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Abstract

We consider the incompressible Toner-Tu (ITT) partial differential equations (PDEs), which are
an important example of a set of active-fluid PDEs. They share many properties with the Navier-
Stokes equations (NSEs) but there are also important differences. The NSEs are usually con-
sidered either in the decaying or the additively forced cases, whereas the ITT equations have
no additive forcing, but instead have a linear, activity term αu (with u the velocity field), which
pumps energy into the system; they also have a negative u|u|2-term that stabilizes growth and pro-
vides a platform for either frozen or statistically steady states. These differences make the ITT
equations an intriguing candidate for study using a combination of PDE analysis and pseudo-
spectral direct numerical simulations (DNSs). In the d = 2 case, we have established global
regularity of solutions. We have also shown the existence of bounded hierarchies of weighted,
time-averaged norms of both higher derivatives and higher moments of the velocity field. For
d = 3 there are equivalent bounded hierarchies for Leray-type weak solutions. We present re-
sults for these norms from our DNSs in both d = 2 and d = 3, and contrast them with their
counterparts for the d = 3 NSEs.
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1. Introduction

The field of active matter continues to grow rapidly [1–25]. The term is generally used for
systems that have bodies, e.g., birdoids in computer animations [1], birds in a flock [2, 4, 5], or
bacteria in dense suspensions [4–17], all of which use some source of energy, typically internal,
to move or to apply forces. Such bodies, referred to as active particles in the physics literature,
mutually interact and lead to non-equilibrium states, which may display rich spatio-temporal
evolution. The bird-flocking model of Vicsek [2], a non-equilibrium version of a Heisenberg-
spin model, is defined in discrete time, for an assembly of point particles, which are distributed
randomly in space; these particles try to align with their neighbours, but with some error that is
modelled stochastically.

Soon after the development of the Vicsek model, Toner and Tu (TT) introduced a hydro-
dynamic stochastic partial differential equation (PDE) that models flocking phenomena [4, 5].
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The TT velocity field obeys a generalised, compressible, stochastically forced Navier-Stokes
(NS) equation, which is not Galilean invariant. Meanwhile, other hydrodynamic PDEs were
developed to study the spatio-temporal evolution evolution of active fluids, such as dense bac-
terial suspensions [4–17], or active nematics. These PDEs are also related to the Navier-Stokes
equations. In one of the simplest variants, called either the mean-bacterial-velocity or the Toner-
Tu-Swift-Hohenberg (TTSH) model, a term, consisting of the sum of a negative Laplacian and
a bi-Laplacian, is added to an incompressible, deterministic TT PDE (henceforth, ITT) [20].
For recent studies of the stochastically forced and deterministic variants of the ITT we refer the
reader to Refs. [21–25].

Although these active-matter and active-fluid PDEs have been studied intensively over the
past two decades from the perspective of physics, and the results of these investigations have been
compared with their experimental counterparts, methods of PDE-analysis, which have commonly
been used to study the Navier-Stokes equations [26–30], have rarely been applied to the ITT
equations. An exception is the work of Zanger, Löwen, and Saal on the regularity of solutions
of the TTSH equations [31]. It turns out that similar PDEs have been studied using the methods
of analysis in the context of the NS equations with an absorption term [32] or the Brinkman-
Forchheimer-extended Darcy model of porous media [32–44]. The major difference is that these
models have a nonlinearity that breaks the NS-invariance enjoyed by the ITT equations. While
numerical methods and experiments are able to track a solution that evolves from specified initial
conditions, methods of analysis are unable to do this; instead, in a complementary fashion, they
provide us with constraints on solutions that evolve from all smooth initial conditions. They also
provide upper bounds on average inverse length scales, which can be interpreted as lower bounds
on the grid sizes necessary to resolve solutions.

Keeping these things in mind, we have studied the d-dimensional ITT PDEs using the ideas
developed in Refs. [45–48], where a combination of analysis and direct numerical simulations
(DNSs) on the d = 3 Navier-Stokes equations was used to match the results of the former against
those of the latter. As in Refs. [45–48], one should not expect the estimated bounds to be satu-
rated as these take into account all smooth initial conditions, however large, in a periodic domain.
The direct numerical simulations of the ITT equations in this paper in both d = 2 and d = 3 have
been based on pseudo-spectral methods. In §2 we define the PDEs in dimensionless form and
the quantities that are required for our analysis. In §3 the scaling properties of the Navier-Stokes
and the ITT equations are discussed and how their similarity acts as a guide to our choice of
moments of higher derivatives of the velocity field. In §4 we discuss energy estimates. In §5
we describe the pseudo-spectral DNS that has been used to solve the ITT equations. In §6 we
present a summary of our results in the d = 2 case, and likewise for the d = 3 case in §7. In
both cases, proofs have been relegated to the Appendices. In §8 we discuss the significance of
our results and compare them with similar results for related PDEs.

2. Dimensionless equations

The standard form of the incompressible Toner-Tu (ITT) equations is given by [4, 5, 21] :

(∂t + λu · ∇) u + ∇p = αu + ν∆u − βu|u|2 . (2.1)

The fixed parameters α, β are positive and the velocity field u satisfies the incompressibility
condition div u = 0. β has the dimension T L−2 ≡ [ν−1], α is a frequency and λ is a dimensionless
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parameter. The domain is taken to be a periodic box [0, L]d
per. We leave remarks until §3 on the

literature involving generalizations of this system to a u|u|2δ nonlinear term.
The first step is to introduce a typical velocity field U0 for which we have two definitions:

U0 =
√
α/β ; U0 = ν/L . (2.2)

Then primed dimensionless variables are defined thus :

x′ = L−1x ; t′ = U0L−1t ; u′ = λU−1
0 u ; p′ = λU−2

0 p . (2.3)

This transforms (2.1) into the dimensionless ITT equations (dropping the primes) which, from
now on, will be the form used in this paper :

(∂t + u · ∇) u + ∇p = α0u + Re−1
ν ∆u − Reβ u|u|2 ,

div u = 0. (2.4)

These operate on the unit periodic box Vd = [0, 1]d. The two Reynolds numbers Reν and Reβ
are defined as follows :

Reν =
U0L
ν

; Reβ =
βU0L
λ2 ; (2.5)

and the dimensionless frequency α0 = LαU−1
0 . The second choice of U0 corresponds to Reν = 1.

