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Enstrophy bounds and the range of space-time scales in the hydrostatic primitive equations
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The hydrostatic primitive equations (HPEs) form the basis of most numerical weather, climate, and global ocean
circulation models. Analytical (not statistical) methods are used to find a scaling proportional to (Nu Ra Re)1/4

for the range of horizontal spatial sizes in HPE solutions, which is much broader than is currently achievable
computationally. The range of scales for the HPE is determined from an analytical bound on the time-averaged
enstrophy of the horizontal circulation. This bound allows the formation of very small spatial scales, whose
existence would excite unphysically large linear oscillation frequencies and gravity wave speeds.
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The hydrostatic primitive equations (HPEs) have been the
foundation of most numerical weather, climate, and global
ocean circulation calculations for many decades [1–5]. In
practice, modern computational power can handle integrations
of these on global horizontal grids ranging in size between
15 and 60 km, which correspond respectively to one-eighth
degree and one-half degree in latitude and longitude at the
equator. This limitation raises the longstanding question, “can
numerical simulations at these grid sizes adequately predict
climate and other natural phenomena that occur on the much
wider range of scales observed in nature?” See Fig. 1.

Important as it may be, this longstanding question is not
addressed here. Rather, two questions are addressed associated
with the HPE model itself , namely, “what range of scales is
available for solutions of the HPE?,” and “what scaling law
governs the size of horizontal HPE excitations in terms of
the system parameters?” These dimensionless parameters are
Nu, Ra, Re, ε, and σ associated with the names of Nusselt,

FIG. 1. (Color online) A NASA image [6] illustrates the large
range of fluid scales that exist in atmospheric circulation. The oceanic
range of scales is similar, but is not so easily observed.

Rayleigh, Reynolds, Rossby, and Prandtl, respectively, as well
as the domain aspect ratio αa .

The HPEs differ from the three-dimensional (3D) Navier-
Stokes equations in that they incorporate both rotation and
stratification, and in the imposition of vertical hydrostatic
balance. The latter is often regarded as the most accurate of
the various assumptions used in large-scale computations of
the climate, weather, and ocean circulation. The hydrostatic
assumption determines the pressure from the weight of the
fluid above a given point, independently of its state of motion.
This changes the nature of the dynamics, because the vertical
velocity is determined from incompressibility, rather than from
its own evolution equation.

Unlike the Navier-Stokes equations, solutions of the HPEs
have been proved to be regular by Cao and Titi [7]. Moreover,
the HPEs have also been shown to possess a global attractor
[8]. Although its solutions are regular, the HPE system may
potentially possess a vast range of sizes of excitations [9].
While Kolmogorov introduced the Re3/4 scaling law for the
range of spatial sizes of excitations in incompressible fluid
flows by using statistical methods [10], the present Rapid
Communication will use analytical methods to show that a
scaling law exists, proportional to (Nu Ra Re)1/4, for the range
of horizontal spatial sizes in solutions of the HPEs, with
boundary conditions similar to those of Cao and Titi [7]. This
result demonstrates that HPE excitations are possible at scales
that are smaller than can be captured at present in numerical
resolutions.

A dimensionless version of the HPEs may be expressed in
terms of two sets of velocity vectors involving the horizontal
velocities u,v and the vertical velocity w [11],

V (x,y,z,t) = (u,v,εw), v = (u,v,0). (1)

Under the constraint of incompressibility, div V = 0, these
satisfy

ε(∂t + V · ∇)u − v = ε Re−1 �u − ∂xP, (2)

ε(∂t + V · ∇)v + u = ε Re−1 �v − ∂yP . (3)

Here ε = U0/(f L) is the Rossby number, Re = U0L/ν is the
Reynolds number, and P the dimensionless pressure for a
typical velocity U0, a domain size L in the horizontal direction,
a rotation frequency f , and a viscosity ν.
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As mentioned earlier, the HPE has no evolution equations
for the vertical velocity component w. Instead, this variable is
determined (diagnosed) from the incompressibility condition,
div V = 0. The z derivative of the pressure field Pz = k̂ · ∇P

and the dimensionless temperature 	 enter through the
equation for hydrostatic balance,

a0	 + ∂zP = 0. (4)

The coefficient a0 = (εσ−1α−2
a )Ra Re−2 arises from nondi-

mensionalization of the equations. Here σ = ν/κ is the Prandtl
number (the ratio of viscosity ν and thermal diffusivity κ),
Ra is the Rayleigh number defined by Ra = gαT0H

3(νκ)−1,
g is the acceleration due to gravity, α is the volumetric
expansion coefficient, T0 is a typical temperature difference,
and αa = H/L is the aspect ratio of the cylindrical domain.
When (2)–(4) are combined, an evolution equation for the
hydrostatic velocity field v = (u, v, 0) results,

ε(∂t + V · ∇)v + k̂ × v + a0 k̂	 = ε Re−1 �v − ∇P, (5)

which is taken in tandem with the incompressibility condition
div V = 0. The dimensionless temperature 	 (the source of
buoyancy) evolves according to

(∂t + V · ∇)	 = (σ Re)−1�	 + q, (6)

in which the nondimensional parameter q specifies heat
sources or sinks. The domain � is taken to be a cylinder of
radius L and height H . The vertical velocity and vertical flux of
horizontal momentum both vanish on its flat upper and lower
cylinder surfaces (z = 0,H ): That is, w = 0 and uz = vz = 0
on the boundary. The variables are all taken to be periodic in
the azimuthal angle on the vertical sidewall of the cylinder.

