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In honor of Ciprian Foias on his 75th birthday:
Wisdom is vindicated by all her children (Luke, 7:35)[1]

ABSTRACT. Estimates for the three α-models known as the
LANS-α, Leray-α and Bardina models are found in terms a
Reynolds number associated with a Navier-Stokes velocity field.
They are tabulated for comparative purposes and show clearly
that all estimates for the Leray-α model are smaller than those
for the LANS-α and Bardina models.

1. INTRODUCTION

1.1. Opening remarks. Ciprian Foias has been a wise and gentle inspi-
ration and guide to a younger generation of applied mathematicians who have
followed in his footsteps by devoting considerable portions of their careers to
studying the Navier-Stokes equations and the various problems associated with
them. Ciprian has taught us respect for the severe difficulties encountered when
addressing three-dimensional Navier-Stokes regularity properties [2–10], but he
has also been the leader these last few years in a program that has seen the de-
velopment of a set of three-dimensional models that regularize the Navier-Stokes
equations. Known more commonly as α-models, the most prominent of these
are the LANS-α model (LANS stands for “Lagrangian-averaged Navier-Stokes”)
[11–13], the Leray-α model [14] and the Bardina model [15]. At various levels
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these share properties of the Navier-Stokes equations but, unlike their parent, they
possess regular solutions. These comforting regularity properties are the motiva-
tion for their practical use in turbulence modelling [16–18].

Proofs of the regularity of solutions and estimates on the attractor dimension
for all three α-models have been found in terms of the Grashof number Gr , which
is a measure of the forcing [12, 14, 15], but comparisons between estimates make
better sense if they are made in terms of the same parameter that is also intrinsically
associated with the Navier-Stokes equations. The obvious choice for this is the
Reynolds number Re based on a velocity field U , the space-time average of the
Navier-Stokes velocity field u(x, t). Although technically not a control parameter
but a measure of the fluid response, Re is a better choice than the Grashof number
Gr because of its standard use in computational fluid calculations and scaling
methods in statistical physics [19, 20]. Comparisons between estimates for the
three α-models and the Navier-Stokes equations are tabulated at the end of this
main section. These extend the comparison made between LANS-α and Navier-
Stokes by the present authors [21].

1.2. α-models. The idea is to introduce a regularized velocity field v(x, t)
defined in terms of the Navier-Stokes velocity field u(x, t) as

(1.1) v = (1−α2∆)u
where α is the coherence length of the Lagrangian statistics: clearly v → u in the
limit α → 0. The four partial differential equations in question are [12, 14, 15]

ut + u · ∇u+∇p = ν∆u+ f(x) NS(1.2)

vt + u · ∇v +∇uT · v +∇p

vt − u× curlv +∇p̃

 = ν∆v + f(x) LANS-α(1.3)

vt + u · ∇v +∇p = ν∆v + f(x) Leray-α(1.4)

vt + u · ∇u+∇p = ν∆v + f(x) Bardina(1.5)

taken on a three-dimensional periodic domain [0, L]3 with divu = divv = 0. In
the two alternative versions of LANS-α, the two pressures p̃ and p are related by
p̃ = p + u · v.

The idea of creating a turbulence closure model without enhancing viscous
dissipation came originally from Leray [22] who showed how to regularize the
Navier-Stokes equations (1.2) by modifying their nonlinearity into the form (1.4)
with v = 0 on the boundary. The two velocities u and v were related by u = Gδ∗v
with the filtering operation defined by Gδ ∗ v =

∫
Gδ(x, y)v(y)d 3y for a sym-

metric kernel Gδ(x, y) of characteristic width δ. The Navier-Stokes equations
are recovered in the limit as δ→ 0, so that u→ v. The Leray regularization of the
Navier-Stokes equations has been reviewed by Gallavotti [23].
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The three regularizations given in (1.3), (1.4) and (1.5) with u and v related
by (1.1) have been shown to have regular solutions in [12–15]. Generally the most
important of the estimates have been found in terms of the Grashof number Gr
defined below in terms of the forcing. The most suitable quantity, however, is the
Reynolds number Re based on the Navier-Stokes velocity field u which needs to
be related to the forcing function f(x) on the right hand sides of (1.2) – (1.5).
The forcing is taken to be of narrow-band type such that

(1.6) ‖∇nf‖2 ≈ `−n‖f‖2 .