3. Invariant scaling, time averages and length scales

The incompressible Navier-Stokes equations possess the following well-known and powerful
invariant scaling property involving an arbitrary parameter `:

x′ = `−1x; t′ = `−2t; u = `−1u′; (3.1)

which means that these equations are valid at every scale. The effect of this invariance is to scale
the norms ‖∇nu‖2m defined by

‖∇nu‖2m =

(∫
Vd

|∇nu|2mdVd

)1/2m

(3.2)

in the following way:
‖∇nu‖2m = `−1/αm,n,d‖∇

′nu′‖2m , (3.3)

where αn,m,d is defined by1

αn,m,d =
2m

2m(n + 1) − d
. (3.4)

It is, therefore, clear that the αn,m,d are a product of the invariance property (3.1). A dimensionless
version of the norms defined in (3.3) is given by

Fn,m,d = ν−1L1/αn,m,d‖∇nu‖2m . (3.5)

1The labelling of the dimensionless frequency α0 and the exponents αn,m is unfortunate, and could cause confusion,
but we continue to use it to avoid the greater confusion of changing the notation from previous papers.
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It has been shown that, for d = 2, 3, and for n ≥ 1 and 1 ≤ m ≤ ∞, weak solutions of the
incompressible Navier-Stokes equations obey [29, 30]〈

F(4−d)αn,m,d

n,m,d

〉
T
≤ cn,m,dRe3 . (3.6)

The angular brackets 〈·〉T represent the time average up to a time T , i.e.,

〈·〉T =
1
T

∫ T

0
· dτ . (3.7)

We emphasize that these brackets represent a time average, not a statistical average. When n = 0
then m is restricted by 3 < m ≤ ∞. An example familiar to the reader is the case n = m = 1, in
which case (4 − d)α1,1,d = 2 with the cancellation of the factor of 4 − d. Then (3.6) yields the2

familiar bound on the time-averaged energy dissipation rate

ε = νL−d
〈∫

V
|ω|2dVd

〉
T
≤ ν3L−4Re3. (3.8)

With the inverse Kolmogorov length defined by λ−4
k = ε/ν3, we obtain the conventional bound

Lλ−1
k ≤ Re3/4 . (3.9)

Equation (3.6) thus expresses an infinite hierarchy of such bounds and can be looked upon as
weighted space-time averages of all derivatives of the velocity field in every L2m-norm. There
is an informal analogy with the concept of wavelets : higher derivatives reflect the dynamics at
small scales, while increasing the value of m magnifies the larger amplitudes at each specific
scale.

In [29, 30] it has also been shown how to define a set of inverse length scales associated with
(3.6). Consider the set of t-dependent length-scales {`n,m,d(t)} defined by(

L`−1
n,m,d

)n+1
= Fn,m,d . (3.10)

This definition takes into account the scaling of the domain volume L which makes (3.10) at the
level of n = m = 1 and d = 3 consistent with the correct definition of the energy dissipation
rate used to define the Kolmogorov length. Then we easily find that for Navier-Stokes weak
solutions, when n ≥ 1 and 1 ≤ m ≤ ∞ ,〈

L`−1
n,m,d

〉
T
≤ cn,m,dRe

3
(4−d)(n+1)αn,m,d . (3.11)

When d = 3 and n = m = 1 , then the exponent is 3
4 , as it should be. Also, note that (n+1)αn,m,d →

1 as n, m→ ∞ .
Of course, it has been known for many years that solutions of the two-dimensional Navier-

Stokes equations are regular [26, 27], but expressing (3.6) in integer dimensions d = 1, 2, 3 rolls
together into one line all the known two- and three-dimensional Navier-Stokes solution results,
such as the class of weak solution d = 3 time averages found by Foias, Guillopé and Temam
[28] in their pioneering paper in 1981. It has been explained in Ref. [29] that, for a full existence

2The vorticity ω and the velocity gradient tensor ∇u are synonymous in L2 when div u = 0 but not in Lp for p > 2.
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and uniqueness proof in the d = 3 case, a factor of 2αn,m,3 would be needed as the exponent in
(3.6). However, no evidence exists for the existence of bounds with this necessary factor of 2. It
is possible that the Leray-Hopf weak solutions are all that exist.

By inspection it is clear that the ITT equations respect the invariant scaling possessed by the
Navier-Stokes equations, apart from the linear-pumping term. However, there is a significant
literature on a more general class of equations where the u|u|2-term is replaced by u|u|2δ, which
is the case in the Brinkman-Forchheimer extended Darcy model arising in porous media. The
paper by Titi and Trabelsi [33] contains a wide literature survey; but we also refer the reader
to [32, 34–44]. When δ > 1 , the invariant scaling property of the Navier-Stokes equations is
broken. This leads to the bounding of time-averaged norms, higher than those available to ITT,
which eventually lead to the regularity of solutions in the d = 3 case. The work in our paper is
different in two important respects. Firstly, we use with the critical value δ = 1 and thus remain
faithful to the scaling property in (3.1). Secondly, the ITT equations in (2.4) have a linear term
α0u which, while trivial in a purely functional setting, is nevertheless physically important in the
creation of equilibrated or frozen states, which appear to dominate the dynamics in our DNSs.

The parallel scaling properties of the ITT equations and the Navier-Stokes equations suggest
that the exponents αn,m,d in (3.4) should be the same in both cases. Therefore, taking into account
the factor of 4 − d in the exponent, we define

Pn,m = ‖∇nu‖2αn,m,2

2m , d = 2 , (3.12)

where
αn,m,2 =

m
m(n + 1) − 1

(3.13)

and a set of inverse length scales equivalent to (3.11)〈
L`−1

n,m,2

〉
T
≤ cn,m,2

〈
Pn,m

〉 1
2(n+1)αn,m,2
T . (3.14)

When d = 3
Qn,m = ‖∇nu‖αn,m,3

2m , d = 3 , (3.15)

where
αn,m,3 =

2m
2m(n + 1) − 3

(3.16)

and a set of inverse length scales equivalent to (3.11)〈
L`−1

n,m,3

〉
T
≤ cn,m,3

〈
Qn,m

〉 1
(n+1)αn,m,3
T . (3.17)

General bounds on
〈
Pn,m

〉
T , expressed as a function of α0, Reν andA0, are expressed in §6. For

d = 3, a narrower class of bounds on
〈
Qn,m

〉
T has been given in §7.