The approximations that lead to the HPEs will continue to
be valid as long as the vertical acceleration remains negligible.
However, even their linearized equations indicate that the HPE
solutions may not always respect the approximations under
which they were derived. Linearizing the HPEs in (5) and (6),
and comparing with their nonhydrostatic equivalent (which
has the dynamics of w restored), leads to familiar dispersion
relations [12], which are illustrated in Fig. 2. The significance
of the comparison of these dispersion curves is that without the
frequency cutoff that is enforced by the buoyancy terms in the
nonhydrostatic equations, the HPEs admit unphysically high
gravity wave frequencies at small horizontal scales. Hence, if
the HPE solutions acquire high horizontal wave numbers, then
they may leave their range of validity. The result will be HPE
gravity waves propagating at a fixed phase speed in the limit
of small scales, while in reality gravity waves at these scales
cease to propagate at all.

An estimate for the resolution length. Taking the inner
product of the divergence-free velocity V with the motion
equation (5) gives an equation for the rate of change of the
kinetic energy of horizontal motion,

1

2

d

dt

∫
�

|v|2 dV =
∫

�

(Re−1 V · �v − a0w	)dV, (7)

in which dV is the volume element and surface terms
integrate to zero under the present boundary conditions. For
the Navier-Stokes equations it is normal practice to use the
energy dissipation rate ν〈∫

�
|ω|2 dV〉 based on the full vorticity

ω = curl V to define a length scale called the Kolmogorov

FIG. 2. This comparison of linear mode dispersion relations
for the hydrostatic primitive equations (solid curves) with those
of the exact nonhydrostatic equations (dashed curves) for oceanic
conditions shows that the primitive equations admit very high
fluctuation frequencies, especially at high horizontal wave numbers.
In contrast, the dispersion relation for the nonhydrostatic equations
limits properly to the buoyancy frequency, regardless of how high
the horizontal wave number becomes. The oceanic parameters used
here are sound speed cs = 1500 ms−1, mean depth H = 5 km,
and buoyancy frequency N0 = 0.01 s−1, where the appropriate
normalizing length scale H is the mean ocean depth. The multiple
curves correspond to different choices of vertical wave number
mH ∈ [0,1,3,9,27], increasing from the left. The value m = 0 is
the barotropic mode and the others are baroclinic. Figure courtesy
of Dukowicz [12]. For additional details and more explanation, see
Ref. [13].

length [14]. The quantity
∫
�
|ω|2 dV is called the enstrophy

and the angle brackets 〈 · 〉 denote the time average over the
interval [0,T ],

〈 · 〉 = lim
T →∞

1

T

∫ T

0
( · )dt. (8)

However, it is more appropriate in the hydrostatic approxima-
tion to use three-dimensional ζ = curl v and base a horizontal
length scale on 〈∫

�
|ζ |2 dV〉, since the vertical velocity w

is diagnosed from the horizontal velocity dynamics. To
determine this horizontal length scale from the evolution of the
horizontal kinetic energy in (7), let us examine the Laplacian
term ∫

�

V · �v dV = −
∫

�

ω · ζ dV, (9)

where the surface terms again vanish for our choice of
boundary conditions. Note that ζ is fully three dimensional,
but its horizontal components vanish at the top and bottom of
the cylinder. Two more integrations by parts give∫

�

ω · ζ dV =
∫

�

[|ζ |2 + (div v)2]dV �
∫

�

|ζ |2 dV, (10)

and substituting into (7) implies

1

2

d

dt

∫
�

|v|2 dV � −Re−1
∫

�

|ζ |2 dV − a0

∫
�

w	dV. (11)
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Upon defining the vertical Nusselt number Nu as

Nu := −
〈∫

�

w	dV
〉
, (12)

the time average of (11) may be written as〈∫
�

|ζ |2 dV
〉

�
(
εσ−1α−2

a

)
Ra Re−1 Nu, (13)

since the horizontal kinetic energy term vanishes in the limit
as T → ∞. This bound on the time-averaged enstrophy of
the horizontal circulation 〈∫

�
|ζ |2 dV〉 yields a horizontal

resolution length scale which emerges upon switching back
into dimensional variables. Let ζ dim be the dimensional version
of ζ ; that is, ζ dim = L−1U0ζ for a typical horizontal velocity
scale U0. Then a resolution scale λres may be defined using the
same approach as that used to find an analytical estimate of the
inverse Kolmogorov scale for the Navier-Stokes equations:

L4λ−4
res := L4

〈(
ν−2L−3

∫
�

|ζ dim|2 d3x

)〉

= L4(L−1U0)2ν−2

〈∫
�

|ζ |2 dV
〉

= Re2

〈∫
�

|ζ |2 dV
〉
. (14)

Thus, the main result obtained from Eqs. (13) and (14) is an
estimate for the range of horizontal scales, defined by the ratio
Lλ−1

res , as

Lλ−1
res �

(
εσ−1α−2

a Nu Ra Re
)1/4

. (15)

This bound incorporates all physical processes in their nondi-
mensional forms. Estimated from the time-averaged enstrophy
of the horizontal circulation, the ratio Lλ−1

res of the domain size
to the resolution scale provides an upper bound for the range
of horizontal (not vertical) length scales available as solutions
of the HPEs.