With frms = L−d/2‖f‖2, where and ‖f‖2
2 =

∫Ω |f |2 dV , the standard definition
of the Grashof number in d-dimensions is

(1.7) Gr = `
3frms
ν2 .

Define the Reynolds number as

(1.8) Re = U`
ν

U2 = L−d〈‖u‖2
2〉

where 〈·〉 is the long-time-average

(1.9) 〈g(·)〉 = limt→∞
1
t

∫ t
0
g(τ)dτ .

Doering and Foias [10] have addressed the problem of how to relate Gr and Re
and have shown that in the limit Gr →∞, solutions of the d-dimensional Navier-
Stokes equations must satisfy1

(1.10) Gr ≤ c (Re 2 +Re ) .

While this relation is gratifying, finding estimates for all three α-models is not so
simple as substituting Re 2 for Gr . The time average

〈 · 〉 within U and hence
within Re suggests that sharper estimates can be found.

1.3. Comparisons between models. Comparisons between the models can
be made at different levels but those for

〈
H1
〉

are particularly instructive as this
is one of the few Navier-Stokes quantities known to be bounded with an upper
bound proportional to Re 3. The corresponding upper bound for LANS-α and
Bardina of Re 5/2 is just beaten by the Leray-model with Re 7/3. These three
models all have the property that the H1-norm is bounded above point-wise in

1In [21] it has been shown that this property holds for the LANS-α equations; the same methods
can be used to show this also holds for the Leray-α and Bardina models although these calculations
won’t be displayed here.
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time, which still remains an open problem for the Navier-Stokes equations. The
estimate for the attractor dimension for Leray-α model at Re 9/7 is by far the
best. While the equivalent for LANS-α is Re 9/4 – which appears consistent with
Landau’s heuristic ideas – this may not actually be sharp [21]. Moreover, while
Foias, Holm and Titi obtained an attractor dimension estimate of Re 3/2 in [11],
their definition of Re was different from that used here.

The Table compares estimates of various solution properties. These estimates
improve as one passes from the Navier-Stokes equations to LANS-α, to Bardina
and then to Leray-α, with the Leray-α model showing the most improvement.
The milder activity shown by Leray is illustrated by the much tighter estimates for
variables

〈
κ2
n,0
〉

in the penultimate row. These quantities involve higher deriva-
tives, as explained in Section 3 and the appendix. Based on a definition for the
Navier-Stokes equations

(1.11) Fn = Hn + τ2‖∇nf‖2

where the characteristic time τ defined in Section 3, the κn,0 are defined as

(1.12) κ2n
n,0 =

Fn
F0
=

∫
Ω k2n

(
û2 + τ2f̂2

)
dV∫

Ω
(
û2 + τ2f̂2

)
dV

.

These are the 2nth Fourier-moments of the velocity field. Being squares of in-
verse lengths, the time-averages 〈κ2

n,0〉 indicate the expected activity as a function
of length-scale, with emphasis on activity in the higher wave-numbers at higher
values of n. The Table shows that the asymptotic exponent of 17/12 in 〈κ2

n,0〉 as
n → ∞ for Leray-α is a great improvement over the 11/4 for LANS-α and Bar-
dina. It should be noted, however, as explained in Section 3, that the definitions
of κn,0 are different for each model, although they play the same physical role.

2. WHY DO GENERAL α-MODEL ESTIMATES DIFFER FROM
NAVIER-STOKES ESTIMATES?

What is it about the filtering that makes the α-models different from the Navier-
Stokes equations? This can be illustrated by looking at Leray’s energy inequality
for the Navier-Stokes equations [2–10]. The semi-norms Hn are defined on a
periodic domain Ω = [0, L]3
(2.1) Hn =

∫
Ω |∇nu|2 dV .