4. Energy estimates

In keeping with standard Navier-Stokes notation, we define n derivatives of u in L2(Vd) as

Hn =

∫
Vd

|∇nu|2dVd . (4.1)
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Given the close relationship between the ITT equations and the incompressible Navier-Stokes
equations, a formal approach is taken on the understanding that the standard Leray-Hopf weak-
solution machinery, derived for the Navier-Stokes equations, is already in place [32, 33]. In this
notation the energy H0 and and enstrophy H1 are:

H0 =

∫
Vd

|u|2dVd ; (4.2)

H1 =

∫
Vd

|∇u|2dVd =

∫
Vd

|ω|2dVd . (4.3)

A Leray-type energy inequality is easily derived

1
2 Ḣ0 + Re−1

ν H1 + Reβ

∫
V
|u|4dVd ≤ α0H0 (4.4)

from which we drop the H1-term3 and apply a Hölder inequality to the
∫

V |u|
4dVd-term to produce

a simple differential inequality for H0

1
2 Ḣ0 ≤ α0H0 − ReβH2

0 . (4.5)

Thus, equilibration of the right hand side occurs at

H0, equil = α0Re−1
β ≡ A0 , (4.6)

where we designate A0 as the activity parameter. By using the time-average definition in (3.7),
from (4.4) we find

〈H0〉T ≤ A0 , (4.7)
〈H1〉T ≤ α0A0Reν , (4.8)

together with the average of the L4-norm〈∫
V
|u|4dVd

〉
T
≤ A2

0 . (4.9)

The inequalities (4.7)–(4.9) each have an O
(
T−1

)
correction term that will be dropped from now

on. These results are true in every dimension. At the level of H0 the following 3 phenomena are
possible :

1. For initial data H0(0) > A0 , we have control over H0 because Ḣ0 < 0 in this region and
H0 decreases down toA0.

2. For initial data H0(0) < A0 , we find that Ḣ0 ≤ a +ve number. Ḣ0(t) could be positive and
thus H0 will grow to reachA0 (a frozen state) but cannot pass through it.

3. For initial data H0(0) < A0 , despite the fact that Ḣ0 ≤ a +ve number, Ḣ0 could be nega-
tive, in which case H0 decays.

The choice of n = m = 1 makes (4 − d)α1,1,d = 2, whereupon the factor of 4 − d cancels. Thus,
from (4.8) 〈

P1,1
〉

T ≤ α0A0Reν (4.10)

and 〈
Q1,1

〉
T ≤ α0A0Reν . (4.11)

3Poincaré’s inequality cannot be applied because, unlike the Navier-Stokes equations, the spatial average of u is not
zero.
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5. Numerical Methods

Run d N δt ν α β

A1 2 2048 2 × 10−4 2.87 × 10−1 10 × 101 5
A2 2 2048 2 × 10−4 1.41 × 10−1 10 × 101 5
A3 2 2048 2 × 10−4 7.07 × 10−2 10 × 101 5
A4 2 2048 2 × 10−4 3.53 × 10−2 10 × 101 5
A5 2 2048 2 × 10−4 2.36 × 10−2 10 × 101 5
A6 2 2048 2 × 10−4 1.77 × 10−2 10 × 101 5
A7 2 2048 2 × 10−4 1 × 10−2 10 × 101 5
A8 2 2048 2 × 10−4 8.8 × 10−2 10 × 101 5
B1 3 512 1 × 10−3 5 × 10−1 1 × 101 1 × 10−1

B2 3 512 1 × 10−3 5 × 10−2 1 × 101 1 × 10−1

B3 3 512 5 × 10−4 1 × 10−2 1 × 101 1 × 10−1

Table 1: The parameters for our DNSs: d is the dimension, Nd the number of collocation points, and δ the time step.For
all our runs, λ = 1. Given these parameters, the Reynolds numbers follow from Eqs. (2.2) and (2.5). Parameters for other
runs are given in the Supplemental Material.

For our DNS of the d-dimensional ITT Eq. (2.1), we use a Fourier pseudospectral method
[51] on periodic domains (a square in d = 2 and a cube in d = 3), with sides of length L = 2π,
and Nd collocation points. We employ the second-order exponential time-difference scheme,
ETDRK2, for time evolution in Fourier-space [52]. We list the parameters for our DNS runs in
Table 1; parameters for additional DNS runs are given in the Supplemental Material.

The dimensional version of the ITT equations (2.1) has four parameters λ, α, ν and β which
reduce to the three dimensionless numbers Reν, Reβ and α0 in the non-dimensionalized version
(2.4). As explained in (2.2), we have found it convenient to define the typical velocity field U0
in two particular ways : U0 =

√
α/β and U0 = ν/L. The latter case restricts Reν to the value

Reν = 1 but allows us to explore a more diverse range of α0 and Reβ.

6. Summary of results in the d = 2 case

The methods used in the analysis sections of this paper are based on the differential inequal-
ities explained in Appendix A. The proof of the results in the following subsections are given
in Appendix B. Within these estimates, various multiplicative constants c, cm and cn,m appear,
which should be read as generic constants that may differ from line to line. These constants are
algebraic in n,m but are not usually given explicitly : see Appendix A. We remark, furthermore,
that while none of the bounds displayed in the following sections are saturated, this does not
mean they are not sharp; more drastic initial conditions might get closer to saturation.

6.1. Estimates for
〈
Pn,m

〉
T

By using the definition of Pn,m in (3.12) as our guide, for m = 1, we have αn,1,2 = 1/n , so〈
Pn,1

〉
T =

〈
H1/n

n

〉
T
. (6.1)

The estimate for
〈
P1,1

〉
T in (4.10) can be used to compute a series of other inequalities. The

proofs can be found in Appendix B. Below is a summary :
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(i) Firstly we wish to estimate
〈
Pn,1

〉
T for n ≥ 1. In inequality (B.7) in Appendix B.1, for n = 2

it is shown that 〈
P2,1

〉
T ≤ cα0

(
α0A0Re3

ν

)1/2
. (6.2)

(ii) More generally, in inequality (B.22) Appendix B.5, it is shown that for n ≥ 2

〈
Pn,1

〉
T ≤ cn,1α

2
n
0

(
α0A0Re3

ν

) n−1
n . (6.3)

(iii) In inequality (B.9) in Appendix B.2 it is shown that〈
P1,m

〉
T =

〈
‖∇u‖

2m
2m−1
2m

〉
T
, (6.4)

displayed in row 3 of Fig. 1, satisfies〈
P1,m

〉
T ≤ cm (α0A0Reν)

3m−2
2m−1 . (6.5)

(iv) With the definition 〈
P0,m

〉
T =

〈
‖u‖

2m
m−1
2m

〉
T
, (6.6)

from (B.13) in Appendix B.3, it is shown that, for m > 2 ,〈
P0,m

〉
T ≤ cA

m
m−1
0 (α0Reν)

m−2
m−1 . (6.7)

(B.14) shows that, in the limit m→ ∞, we have〈
P0,∞

〉
T =

〈
‖u‖2∞

〉
T
≤ cα0A0Reν . (6.8)

(v) In inequality (B.29) in Appendix B.6 it is shown that, for n ≥ 2,

〈
Pn,m

〉
T ≤ cn,mα

2m
m(n+1)−1

0

(
α0A0Re3

ν

) mn−1
m(n+1)−1 . (6.9)

(iv) Finally, in Appendix B.4 it is shown that global boundedness for the 2d ITT equations is
also shown to exist in §Appendix B.4, by proving that H1 is bounded point-wise in time for
every t > 0.