Conclusion. It is now time to put some numbers into the
estimate in (15). For example, in regional flows in the ocean of
depth H ≈ 100.5 km, aspect ratio αa = 10−2, Prandtl number
σ ≈ 10, and Rossby number ε = 10−2, one has εσ−1α−2

a ≈
101. Thus, the range of scales (15) in this case may be written
as

Lλ−1
res � (10 Nu Ra Re)1/4 . (16)

The Rayleigh, Prandtl, and Nusselt numbers usually appear in
Rayleigh-Bénard convection in which Nu is observed to scale
with Ra such that Nu ∼ Raβ with variations around β = 1/3:
See Ref. [15] for a discussion of the state of the art for heat
transfer and large scale dynamics in turbulent Rayleigh-Bénard
convection. However, the hydrostatic approximation excludes
deep convective processes, in which case Nu ≈ 1 [16]. The
Rayleigh-Bénard β scaling for Nu would apply only at small
vertical turbulence scales where the hydrostatic approximation
would be invalid. An important issue in oceanic simulations
is to differentiate between mass flux and heat flux. Numerical
simulations of ocean circulation must typically be corrected
to prevent overestimating the heat flux [17]. The need for this
correction is another indication that the Nusselt number tends
to be small in oceanic flows.

The sizes of Ra and Re for typical flows in the ocean are
very large, when based on regional domain size and molecular
values of viscosity and diffusivity of heat. For example, with
H ≈ 5 km and Nu ≈ 1,

Ra = gαT0H
3(νκ)−1 ≈ 10110−41001011(106107) ≈ 1021,

(17)

and Re = U0H/(ναa) ≈ 10−1(5 × 103)(106102) ≈ 5 × 1010.
According to these estimates, Ra Re−2 = O(1), and the
quantity a0 = (εσ−1α−2

a )Ra Re−2 ≈ 101; so the range of
scales is bounded by about eight orders of magnitude, since
1
4 log10(10 Ra Re) = 8. That is, in this case, Lλ−1

res � 108. This
means that for a domain size of 400 km at a depth of about
4 km, the horizontal excitation scales could be as small as a
few millimeters. In particular, the estimate (15) with Nu ≈ 1
and Ra ∼ Re2 yields an estimate of Ra, so that

Lλ−1
res �

(
εσ−1α−2

a

)1/4
Re3/4, (18)

which is close to the Kolmogorov range of scales in 3D. The
very high linear wave frequencies associated with such small
horizontal scales would preclude both the physical relevance
and the computability of the HPEs. The conclusion is that
improving the resolution of HPE numerical solutions may tend
to make their results less accurate and much more expensive to
perform, because the nonlinear tendency toward much smaller
spatial scales produces wave excitations of rapidly increasing
linear frequency (as in Fig. 2) that would require reducing
the time step beyond the present limits of computability.
This fact has already been recognized in practice, since the
HPEs are generally applied to climate simulations, but not to
regional simulations. What this Rapid Communication shows
and emphasizes is that unphysically small spatial scales can
potentially be generated in HPEs when molecular values for
transport coefficients are used. In fact, modulo appropriate
adaptations, the same range of scales would be found to
hold for the nonhydrostatic equations, although we do not
discuss it here because no proof of existence is available for
them [18].

Two caveats about the range of scales estimated here should
be mentioned. First, the system of equations explored in this
Rapid Communication are used for oceanic general circulation
models, but typical atmospheric models must consider the
effects of compressibility [18]. In this sense, the results of
this Rapid Communication, while indicative of the range of
scales for atmospheric models, can only be applied directly
to the oceans. Second, the bound provided in this article may
not be sharp as the (div v)2 term in inequality (10) has been
dropped.

Of course, numerical simulations of large-scale circulations
in the ocean and atmosphere do not use the molecular values
of viscosity and diffusivity. Instead, they introduce effective
values for these quantities due to unresolved scales, associated
with turbulent “eddies.” These effective values are chosen
essentially to make the Reynolds number at the horizontal grid
scale Re(�x) equal to unity. If the scaling Ra ∼ Re2 persists
for these simulations and the Nusselt number at the grid scale
is of order unity, then the numerical procedure of setting
Re(�x) = 1 might tend to properly resolve the hydrostatic
excitations of the HPEs. However, it may also be good practice
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in numerical simulations using the HPEs to evaluate the
dimensionless numbers at the vertical grid scale Nu(�z) and
Ra(�z) corresponding to the other physical aspects of the
HPEs. Further study of the scaling law Ra ∼ Re2 for various
regimes of ocean and atmosphere circulation might also be
fruitful in determining local values of the ranges of scales.
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