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Abstract. Moments of the vorticity are used to define and estimate a hierarchy of time-averaged
inverse length scales for weak solutions of the three-dimensional, incompressible Navier-Stokes equa-
tions on a periodic box. The estimate for the smallest of these inverse scales coincides with the
inverse Kolmogorov length, but thereafter the exponents of the Reynolds number rise rapidly for
correspondingly higher moments. The implications of these results for the computational resolution
of small scale vortical structures are discussed.
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1. Introduction

Resolution issues in computations of solutions of the three-dimensional Navier-
Stokes equations are not only closely associated with the problem of regularity but
they also raise the question of how resolution length scales can be defined and es-
timated. The Kolmogorov school of statistical turbulence suggests that a system of
volume L3 has a cut-off in its −5/3 energy spectrum at kc =λ−1

k ∼L−1Re3/4, which is
known as the inverse Kolmogorov length. The wave-numbers k >kc are considered to
lie in what is called the dissipation range [1, 2, 3]. Significant energy lying in this range
can provoke intermittent events in the vorticity and strain fields characterized by vi-
olent, spiky departures away from space-time averages whose corresponding statistics
appear to be non-Gaussian in character [4, 5, 6, 7, 8], although intermittent events
may also be associated with the inertial range (k <kc). Whether significant energy
actually cascades down to the micro/nano-scales where the equation fails to be a valid
model is intimately entwined not only with the open question of regularity but also
with the role of the Navier-Stokes equations as a limit of kinetic theory [9, 10]. This
phenomenon continues to pose severe computational challenges [11, 12, 13, 14]. In
statistical physics the objects that are used to study intermittency are the ensemble-
averaged velocity structure functions

〈|u(x+r)−u(x)|
p
〉ens.av. ∼ rζp , (1.1)

the departure of whose exponents ζp from linear1 is thought to be caused by inertial
range intermittent behaviour [1, 2, 3]. It is clear, however, that these structure func-
tions are not best suited for Navier-Stokes analysis; the task of this paper is to discuss
what could replace these in the Navier-Stokes context and what information could be
gleaned from them. While higher gradients of the velocity field would undoubtedly
capture intermittent behaviour, they would be unreachable computationally for all
practical purposes. A better diagnostic of spikiness in Navier-Stokes solutions is a
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1Kolmogorov predicted a linear relation between ζp and p ; departure from this is called ‘anoma-

lous scaling’ and is usually manifest by ζp lying on a concave curve below linear for p>3 [1]. The
two coincide for p=3.
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sequence of Lp-norms, or higher moments, of the vorticity ω =curlu, defined through
the set of frequencies (p=2m for m>1)

Ωm(t)=

(

L−3

∫

V

|ω|2mdV

)1/2m

, (1.2)

where the domain V =[0, L]3 is taken to be periodic. The basic frequency associated
with the domain is given by ̟0 =νL−2. Ω2

1 is the enstrophy per unit volume which
is related to the energy dissipation rate, whereas the higher moments will naturally
pick up events at smaller scales.

The setting is the incompressible (divu=0), forced, three-dimensional Navier-
Stokes equations for the velocity field u(x, t):

∂tu+u ·∇u=ν∆u−∇p+f(x). (1.3)

Traditionally, most estimates in Navier-Stokes analysis have been found in terms
of the Grashof number Gr, which is expressed in terms of the root mean square
(f2

rms =L−3‖f‖2
2) of the divergence-free forcing f(x) (see [15, 16, 17, 18]), but it would

be more helpful to express these in terms of the Reynolds number Re to facilitate
comparison with the results of statistical physics. The definitions of Gr and Re are

Gr=L3frmsν
−2, Re=U0Lν−1. (1.4)

Doering and Foias [19] used the idea of defining U0 as

U2
0 =L−3

〈

‖u‖2
2

〉

T
, (1.5)

where the time average
〈

·
〉

T
over an interval [0, T ] is defined by

〈g(·)〉T =limsup
g(0)

1

T

∫ T

0

g(τ)dτ. (1.6)

Clearly, Gr is fixed provided f is L2-bounded, while Re is the system response to this
forcing. A brief look at Leray’s energy inequality,

1
2

d

dt

∫

V

|u|2dV ≤−ν

∫

V

|ω|2dV +‖f‖2‖u‖2, (1.7)

shows why this definition of U0 is of value — it leads to
〈

Ω2
1

〉

T
≤̟2

0GrRe+O
(

T−1
)

. (1.8)