6.2. Numerical results for Pn,m

We now present plots in Fig. 1 of Pn,m(t) versus time t for the two values n = 0 and n = 1,
with a sequence of values of m = 1, . . . , 10. Hölder’s inequality insists that, for fixed n, the
norms ‖ · ‖2m must be ordered with increasing m, such that ‖ · ‖2m ≤ ‖ · ‖2(m+1); but the αn,m,d=2
decrease as m increases. Thus, it is technically possible for the Pn,m to be ordered either way :
i.e., an increasing regime Pn,m ≤ Pn,m+1 or a decreasing regime Pn,m ≥ Pn,m+1. The latter regime
was originally observed numerically for the d = 3 NSEs [45, 46] and was also discussed in [47],
although no obvious reason for this particular ordering was deduced. Moreover, no crossing of
curves that represented different values of m was observed.

In all our runs for the d = 2 case, when U0 =
√
α/β (panel A), we observe both regimes, but

only the decreasing regime Pn,m ≥ Pn,m+1 when U0 = ν/L (panel B). We illustrate this with plots
in Fig. 1 for run A6: In panel A (U0 =

√
α/β) the plots of P1,m can cross each other at different

8



A B

Figure 1: (colour online) Illustrative plots for U0 =
√
α/β (panel A) and U0 = ν/L (panel B) for run A6 (see Table

1): First and second rows : plots versus t of P0,m and P1,m ; the plots in the second row are expanded versions of
small segments of the plots in the first row. Third row : Plots versus m of

〈
P0,m

〉
T and

〈
P1,m

〉
T . Curves for m =

2, 3, 4, 5, 6, 7, 8, 9, and 10 are drawn in red, pink; violet, green, cyan, maroon, blue, orange, and yellow, respectively.
Similar plots for other representative runs are given in the Supplemental Material.

times, as we can see clearly in the expanded plots in the second rows ; such crossings do not
occur in panel B (U0 = ν/L). Furthermore, the plots versus m of

〈
P1,m

〉
T (third row) decreases

monotonically with increasing m in panel B but not in panel A.
In Fig. 2 we give plots for U0 =

√
α/β (panel A) and U0 = ν/L (panel B), runs A1-A8, to

illustrate whether the bound in 4.10 is saturated : In the first row we plot
〈
P1,1

〉
T (solid black

line) versus Reν (panel A) and α0 (panel B) ; the black dashed line denotes Reν α0A0, which is
the right-hand side (RHS) of (4.10) . In the second row we present plots versus Reν (panel A)
and α0 (panel B) of

〈
P0,m

〉
T and

〈
P1,m

〉
T , for m = 2, . . . , 10. Note that curves for

〈
P1,m

〉
T can

cross as Reν increases (panel A) ; by contrast, they do not cross as α0 increases (panel B). Similar
plots for other representative runs are given in the Supplemental Material.

7. Summary of results in the d = 3 case

The proof of the results in the following subsections are given in Appendix C. The methods
used there are based on the differential inequalities explained in Appendix A.

7.1. Estimates for
〈
Qn,m

〉
T

Results in the d = 3 case are more restricted, which reflects the open status of the regularity
problem. Nevertheless, time averages of various Qn,m of Navier-Stokes type can be found [29,

9



A B

Figure 2: (Colour online) Illustrative plots for U0 =
√
α/β (panel A) and U0 = ν/L (panel B) for d = 2, runs A1-A8

(see Table 1) : First row : plots versus Reν (panel A) and α0 (panel B) of
〈
P1,1

〉
T ( solid black line) and Reν α0A0

(dashed black line). Second row : Plots versus Reν (panel A) and α0 (panel B) of
〈
P0,m

〉
T and

〈
P1,m

〉
T . Curves for

m = 2, 3, 4, 5, 6, 7, 8, 9, and 10 are drawn in red, pink; violet, green, cyan, maroon, blue, orange, and yellow, respectively.
Similar plots for other representative runs are given in the Supplemental Material.

30]. In addition to a bound on
〈
Q1,1

〉
T , as in (4.11), our results from Appendix C are summarised

thus : from (C.16) we have 〈
Q2,1

〉
T ≤ cα0Re2

ν . (7.1)

We also find that for n ≥ 2 and m ≥ 1, 〈
Qn,m

〉
T < ∞ (7.2)

although estimating the right hand side is a difficult calculation that we have omitted (see (C.23)).
Moreover, with

Q0,m = ‖u‖
2m

2m−3
2m , (7.3)

for m > 2, (7.4) shows that

〈
Q0,m

〉
T ≤ cA

2(m+3)
5(2m−3)

0

(
α0Re2

ν

) 9(m−2)
5(2m−3) . (7.4)

(C.29) also shows that, in the limit m→ ∞,

〈‖u‖∞〉T ≤ cα9/10
0 A

1/5
0 Re9/5

ν . (7.5)

7.2. Numerical results for Qn,m

Figure. 3 shows plots of Qn,m(t) versus time t for the two values n = 0 and n = 1, with a
sequence of values of m = 1, . . . , 10. Again, as in the d = 2 case, there are two regimes, namely,
an increasing regime Qn,m ≤ Qn,m+1 and a decreasing regime Qn,m ≥ Qn,m+1, because the norms
‖ · ‖2m must be ordered with increasing m, such that ‖ · ‖2m ≤ ‖ · ‖2(m+1); but the αn,m,d=3 decrease
as m increases.

In all our runs, when U0 =
√
α/β (panel A) we observe both these regimes, but only the

decreasing regime Qn,m ≥ Qn,m+1 when U0 = ν/L (panel B) has been used. We illustrate this
10



A B

Figure 3: (Colour online) Illustrative plots for U0 =
√
α/β (panel A) and U0 = ν/L (panel B) for d = 3, run B2 (see

Table 1): First and second rows: plots versus t of Q0,m and Q1,m; the plots in the second row are expanded versions
of small segments of the plots in the first row. Third row: Plots versus m of

〈
Q0,m

〉
T and

〈
Q1,m

〉
T . Curves for m =

2, 3, 4, 5, 6, 7, 8, 9, and 10 are drawn in red, pink; violet, green, cyan, maroon, blue, orange, and yellow, respectively.
Similar plots for other representative runs are given in the Supplemental Material.

A B

Figure 4: (Colour online) Illustrative plots for U0 =
√
α/β (panel A) and U0 = ν/L (panel B) for d = 3, runs A1-

A8 (see Table 1): First row : plots versus Reν (panel A) and α0 (panel B) of
〈
Q1,1

〉
T ( solid black line) and Reνα0A0

(dashed black line). Second row : Plots versus Reν (panel A) and α0 (panel B) of
〈
Q0,m

〉
T and

〈
Q1,m

〉
T . Curves for

m = 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 are drawn in black, red, pink, violet, green, cyan, maroon, blue, orange, and yellow,
respectively. Similar plots for other representative runs are given in the Supplemental Material.