The energy H0 = ‖u‖2
2 satisfies

(2.2)
1
2
dH0

dt
≤ −νH1 + ‖f‖2H

1/2
0 .
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Time-averaging (2.2) and using (1.8) and (1.10) yields

(2.3) 〈H1〉 ≤ ν2L3`−4Gr Re ≤ c ν2L3`−4
(
Re 3 +Re 2

)
.

The energy dissipation rate ε = νL−3〈H1〉 is bounded by

ε ≤ c ν3`−4
(
Re 3 +Re 2

)
.

To leading order the inverse Kolmogorov length λ−1
k = (ε/ν3)1/4 is then bounded

above by

(2.4) `λ−1
k ≤ cRe 3/4 .

This upper bound conforms with the generally accepted scaling law for the in-
verse Kolmogorov length with the Reynolds number [19, 20]. Now we turn to
improvements on this for the three α-models.

In what follows, the two dimensionless volumes V` and Vα are defined by

(2.5) V` =
(
L
`

)3
, Vα =

(
L

(`α)1/2

)3
,

and λ1 > 0 is smallest eigenvalue of the Stokes operator.

2.1. The LANS-α model. The key to the improved results for the LANS-α
equations is due to Foias, Holm and Titi [12] who showed that the integral of the
product u · v has two properties. v is defined in (1.1). The first property is∫

Ω u · v dV =
∫
Ω
{
|u|2 +α2|∇u|2

}
dV(2.6)

while the second is

d
dt

∫
Ω u · v dV =

∫
Ω(ut · (1−α2∆)u+ u · vt)dV(2.7)

=
∫
Ω
{
u ·

[
1−α2∆)ut]+ u · vt} dV

= 2
∫
Ω u · vt dV ,

where two integrations by parts have occurred between the first and second lines.
From (2.6) we clearly we have

1
2
d
dt
(H0 +α2H1) = −ν(H1 +α2H2)+

∫
Ω u · f dV(2.8)

≤ −ν(H1 +α2H2)+ ‖u‖2‖f‖2 .
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An absorbing ball for H1 can then be calculated (see [12]): this is the key result
that is missing for the Navier-Stokes equations. It is also possible to estimate the
time averages of 〈H1〉 and 〈H2〉 which can be found, as in (2.2), to satisfy

(2.9) νL−3〈H1 +α2H2〉 ≤ ν3`−4Re Gr ≤ c ν3`−4 Re3 .

The upper bound on 〈H2〉, written as

(2.10) α2`ν−2〈H2〉 ≤ c V` Re3 ,

can then be used to improve the estimate for 〈H1〉 by using both the simple in-
equality 〈H1〉 ≤ 〈H0〉1/2〈H2〉1/2 together with the velocity U defined by U2 =
L−3〈H0〉. This improvement is

(2.11) 〈H1〉 ≤ c ν2L3`−3α−1 Re5/2 .

This improves the Navier-Stokes result in (2.4) to

(2.12) `λ−1
k ≤ c

(
`
α

)1/4

Re5/8 .

Hence the energy dissipation rate ε is also bounded above by Re5/2 but the im-
proved estimate blows up when α → 0; no equivalent result is implied for the 3D
Navier-Stokes equations.

Foias, Holm and Titi [12] have made two estimates of the fractal dimension
dF(A) of the global attractorA, the first in terms of the Grashof number Gr but
the second in terms of ε which includes the H2-norm. Their definition of ε is

(2.13) ε = λ3/2
1 ν〈H1 +α2H2〉

where λ1 is the smallest eigenvalue of the Stokes operator. Their result is [12]

(2.14) dF(A) ≤ c
λ−3/2

1

(α2λ1)3/4

(
ε
ν3

)3/4
.