With some very mild technical restrictions on the forcing2, Doering and Foias [19]
then showed that Navier-Stokes solutions obey Gr≤ cRe2. This turns (1.8) into

〈

Ω2
1

〉

T
≤ c̟2

0Re3 +O
(

T−1
)

. (1.9)

In fact ν
〈

Ω2
1

〉

T
is the time-averaged energy dissipation rate per unit volume over [0, T ]

and allows us to form and bound from above the inverse Kolmogorov length scale λ−1
k :

λ−4
k =

ν
〈

Ω2
1

〉

T

ν3
⇒ Lλ−1

k ≤ cRe3/4 +O
(

T−1/4
)

. (1.10)

2Doering and Foias [19] took narrow-band forcing around a specific wave-number but a wave-
number spectrum which is cut off both above and below is sufficient.
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An estimate for the inverse Taylor micro-scale λ−1
Tms can also be found from (1.9):

Lλ−1
Tms :=L

(

〈

‖ω‖2
2

〉

T

〈‖u‖2
2〉T

)1/2

≤ cRe1/2 +O
(

T−1/2
)

. (1.11)

Both these upper bounds gratifyingly coincide with the results of statistical turbulence
theory [1, 2, 3] although the fact that they are bounds allows for structures to occur
in a flow whose natural scales are larger [20]. The question is now clear: can we

construct and bound from above a sequence of inverse length scales associated with the

higher moments Ωm?

2. A scaling property and length scale estimates

Leray’s energy inequality (1.7) is valid for weak solutions and thus the estimate
(1.9) is rigorous, although the existence and uniqueness of solutions for arbitrarily
long times remain an open problem. While it is possible to subscribe to the view
that difficulties in flow resolution could be a symptom of the lack of uniqueness of
weak solutions, in tandem it ought also to be acknowledged that these difficulties may
simply be caused by the practical challenges of working on a system where even the
naturally largest scale (other than L) lies close to the limit of what can currently be
resolved. The spirit of this paper is such that results on weak solutions are assumed
to be sufficiently physical to reflect the reality of turbulent flows, provided T is taken
large enough3. This strategy allows the estimation of an infinite hierarchy of time
averages of powers of the Ωm for weak solutions on [0, T ] without having to appeal
to point-wise estimates that the solution of the regularity problem would require. In
turn, these time averages allow us to define and explore the natural length scales
inherent in the system. The following result was proved in [21] under the assumption
that strong solutions exist. Here it is demonstrated for weak solutions:

Theorem 2.1. Weak solutions of the three dimensional Navier-Stokes equations

satisfy

〈

(

̟−1
0 Ωm

)αm

〉

T
≤ cRe3 +O

(

T−1
)

, 1≤m≤∞, (2.1)

where c is a uniform constant and

αm =
2m

4m−3
. (2.2)

Remark 2.1. The exponent αm =2m/(4m−3) within (2.1) appears as a natural
scaling of the Navier-Stokes equations, consistent with the application of Hölder and
Sobolev inequalities. Note that when m=1 the value α1 =2 is consistent with (1.9).

Proof. The proof is based on a result of Foias, Guillopé, and Temam [22] (their
Theorem 3.1) for weak solutions which, when modified in the manner of Doering and
Foias [19], furnishes us with the time averaged estimate

〈

H
1

2N−1

N

〉

T

≤ cNL−1ν
2

2N−1 Re3 +O
(

T−1
)

, (2.3)

3While existence and uniqueness of solutions is easily proved for small values of T [15, 16, 17],
larger values than this are necessary to make sense of long-time averages.
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where

HN =

∫

V

∣

∣∇Nu
∣

∣

2
dV =

∫

Vk

k2N |û|
2
d3k, (2.4)

and H1 =
∫

V
|∇u|

2
dV =

∫

V
|ω|

2
dV . An interpolation between ‖ω‖2m and ‖ω‖2 is

found using HN

‖ω‖2m ≤ cN,m‖∇N−1ω‖a
2 ‖ω‖1−a

2 , a=
3(m−1)

2m(N −1)
, (2.5)

for N ≥3. ‖ω‖2m is now raised to the power αm, which is to be determined, and the
time average of this is estimated as

〈‖ω‖αm

2m 〉T ≤ cαm

N,m

〈

‖∇N−1ω‖aαm

2 ‖ω‖
(1−a)αm

2

〉

T

= cαm

N,m

〈

(

H
1

2N−1

N

)
1
2 aαm(2N−1)

H
1
2 (1−a)αm

1

〉

T

≤ cαm

N,m

〈

H
1

2N−1

N

〉
1
2 aαm(2N−1)

T

〈

H
(1−a)αm

2−aαm(2N−1)

1

〉1− 1
2 aαm(2N−1)

T

. (2.6)

An explicit upper bound in terms of Re is available only if the exponent of H1 within
the average is unity; that is

(1−a)αm

2−aαm(2N −1)
=1. (2.7)

This determines αm, uniformly in N , as

αm =
2m

4m−3
. (2.8)

Using the estimate in (2.3), and that for 〈H1〉, the result follows. The constant cN,m

can be minimized by choosing N =3. c3,m does not blow up even when m=∞; thus
we take the largest value of cαm

3,m and call this c.