11



with plots in Fig. 3 for run B2 : In panel A (U0 =
√
α/β) the plots of Q1,m can cross each other

at different times, as we can see clearly in the expanded plots in the second row; such crossings
do not occur in panel B (U0 = ν/L). Furthermore, the plots versus m of

〈
Q1,m

〉
T (third row)

decreases monotonically with increasing m in panel B but not in panel A. Note, in particular, that
Q1,m is almost equivalent to a non-dimensionalized version of the Dm = ‖ω‖

αn,m,d=3

2m introduced in
[45] and plotted there for the d = 3 Navier-Stokes equations (see the Supplemental Material).
The only difference here is that we are plotting ‖∇u‖2m and not ‖ω‖2m : the two are identical only
when m = 1.

In Fig. 4 we present plots for U0 =
√
α/β (panel A) and U0 = ν/L (panel B), runs B1-B3, to

illustrate whether the bound in (4.10) is saturated : In the first row we plot
〈
Q1,1

〉
T (panel B) ; the

black dashed line denotes Reν α0A0, which is the RHS of (4.10). In the second row we present
plots versus Reν (panel A) and α0 (panel B) of

〈
Q0,m

〉
T and

〈
Q1,m

〉
T , for m = 2, . . . , 10. Note

that curves for
〈
Q1,m

〉
T can cross as Reν increases (panel A) ; by contrast, they do not cross as

α0 increases (panel B). Similar plots for other representative runs are given in the Supplemental
Material.

8. Conclusions

In this paper we have married the two approaches of the analysis of weak solutions of the
ITT equations, through the estimation of weighted time averages, together with the results of
numerical simulations. To achieve this we have invoked the similar scaling properties between
the ITT equations and the Navier-Stokes equations : see §3. There are, however, two important
differences. Usually the Navier-Stokes equations are considered either in the decaying or the
additively forced case, whereas the ITT equations have no additive forcing but instead have a
linear-activity term α0u which, in effect, pumps energy into the system. This makes little dif-
ference to the functional nature of the problem, but dynamically the effect of this term, together
with the negative cubic term, creates a platform for either temporally frozen solutions or statis-
tically steady states. Furthermore, the greatest contrast with the d = 2 Navier-Stokes equations
lies at the level of the vorticity equation. It can be easily shown that solutions of the forced d = 2
Navier-Stokes equations are regular. Indeed, the system has a global attractor whose dimension
can be estimated : see references in [27]. The root cause of this is the absence of the vortex
stretching term ω · ∇u = 0 , when d = 2, whereas, when d = 3 , this term is not zero. The
difference shows up at the level of the vorticity equation which can be expressed as

(∂t + u · ∇)ω = (α0 + Reν) ∆ω + ω · ∇u − Reβcurl
(
u|u|2

)
.

For the ITT equations the curl
(
u|u|2

)
term appears to destroy the regularity property held by

the d = 2 Navier-Stokes equation, because it appears to be another form of vortex stretching.
However, as we have shown above, the extra piece of information afforded to us is the bounded
time integral expressed in (4.9) 〈∫

V
|u|4 dV

〉
T
≤ A2

0 , (8.1)

which is enough to recover regularity, but only to the degree that bounds are exponential in
time (see Appendix B.4). Thus, we fall just short of the Navier-Stokes result as we have no
proof of the existence of a global attractor. Results that lie in parallel with those of the Navier-
Stokes equations in both spatial dimensions is the existence of bounded infinite hierarchies of

12



time averages : i.e., estimates of
〈
Pn,m

〉
T and

〈
Qn,m

〉
T , whose bounds are calculated in Appendix

B and Appendix C and summarised in §6 and §7 together with the results of our numerical
simulations.

When there are statistically steady solutions in our DNS, the possibility of multifractality
should be considered [21, 22]. A future line of approach might be to repeat the calculation in [49],
where the correspondence between the multifractal model of turbulence and the Navier–Stokes
equations was investigated.
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Turbulence : where do we stand? in 2022, when work on this paper was undertaken. It was sup-
ported by grant number EP/R014604/1. RP, KVK and NBP thank SERB (India), the National
Supercomputing Mission (India), and SERC (IISc), for support and computational resources,
and A. Gupta for discussions.

Appendix A. Differential Inequalities

The most widely used class of differential inequalities that generalize the Sobolev inequal-
ities are called Gagliardo-Nirenberg inequalities [50]. In their most general form in integer d
dimensions (d = 1, 2, 3) they can be expressed as

‖∇ ju‖p ≤ c ‖∇nu‖ar ‖u‖
1−a
q , (A.1)

where 0 ≤ j < n and 1 < p, r, q ≤ ∞. The exponent a can be calculated by dimensional analysis
and thus must satisfy

1
p

=
j
d

+ a
(

1
r
−

n
d

)
+

1 − a
q

, (A.2)

where j/m ≤ a < 1. (A.2) holds on the whole space Rd. With periodic boundary conditions,
there are L2 additional terms, which produce lower-order corrections to our estimates, which will
be ignored. In the following :

1. We take a formal approach on the understanding that the standard Leray-Hopf weak-
solution machinery, derived for the Navier-Stokes equations, is already in place [32, 33].

2. We will use the convention that the constants designated as c, cm or cn,m are generic in the
sense that they may differ from line to line.

Appendix B. Proofs in the d = 2 case

Appendix B.1. Estimates for
〈
P2,1

〉
T

Our first requirement is to bound P2,1, with Pn,1 defined in (3.12). Clearly αn,1,2 = 1/n, so

〈
P2,1

〉
T =

〈
H1/2

2

〉
T

=

〈(
H2

H1

)1/2

H1/2
1

〉
T

≤

〈
H2

H1

〉1/2

T

〈
P1,1

〉1/2
T . (B.1)
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To achieve a bound on 〈H2/H1〉T , we take the curl of the ITT equation :

(∂t + u · ∇)ω = α0ω + Re−1
ν ∆ω − Reβ curl(u|u|2) . (B.2)

The key point is that, while the vortex-stretching term ω · ∇u is missing because of the orthog-
onality of ω with the gradient operator, there is an additional negative Reβ curl(u|u|2)-term. To
deal with this we write

1
2 Ḣ1 ≤ α0H1 − Re−1

ν H2 − Reβ

∫
V
ω · curl(u|u|2)dV

≤ α0H1 −
1
2 Re−1

ν H2 + 1
2 Re2

βReν

∫
V
|u|6dV , (B.3)

where we have integrated by parts and have then used a Hölder inequality. Now divide by H1 to
obtain

1
2

〈
H2

H1

〉
T
≤ Reνα0 + 1

2 Re2
βRe2

ν

〈∫
V |u|

6dV

H1

〉
T
.