We now use the estimate for 〈H1 +α2H2〉 from (2.9). Thus

(2.15) ad5ε ≤ c (Lλ1/2
1 )3ν3`−4 Re3 ,

which turns the result of [12] into

(2.16) dF(A) ≤ c
VαV

1/2
`

(L2λ1)9/8
Re9/4 ,

where L2λ1 = 4π2. The right hand side blows up as α → 0 through Vα. This
re-working of the Foias, Holm and Titi estimate [12] can be found in [21].
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2.2. The Leray-α model. Below we find some estimates for the Leray-α
equations in the same manner as for the Navier-Stokes and LANS-α equations.
The results are given in the table.∫

Ω |v|2 dV =
∫
Ω(1−α2∆)u · (1−α2∆)udV(2.17)

=
∫
Ω
[
|u|2 + 2α2|∇u|2 +α4|∆u|2] dV

= H0 + 2α2H1 +α4H2 .

Now consider the Leray-α equations (1.4) which gives

(2.18)
1
2
d
dt

∫
Ω |v|2 dV = −ν

∫
Ω |∇v|2 dV +

∫
Ω v · f dV ,

leading to

(2.19)
1
2
d
dt
(H0 + 2α2H1 +α4H2)

≤ −ν(H1 + 2α2H2 +α4H3)+ (1+α2`−2)‖f‖2‖u‖2 .

Time-averaging we obtain

ν〈H1 + 2α2H2 +α4H3〉 ≤ (1+α2`−2)L3frmsU(2.20)

≤ (1+α2`−2)ν3L3`−4GrRe

≤ c (1+α2`−2)ν3V``−1(Re3 +Re2) .

Thus we can write

(2.21) 〈H3〉 ≤ c α−4(1+α2`−2)ν2V``−1( Re3 + Re2) .

This can be exploited to bring down the estimate for 〈H1〉 from Re 3. In fact we
know that H1 ≤ H1/3

3 H2/3
0 and H2 ≤ H2/3

3 H1/3
0 . Thus

〈H1〉 ≤ 〈H3〉1/3〈H0〉2/3(2.22)

= 〈H3〉1/3L2(ν`−1Re )4/3

≤ c ν2(1+ `−2α2)1/3V``1/3α−4/3 Re7/3

≤ c ν2(1+ `−2α2)1/3V 8/9
α V 4/9

` L−1 Re7/3 .
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This is an improvement on the Re5/2 estimate for LANS-α which, in turn, is an
improvement on the Re3 for Navier-Stokes. Moreover,

〈H2〉 ≤ c ν2(1+α2`−2)2/3V``−1/3α−8/3 Re8/3(2.23)

≤ c ν2(1+ `−2α2)2/3V 16/9
α V 2/9

` L−3 Re8/3 .

which is an improvement on the Re3 for LANS-α .

Cheskidov, Holm, Olson and Titi [14] have proved that the Hausdorff and
fractal dimensions of the global attractor of the Leray-α model are bounded by

(2.24) dH(A) ≤ dF(A) ≤
(
L
`d

)12/7 (
1+ L

α

)9/14

where

(2.25) `−4
d = εLerayν−3

and where

εLeray = L−3ν〈H1 + 2α2H2 +α4H3〉(2.26)

≤ c L−3
(
1+α2`−2

)
ν3V``−1 Re3

Thus

(2.27) `−4
d = εLerayν−3 ≤ c (1+α2`−2)`−4 Re3 .

Thus we have

(2.28) dH(A) ≤ dF(A) ≤ V 4/7
` (1+α2`−2)3/7

(
1+ L

α

)9/14
Re9/7 ,

which is entered in the table.

2.3. The Bardina model. Now consider the Bardina model [15] given in
(1.5)

(2.29) vt + u · ∇u = ν∆v −∇p + f , v = u−α2∆u
with divu = divv = 0. Now we know that∫

Ω u · v dV =
∫
Ω
{
|u|2 +α2|∇u|2

}
dV = H0 +α2H1(2.30)
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and

d
dt

∫
Ω u · v dV =

∫
Ω(ut · v + u · vt)dV = 2

∫
Ω u · vt dV .(2.31)

Therefore
〈
H1 + α2H2

〉
is found to satisfy the same estimates as the LANS-

α model

(2.32) νL−3〈H1 +α2H2〉 ≤ ν3`−4Re Gr ≤ c ν3`−4 Re3 ,

with

(2.33) `λ−1
k ≤ c

(
`
α

)1/4

Re5/8 .