3. Definition of the inverse length scales

Based on the definition of the inverse Kolmogorov length λ−1
k in (1.10) a gener-

alization of this to a hierarchy of inverse lengths λ−1
m suggests the definition

(

Lλ−1
m

)2αm
:=
〈

(

̟−1
0 Ωm

)αm

〉

T
. (3.1)

The λm are interpreted as resolution lengths in the space-time averaged sense for
1≤m≤∞:

Lλ−1
m ≤ cRe3/2αm +O

(

T−1/2αm

)

. (3.2)

Many turbulent structures have natural inverse gross length scales lying in the range
between Re1/2 and Re3/4, but crinkles forming at finer scales may ultimately grow to
be dominant and then become the cause of resolution difficulties [1, 2, 3, 13, 14]. For
m>1 the λm are interpreted here as the length scales corresponding to these deeper
intermittent events. The upper bounds displayed in (3.2), as the Table shows, range
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from the inverse Kolmogorov length Re3/4 at m=1 to Re3 for m=∞. Computation-
ally it may be hard to get far beyond m=1: for example, m=9/8 corresponds to
Re1, which is close to modern resolutions even for modest values of Re. Thereafter
the rise in the exponent 3/2αm is steep. Indeed, in the very high m limit, the Re3

bound has an exponent four times greater than the Kolmogorov length; this lies well
below molecular scales where the equations are invalid. An interesting question is

m 1 9/8 3/2 2 3 ··· ∞
3/2αm 3/4 1 3/2 15/8 9/4 ··· 3

dm 3 2 1 3/5 1/2 ··· 0

Table 3.1. Values of the Re-exponent 3/2αm =3
(

1−
3

4m

)

, and dm =
3

4m−3
.

how the existence of this continuum of finer scales might be interpreted physically?
To do so rigorously without a regularity proof is difficult, but a very informal physical
interpretation is possible in terms of the familiar concept of a cascade. One of the
simplest cascade models is the so-called β-model of Frisch, Sulem, and Nelkin [23]
who, in analogy with Mandelbrot’s ideas [24], modelled a Richardson cascade by tak-
ing a vortex of scale ℓ0≡L and then allowed a cascade of daughter vortices, each of
scale ℓn. The idea was based on domain halving at each step such that ℓ0/ℓn =2n.
The self-similarity dimension d (similar to fractal dimension) was then introduced by
considering the number of offspring at each step as 2d: 2 for the halving of a line;
4 for the halving of each direction in the plane; and likewise 8 for the cube. d is
then formally allowed to take non-integer values. In d dimensions the corrections to
the usual Kolmogorov scaling calculations for velocity, turn-over time etc appeared as

multiplicative factors proportional to (ℓ0/ℓn)
(3−d)/3

; see [1, 23]. Equating the turn-
over and viscous times in the standard manner one arrives at (ℓd is their viscous
dissipation length)4

ℓ0/ℓd ∼Re
3

d+1 . (3.3)

This gives the usual Kolmogorov inverse scale of Re3/4 in a fully three-dimensional
domain, but is shifted upwards for smaller values of d. Taking this idea as our physical
analogy we compare (3.3) to the upper bound in (3.2) to get

dm +1=2αm ⇒ dm =
3

4m−3
, (3.4)

where an m-label has been appended to d. Thus we are able to assign a correspond-
ing self-similarity dimension dm to lower-dimensional vortical structures that require
values of m>1 for their resolution. Note that dm never goes negative. Models more
sophisticated than the β-model, such as the bi-fractal and multi-fractal models [1],
are more difficult to use as analogies as they would require data fitting.

4The integer n labels the cascade: m labels the higher moments as in (1.2), but does not nec-
essarily take integer values. One choice is to take n=m, which means that each moment would
correspond to a step in the cascade. In [23] d is not specified but is illustrative of the calculation
necessary when applying Kolmogorov’s theory in non-integer dimensions.
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