Then we use a Gagliardo-Nirenberg inequality

‖u‖6 ≤ c ‖∇u‖a2‖u‖
1−a
4 , a = 1

3 , (B.4)

to find 〈
‖u‖66
H1

〉
T
≤ c

〈
‖u‖44

〉
T
. (B.5)

Inserting this into (B.4) gives

1
2

〈
H2

H1

〉
T
≤ α0Reν + c Re2

βRe2
ν

〈
‖u‖44

〉
T

≤ cα0Reν (1 + α0Reν) . (B.6)

Thus, to leading order in Reν, (B.1) becomes〈
P2,1

〉
T / cA1/2

0 (α0Reν)3/2 , (B.7)

as advertised in (6.3).

Appendix B.2. An estimate for P1,m =

〈
‖∇u‖

2m
2m−1
2m

〉
T

A Gagliardo-Nirenberg inequality shows that, for some function A ,

‖A‖2m ≤ cm‖∇A‖
m−1

m
2 ‖A‖

1
m
2 . (B.8)

We choose A = ∇u and, noting from (3.4) that α1,m,2 = m/(2m − 1), we write〈
‖∇u‖

2m
2m−1
2m

〉
T
≤ cm

〈
‖∇2u‖

2(m−1)
2m−1

2 ‖∇u‖
2

2m−1
2

〉
T

≤ cm

〈
‖∇2u‖2

〉 2(m−1)
2m−1

T

〈
‖∇u‖22

〉 1
2m−1

T

= cm
〈
P2,1

〉 2(m−1)
2m−1

T 〈H1〉
1

2m−1
T

≤ cm (α0A0Reν)
3m−2
2m−1 , (B.9)

as advertised in (6.5). In the limit m→ ∞ ,

〈‖∇u‖∞〉T ≤ c (α0A0Reν)3/2 . (B.10)
14



Appendix B.3. Estimates for
〈
P0,m

〉
T =

〈
‖u‖

2m
m−1
2m

〉
T

and
〈
‖u‖2∞

〉
T

We now turn to estimating u in L2m(V) for m > 2.

‖u‖2m ≤ cm‖∇
2u‖

m−2
3m

2 ‖u‖
m−2
3m

4 , (B.11)

where a = m−2
3m . When n = 0 and d = 2 we have (4 − d)α0,m,2 = 2m

m−1 . Thus,〈
‖u‖

2m
m−1
2m

〉
T
≤ cm

〈
‖∇2u‖

2(m−2)
3(m−1)

2 ‖u‖
4(m+1)
3(m−1)

4

〉
T

≤
〈
P2,1

〉 2(m−2)
3(m−1)

T

〈
‖u‖44

〉 (m+1)
3(m−1)

T
, (B.12)

in which case, for m > 2, using (B.7) and (4.9),〈
‖u‖

2m
m−1
2m

〉
T
≤ cA

m
(m−1)

0 (α0Reν)
m−2
m−1 , (B.13)

as advertised in (6.7). In the limit m→ ∞ , this reduces to〈
‖u‖2∞

〉
T
≤ cα0A0Reν , (B.14)

as advertised in (6.8).

Appendix B.4. Regularity : an exponential bound in d = 2 dimensions
Returning to (B.5) we can write

1
2 Ḣ1 ≤

(
α0 + 1

2 Re2
βReν‖u‖44

)
H1 (B.15)

and so

H1(T ) ≤ H1(0) exp
{∫ T

0

(
α0 + c Re2

βReν‖u‖44
)

dτ
}

≤ H1(0) exp
{
α0

(
1 + c Re2

βReνA2
0

)
T
}
, (B.16)

which is finite for every finite T . Control over the H1-norm establishes global regularity in this
2d case but not a global attractor, which requires a uniform bound for all t.

Appendix B.5. Estimates for
〈
Pn,1

〉
T for n > 2

Using the methods in [27], a full ‘ladder’ for Hn takes the form

1
2 Ḣn ≤ α0Hn − Re−1

ν Hn+1 + cn,1H1/2
n+1H1/2

n ‖u‖∞
+ cn,2ReβHn‖u‖2∞ ; (B.17)

therefore, after a Hölder inequality and re-arrangement, we have

1
2 Ḣn ≤ α0Hn −

1
2 Re−1

ν Hn+1 + cn

(
Reβ + Reν

)
Hn‖u‖2∞ . (B.18)

Thus, 〈
Hn+1

Hn

〉
T
≤ 2α0Reν + cnReν

(
Reβ + Reν

) 〈
‖u‖2∞

〉
T

(B.19)
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from which we deduce that 〈
Hn+1

Hn

〉
T

/ cnα0A0Re3
ν . (B.20)

Moreover, for n ≥ 2

〈
Pn+1,1

〉
T =

〈(
Hn+1

Hn

) 1
n+1

H
1

n+1
n

〉
T

≤

〈
Hn+1

Hn

〉 1
n+1

T

〈
Pn,1

〉 n
n+1
T . (B.21)

Given that
〈
P2,1

〉
T is bounded above as in (B.7), together with (B.20), we can now generate upper

bounds on every
〈
Pn,1

〉
T for n ≥ 2, namely,

〈
Pn,1

〉
T ≤ cn,1α

n+1
n

0 A
n−1

n
0 Re

3(n−1)
n

ν , (B.22)

which can be transformed into the form advertised in (6.3).

Appendix B.6. Estimates for
〈
Pn,m

〉
T

We can write down an inequality for B = ∇2u such that

‖∇n−2B‖2m ≤ c ‖∇N−2B‖a2‖B‖
1−a
2 , (B.23)

for some N > n + 1 − 1/m , with

a =
m(n − 1) − 1
m(n + 1) − 1

. (B.24)

Thus, we can write 〈
‖∇nu‖2αn,m

2m

〉
T
≤ c

〈
‖∇Nu‖2aαn,m

2 ‖∇2u‖2(1−a)αn,m

2

〉
T
. (B.25)

Re-arranging and then using Hölder’s inequality, we have〈
‖∇nu‖2αn,m

2m

〉
T
≤ c

〈(
‖∇Nu‖2/N2

)aNαn,m
(
‖∇2u‖2

)2(1−a)αn,m
〉

T
(B.26)

≤ cN,n,m

〈
‖∇Nu‖2/N2

〉aNαn,m

T

〈
‖∇2u‖

2(1−a)αn,m
1−aNαn,m

2

〉1−aNαn,m

T
(B.27)

= cN,n,m
〈
PN,1

〉aNαn,m

T

〈
P

2(1−a)αn,m
1−aNαn,m

2,1

〉1−aNαn,m

T
. (B.28)

