ω = (0, ωθ , ωz) , ωθ = − z
∂γ

∂r
, ωz = 1

r

∂(rv)

∂r
, (25)

which is a generalization of (8) to include the azimuthal flow v.
We proceed now to solve (21) and (22) in a general manner. Let us use the transformation

γ = γ0(t, r)

1 + tγ0(t, r)
(26)

and substitute in (21), which becomes

∂γ0

∂t
+ u

∂γ0

∂r
= 0. (27)

This has the characteristic (24), which can be used to effect a solution of (27). Suppose for the
moment that u is known; then a solution of (24) is

φ(t, r) = const., (28)

where φ is a Lagrangian variable associated with the particle paths. It follows that

γ = γ0(φ)

1 + tγ0(φ)
. (29)

Moreover, if, at t = 0, γ (0, φ) = γ0(φ) and φ(0, r) = r , then it is seen that γ0(φ) plays
the role of an initial condition. It is clear from this formula for γ that a singularity (a pole)
could occur if the denominator were zero. Since an initial condition is specified at t = 0, a
necessary requirement is that γ0(φ) must have a negative region. But we do not yet know φ,
the Lagrangian (particle) co-ordinate in terms of r and t . Can φ achieve a value at some time,
say t0, in the region where γ0(φ) is negative?

We now discuss this question, and in so doing relate our discussion to the solutions given
in section 1. The continuity equation (22) is the focus of our attention. We note that the
velocity component u is given by

u = ∂

∂t
r(t, φ), (30)

where the radial co-ordinate r is replaced as a function of time, t , and the Lagrangian variable,
φ; so r(γ, φ) comes from the inversion of (28). Then

∂u

∂r
= ∂

∂r

∂

∂t
r(t, φ) =

[
∂

∂φ

∂

∂t
r(t, φ)

] (
∂r

∂φ

)−1

= ∂

∂t
ln

(
∂r

∂φ

)
. (31)
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Also
u

r
= 1

r

∂r

∂t
= ∂

∂t
ln r, (32)

so that (22) becomes

∂

∂t
ln

(
r

∂r

∂φ

)
+ γ = 0. (33)

This can be integrated with respect to t to yield

r
∂r

∂φ
= G(φ)

1 + tγ0(φ)
, (34)

where G(φ) is a ‘constant’ of the time integration. An integration with respect to φ yields

r2(t, φ) =
∫ φ

φ0

2G(φ) dφ

1 + tγ0(φ)
, (35)

imposition of φ = r at t = 0 requires G(φ) ≡ φ and φ0 ≡ 0, so that

r2(t, φ) =
∫ φ

0

2φ dφ

1 + tγ0(φ)
. (36)

This formula implies φ in terms of t and r by inversion.
It may be noted here that (29) may be extended to the non-axisymmetric case, when there

are two Lagrangian variables, φ and ψ . However, a result corresponding to (34) does not follow
straightforwardly. It is also the case that (29) applies for a compressible fluid, particularly for
barotropic (including adiabatic) cases in which the pressure and density are related. For a
discussion of a related compressible problem, see [15].

Let us now turn to the two examples given by equations (5) and (6). If we set

γ0(φ) = −e−αφ2

t0
, α > 0, (37)

we find that (36) can be integrated exactly to yield

t0eαφ2 = t + (t0 − t)eαr2
(38)

and then it follows from (29), (37) and (38) that

γ = − e−αr2

t0 − t
, (39)

which is (4). Utilization of (22) gives exactly the expression for u in (5)

u(r, t) = 1

2αr

(
1 − e−αr2

t0 − t

)
, (40)

while (20) can be used to calculate v. A singularity in both γ and u is clear for t → t0 and at
all values of r .

The more general example in (6) and (7) is obtained by choosing

γ0(φ) = β − δe−αφ2
, α > 0. (41)

We find that (36) yields

eαφ2 = 1 +
1 + (β − δ)t

1 + βt
(eα(1+βt)r2 − 1). (42)

From (29), (41) and (42) we obtain (6) and (7).
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We pursue equation (14) further and note that if (3) is replaced (in the axisymmetric
case) with

w = zγ (r, t) + σ(r, t), (43)

then σ satisfies
∂σ

∂t
+ u

∂σ

∂r
+ γ σ = 0, (44)

the solution being

σ = σ0(φ)

1 + tγ0(φ)
. (45)

Here σ0(φ) = σ(r, 0) and φ(0, r) = r . Since σ0 may be different from γ0, the solution (43)
does not represent a mere shift of the z-coordinate. However, no important change in the
singular structure emerges.

4. Swirling component of velocity

By analytical and computational methods, and by use of characteristics, we have found singular
solutions of a certain type. Thus the solution formulae for γ (r, t) and u(r, t) are given by (6)
and (7), while the characteristic variable φ(r, t) is given by (42); these formulae apply to the
more general case (β �= 0), but the simpler example can be obtained by setting β = 0 and
setting t0 = δ−1. Let us now turn to the calculation of the swirl velocity, v(r, t), and the
pressure p(r, t), as given by (20) and (19).

We note that equation (20) can be written
∂(rv)

∂t
+ u

∂(rv)

∂r
= 0, (46)

which has the same characteristic as equation (27). Thus

rv = G(φ), (47)

where G is an arbitrary function. We note, however, that it can be determined by the given
initial condition

v = v0(r), t = 0 (48)

and by φ(0, r) = r . So we have

v = φ2

r
v0(φ), (49)

where φ(t, r) is given by (42) in the case under consideration.
By way of example, we consider a particular condition (48), say

v0(r) = re−µr2
, µ > 0. (50)

Then (49) yields

v(r, t) = φ2

r
e−µφ2

, (51)

where φ is given by (42). It can be shown that when r → ∞ with t fixed,

v ∼ (1 + βt)re−µ(1+βt)r2
, (52)

where 1 + βt > 0. On the other hand, when r → 0 with t fixed

v ∼ r [1 + (β − δ)t] , (53)

so that v remains finite on the axis. The pressure can be determined from (19) by integration,
with u given by (7) and v by (51) with (42).
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