These latter results are exactly as in LANS-α. The estimate for the dimension
dF(A) of the global attractor A given in [15] is proportional to Gr 2. This,
however, can be improved by noting that their estimate is dependent upon 〈H2〉
whose upper bound can be improved to Re3 as opposed to Gr 2 ≤ cRe4. With
this improvement ait is found that the estimate for dF,Bard(A) in [15] converts
to

(2.34) dF,Bard(A) ≤
(
L
α

)18/5
Re9/5 .

3. ESTIMATES FOR 〈κ2
n,r 〉 FOR ALL THREE MODELS

We begin by forming the combination

(3.1) Fn = Hn + τ2‖∇nf‖2
2 ,

where the quantity τ

(3.2) τ = `2ν−1(Gr lnGr)−1/2 .

For the LANS-α and Bardina models we define the combination

(3.3) Jn = Fn + 2α2Fn+1

and for the Leray-α-model the combination

(3.4) Ln = Fn + 2α2Fn+1 +α4Fn+2
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Theorem 3.1. As Gr →∞, for n ≥ 1, 1 ≤ p ≤ n, Jn and Ln satisfy

dJn
dt

= −1
4
ν
J1+1/p
n

J1/p
n−p

+ cn,αν−1‖u‖2
∞Jn + c1ν`−2Re (ln Re )Jn(3.5)

dLn
dt

= −1
3
ν
L1+1/p
n

L1/p
n−p

+ cn,α ‖∇u‖∞Ln + c1ν`−2Re (ln Re )Ln(3.6)

and, for n = 0,

(3.7)

1
2
dJ0

dt
≤ −νJ1 + c1ν`−2Re (ln Re )J0 ,

1
2
dL0

dt
≤ −νL1 + c1ν`−2Re (ln Re )L0 .

Proof. The proof of these follows closely to that for LANS-α in [21] and will
not be repeated here. ❐

Important Remark. The ‖∇u‖∞Ln in the middle term in (3.6) is neither
valid for LANS-α nor Bardina but must be replaced by ν−1‖u‖2∞Jn (see [21]).
Estimates for LANS-α can be found in that paper while those for Bardina follow
in a similar manner.

However, estimates for Leray-α come out to be much sharper than those for
LANS-α and Bardina because of the ‖∇u‖∞-term in (3.6) as opposed to the
ν−1‖u‖2∞-term in (3.5). To show this define

(3.8) κn,r =
(
Ln
Lr

)1/(2(n−r))
.

Then from (3.6)

(3.9) 〈κ2
n,r 〉 ≤ cn,r ν−1〈‖∇u‖∞〉 + c1`−2Re (ln Re ) .

To estimate the right hand side of (3.9), Agmon’s inequality gives

〈‖∇u‖∞〉 ≤ 〈H2〉1/4〈H3〉1/4(3.10)

≤ c L−2ν(1+α2`−2)5/12V 1/18
` V 35/36

α Re17/12 ,

Thus

L2〈κ2
n,r 〉 ≤ c (1+α2`−2)5/12V 1/18

` V 35/36
α Re17/12 ,(3.11)

or

`2〈κ2
n,r 〉 ≤ c (1+α2`−2)5/12V−11/18

` V 35/36
α Re17/12 .(3.12)
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We can also estimate

〈‖u‖2
∞〉 ≤ 〈H1〉1/2〈H2〉1/2(3.13)

≤ c ν2L−2(1+α2`−2)1/2V 1/3
` V 4/3

α Re5/2 ,

These all give estimates for 〈κ2
n,r 〉. By choosing r = 1 one can achieve an im-

provement for the bound on 〈κ2
n,0〉 by writing

(3.14) 〈κ2
n,0〉 = 〈κ2(n−1)/n

n,1 κ2/n
1,0 〉 ≤ 〈κ2

n,1〉(n−1)/n〈κ2
1,0〉1/n

and using estimates for 〈κ2
1,0〉. This is the origin of the n-dependence in the

exponents in the Table. An explicit example is the calculation for LANS-α given
in [21].
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