It can be checked through the definition of a in (B.24) that the exponent of P2,1 inside the time-
average is unity. Estimates for

〈
PN,1

〉
T and

〈
P2,1

〉
T are available from (6.3) and (6.2) : one can

then choose the lowest value of N , constrained by N > n + 1 − 1/m. After some algebra, this
leads to the result 〈

Pn,m
〉

T ≤ cn,mα
2m

m(n+1)−1

0

(
α0A0Re3

ν

) mn−1
m(n+1)−1 , (B.29)

as advertised in (6.9).
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Appendix C. Proofs in the d = 3 case

Step 1 : Qn,m is defined in (3.15). In simplied form Qn,1 can be written as

Qn,1 = H
1

2n−1
n . (C.1)

Moreover, because
〈
Q1,1

〉
T = 〈H1〉T , we have an estimate for this in (4.8). We begin this sec-

tion by estimating
〈
Q2,1

〉
T from the vorticity equation (B.2), with the 3d vortex stretching term

restored:
(∂t + u · ∇)ω = α0ω + Re−1

ν ∆ω + ω · ∇u − Reβ curl(u|u|2) . (C.2)

From now on, all the steps are formal : all estimates are based on weak-solution theory. The
equivalent of (B.3) is

1
2 Ḣ1 ≤ α0H1 − Re−1

ν H2 + H1/2
2 H1/2

1 ‖u‖∞ − Reβ

∫
V
ω · curl(u|u|2)dV

≤ α0H1 −
3
4 Re−1

ν H2 + H1/2
2 H1/2

1 ‖u‖∞ + Re2
βReν

∫
V
|u|6dV , (C.3)

where we have integrated by parts and have then used a Hölder inequality. The 3-dimensional
Agmon inequality for ‖u‖∞ is

‖u‖2∞ ≤ cnHa
n H1−a

1 n ≥ 2 , (C.4)

with a = 1
2(n−1) . Thus, for n = 2 ,

‖u‖∞ ≤ c H1/4
2 H1/4

1 (C.5)

and so

H1/2
2 H1/2

1 ‖u‖∞ ≤ c H3/4
2 H3/4

1 (C.6)

≤ 1
4 Re−1

ν H2 + c Re3
νH3

1 . (C.7)

Moreover, Sobolev’s inequality for d = 3 shows that

‖u‖6 ≤ c ‖∇u‖2 ; (C.8)

therefore, in total, (C.3) becomes

1
2 Ḣ1 ≤ α0H1 −

1
4 Re−1

ν H2 + c Reν
(
Re2

β + Re2
ν

)
H3

1 . (C.9)

Thus, the ultimate contribution to (C.10) from the u|u|2-term is proportional to that from the
vortex-stretching term, in the sense that they are both proportional to H3

1 . Dividing by H2
1 gives

1
4 Re−1

ν

〈
H2

H2
1

〉
T

≤ α0

〈
H−1

1

〉
T

+ c Reν
(
Re2

β + Re2
ν

)
Q1 . (C.10)

Ignoring the first term on the right hand side with the negative exponent, we can write〈
H2

H2
1

〉
T

≤ cα0Re2
ν

(
Re2

β + Re2
ν

)
. (C.11)
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In this part we finally have

〈
Q2,1

〉
T =

〈 H2

H2
1

1/3

H2/3
1

〉
T

(C.12)

≤

〈
H2

H2
1

〉1/3

T

〈H1〉
2/3
T (C.13)

≤ c
(
α0Re2

ν

(
Re2

β + Re2
ν

))1/3
(α0Reν)2/3 (C.14)

= cα0Re4/3
ν

(
Re2

β + Re2
ν

)1/3
. (C.15)

Since Reν is dominant, the bound on Q2 scales like〈
Q2,1

〉
T / α0Re2

ν + O
(
Re4/3

ν

)
. (C.16)

Step 2 : Let us repeat (B.18) by writing

1
2 Ḣn ≤ α0Hn −

1
2 Re−1

ν Hn+1 + cn

(
Reβ + Reν

)
Hn‖u‖2∞ . (C.17)

After re-arrangement and the use of Agmon’s inequality, (C.17) becomes

1
2 Ḣn ≤ α0Hn −

1
2 Re−1

ν Hn+1 + cn

(
Reβ + Reν

)
H1+a

n H1−a
1 . (C.18)

Dividing by H2n/(2n−1)
n and time averaging gives

1
2 Re−1

ν

〈
Hn+1

H
2n

2n−1
n

〉
T

≤ α0

〈
H

1− 2n
2n−1

n

〉
T

+ cn

(
Reβ + Reν

) 〈
H

2n−1
2(n−1)−

2n
2n−1

n H
2n−3

2(n−1)

1

〉
T

≤ α0

〈
H
− 1

2n−1
n

〉
T

+ cn

(
Reβ + Reν

)
〈Qn〉

1
2(n−1)

T 〈Q1〉
2n−3

2(n−1) . (C.19)

The next step is to ignore the first term4. Given that Reν is the dominant term, we write (C.19) in
the simplified form 〈

Hn+1

H
2n

2n−1
n

〉
T

≤ cnRe2
ν

〈
Qn,1

〉 1
2(n−1)

T
〈
Q1,1

〉 2n−3
2(n−1)

T . (C.20)

We then study

〈
Qn+1,1

〉
T =

〈
H

1
2n+1
n+1

〉
T

=

〈 Hn+1

H
2n

2n−1
n


1

2n+1

H
2n

(2n+1)(2n−1)
n

〉
T

≤

〈
Hn+1

H
2n

2n−1
n

〉 1
2n+1

T

〈
Qn,1

〉 2n
2n+1
T , (C.21)

4The term with the negative exponent of Hn on the RHS of (C.19) is only out of control if Hn temporarily becomes
very small. In principle, this could be dealt with by adding a constant term to Hn to provide the platform of a lower
bound. We omit the details.
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in which case 〈
Qn+1,1

〉
T ≤ cnRe

2
2n+1
ν

〈
Qn,1

〉 2n
2n+1 + 1

2(2n+1)(n−1)

T
〈
Q1,1

〉 2n−3
2(n−1)(2n+1)

T

= cnRe
2

2n+1
ν

〈
Qn,1

〉 (2n−1)2
2(2n+1)(n−1)

T
〈
Q1,1

〉 2n−3
2(n−1)(2n+1)

T . (C.22)

Given that we have estimates for both
〈
Q1,1

〉
T and

〈
Q2,1

〉
T , we can generate estimates for all〈

Qn,1
〉

T for n ≥ 3. Thus, we can write〈
Qn,1

〉
T < ∞ n ≥ 3 . (C.23)

Then the method used in §Appendix B.6 can be used to show that
〈
Qn,m

〉
T < ∞ for m ≥ 1.

Step 3 : Now let us consider
‖u‖2m ≤ c ‖∇2u‖a2‖u‖

1−a
4 , (C.24)

where a = 3(m − 2)/5m with m > 2. Then we can write〈
‖u‖α0,m

2m

〉
T
≤ c

〈
‖∇2u‖aα0,m

2 ‖∇u‖(1−a)α0,m

4

〉
T

= c
〈
Q3aα0,m/2

2,1

(
‖u‖44

) 1
4 (1−a)α0,m/2

〉
T
, (C.25)

where α0,m = 2m
2m−3 . Then

〈
‖u‖α0,m

2m

〉
T
≤ c

〈
Q2,1

〉3aα0,m/2
T

〈(
‖u‖44

) 1
4 (1−a)α0,m/2
1−3aα0,m/2

〉1−3aα0,m/2

T
. (C.26)

Given a and α0,m, it can easily be checked that the exponent of ‖u‖44 inside the average is unity.
Thus, because

〈
‖u‖44

〉
T
≤ cA2

0, (C.26) becomes〈
‖u‖α0,m

2m

〉
T
≤ c (α0Re2

ν)
3aα0,m/2A

2−3aα0,m

0

= α
3aα0,m/2
0 A

2−3aα0,m

0 Re3aα0,m
ν . (C.27)

In fact 3aα0,m/2 =
9(m−2)
5(2m−3) and so 1 − 3aα0,m/2 = m+3

5(2m−3) , whence

〈
‖u‖α0,m

2m

〉
T
≤ cα

9(m−2)
5(2m−3)

0 A
2(m+3)

5(2m−3)

0 Re
18(m−2)
5(2m−3)
ν m > 2 , (C.28)

as advertised in (7.4). In the limit m→ ∞ , we find that

〈‖u‖∞〉T ≤ cα9/10
0 A

1/5
0 Re9/5

ν , (C.29)

as advertised in (7.5).
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Supplemental Material
In this Supplemental Material we provide the following additional plots:

1. Illustrative plots for the time series of the total kinetic energy Etot(t) , the averaged energy spectrum E(k) (for definitions see
below) , and filled contour plots of the vorticity (in d = 2) and isosurfaces of the modulus of the vorticity (in d = 3).

2. Different norms and their time averages for the temporally frozen states in d = 2.
3. In d = 3, we plot versus t, Q0,m, Q1,m, and Dm and their time averages versus m, for a representative run.

Definitions
1. The total kinetic energy per unit volume is

Etot(t) =
1
Ld

∫
Vd

u · u
2

dVd

 .
2. The shell-averaged energy spectrum is

E(k) =
1
2

k′=k+1/2∑
k′=k−1/2

i=d∑
i=1

〈̃
ui(k

′
, t).̃ui(−k

′
, t)

〉
t
,

where ũ(k, t) is the spatial Fourier transform of the velocity field u(~x, t); 〈.〉t indicates the average over time.
3. Weighted averages of the vorticity are defined as

Dm(t) = ‖ω‖
αn,m,d=3
2m .

Supplemental results for two and three dimensions
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Run d N δt ν α β

S1 2 2048 2 × 10−4 6.2 × 10−1 1 1
S2 2 2048 2 × 10−4 1.2 × 10−1 1 1
S3 2 2048 2 × 10−4 6.0 × 10−2 1 1
S4 2 2048 2 × 10−4 3.0 × 10−2 1 1
S5 2 2048 2 × 10−4 1.5 × 10−2 1 1
S6 2 2048 2 × 10−4 7.0 × 10−3 1 1
S7 2 2048 2 × 10−4 3.1 × 10−3 1 1

Table C.2: The parameters for our DNSs: d is the dimension, Nd the number of collocation points, and δ the time step.
For all our runs, λ = 1.

Figure C.5: Plots for runs S7 (row 1) and A6 (row2): column (1) contains plots versus the time t of the total energy
Etot(t); column (2) contains log-log plots versus k of the energy spectrum E(k); column (3) comprises filled contour plots
of ω at a representative time.
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A B

Figure C.6: (Colour online) Illustrative plots for U0 =
√
α/β (panel A) and U0 = ν/L (panel B) for run S7 (see Table

C.2): First and second rows : plots versus t of P0,m and P1,m ; the plots in the second row are expanded versions of
small segments of the plots in the first row. Third row : Plots versus m of

〈
P0,m

〉
T and

〈
P1,m

〉
T . Curves for m =

2, 3, 4, 5, 6, 7, 8, 9, and 10 are drawn in red, pink; violet, green, cyan, maroon, blue, orange, and yellow, respectively.

A B

Figure C.7: (Colour online) Illustrative plots for U0 =
√
α/β (panel A) and U0 = ν/L (panel B) for d = 2, runs S1-S7

(see Table C.2) : First row : plots versus Reν (panel A) and α0 (panel B) of
〈
P1,1

〉
T ( solid black line) and Reν α0A0

(dashed black line). Second row : Plots versus Reν (panel A) and α0 (panel B) of
〈
P0,m

〉
T and

〈
P1,m

〉
T . Curves for

m = 2, 3, 4, 5, 6, 7, 8, 9, and 10 are drawn in red, pink; violet, green, cyan, maroon, blue, orange, and yellow, respectively.
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Figure C.8: (Colour online) For run B2; plot versus t of the total kinetic energy Etot(t) (column 1, row 1); log-log plot
versus k of the energy spectrum E(k) (column 1, row2); iso-surfaces of the modulus of the vorticity field (column 2).
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A

Figure C.9: (Colour online) Illustrative plots for U0 =
√
α/β (panel A) run B3 (see Table 1, main text): First and second

rows : plots versus t of Q0,m, Q1,m and Dm ; the plots in the second row are expanded versions of small segments of the
plots in the first row. Third row : Plots versus m of

〈
Q0,m

〉
T and

〈
Q1,m

〉
T and 〈Dm〉T . Curves for m = 2, 3, 4, 5, 6, 7, 8, 9,

and 10 are drawn in red, pink; violet, green, cyan, maroon, blue, orange, and yellow, respectively.
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B

Figure C.10: (Colour online) Illustrative plots for U0 = ν/L (panel B) for run B3 (see Table 1, main text): First and second
rows : plots versus t of Q0,m, Q1,m and Dm ; the plots in the second row are expanded versions of small segments of the
plots in the first row. Third row : Plots versus m of

〈
Q0,m

〉
T and

〈
Q1,m

〉
T and 〈Dm〉T . Curves for m = 2, 3, 4, 5, 6, 7, 8, 9,

and 10 are drawn in red, pink; violet, green, cyan, maroon, blue, orange, and yellow, respectively.
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