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The issue of why computational resolution in Navier–Stokes turbulence is hard to
achieve is addressed. Under the assumption that the three-dimensional Navier–Stokes
equations have a global attractor it is nevertheless shown that solutions can potentially
behave differently in two distinct regions of space–time �± where �− is comprised
of a union of disjoint space–time ‘anomalies’. If �− is non-empty it is dominated by
large values of |∇ω|, which is consistent with the formation of vortex sheets or tightly
coiled filaments. The local number of degrees of freedom N± needed to resolve the
regions in �± satisfies N±(x, t) � 3

√
2 R3

u, where Ru = uL/ν is a Reynolds number
dependent on the local velocity field u(x, t).

1. Introduction
The space–time distribution and morphology of the vorticity and strain fields in

three-dimensional Navier–Stokes turbulence has remained a puzzle, since Batchelor &
Townsend (1949) discovered the phenomenon of intermittency in experimental flows.
Instead of observing Gaussian behaviour in the flatness factor and similar quantities,
they discovered the spiky spectra that are now recognized as typical for intermittent
turbulent flows (see Kuo & Corrsin 1971; Douady, Couder & Brachet 1991; Meneveau
& Sreenivasan 1991; Grossmann & Lohse 1993; Frisch 1995; Tsinober 2001; Zeff
et al. 2003; Boffetta, Mazzino & Vulpiani 2008). The application of colour graphics in
this past generation has dramatically illustrated how the morphologies of the vorticity
and strain fields are typically dominated by ‘thin sets’ (see Yokokawa et al. 2002;
Kurien & Taylor 2005). These sets usually form initially as quasi-two-dimensional
vortex sheets which, under interaction, roll up into a tangle of quasi-one-dimensional
tubes (Vincent & Meneguzzi 1994). It is also important to note that vorticity and
strain accumulate on significantly different sets: indeed, there has been some debate
over their relative importance (see Jimenez et al. 1993; Tsinober 1998, 2001). Figure 1,
courtesy of Jörg Schumacher, is a snapshot illustration of the vorticity (enstrophy)
field. Experiments show that these structures spontaneously appear and disappear
as time evolves (Douady et al. 1991; Cadot, Douady & Couder 1995). While there
exists an extensive literature on intermittency in the statistical physics literature
concerning Kolmogorov’s theory (Grossmann & Lohse 1993; Frisch 1995; Yakhot
2003; Boffetta et al. 2008), no satisfactory theoretical explanation for the high degree
of space–time complexity of these phenomenon has ever been given based on three-
dimensional Navier–Stokes solutions, nor has any mathematical explanation been
forthcoming why vortex sheets should be, at least initially, the favoured topology.
The consequences of this behaviour are far reaching. The spontaneous appearance of
these structures, often at very short length scales, creates severe resolution problems
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Figure 1. The figure, courtesy of Jörg Schumacher of the Technical University Ilmenau, is a
three-dimensional statistically stationary homogeneous isotropic flow at a Taylor microscale
Reynolds number of 107 showing iso-surfaces of ω2 at a level of 10 times the average of ω2.
The cube with side-length 2π is resolved with 20483 grid points which translates into 3-grid
spacings for the Kolmogorov length Λk .

despite the increase of computing power in this past generation. To provide a partial
theoretical explanation of this is one of the main aims of this paper. Landau’s
heuristic estimate for the number of degrees of freedom N ∼ Re9/4 needed to resolve
a turbulent flow is based on space–time averages and is by no means enough to resolve
the thin structures discussed above (for instance, see Kerr 1985; Sreenivasan 2004;
Schumacher, Sreenivasan & Yeung 2005; Schumacher, Sreenivasan & Yakhot 2007).
An interesting result in this context is that of Yakhot (2003) who has applied rigorous
methods to show that the inverse dissipation length scale associated with velocity
structure functions has an upper bound proportional to Re and not Re3/4 . Turning
now to the status of Navier–Stokes solutions, there are generally two prevailing views.
The first, which is an assumption generally held by the computational fluid dynamics
community, is that the Navier–Stokes equations have regular solutions: that is, it is
believed that unique solutions exist that can ultimately be resolved provided enough
computing power is made available in the future. This is equivalent to the assumption
that the Navier–Stokes equations possess strong solutions. The second view, held
more by Navier–Stokes analysts, is that the unsolved regularity problem leaves open
the possibility of singularity formation (Leray 1934; Ladyzhenskaya 1963; Constantin
& Foias 1988; Foias et al. 2001). Caffarelli, Kohn & Nirenberg (1982) have shown
that the potentially singular set has zero one-dimensional Hausdorff measure, which
means that if singularities do occur in space–time then they must be rare events
(see also Lin 1998; Ladyzhenskaya & Seregin 1999; Choe & Lewis 2000; Cheng
2004). For the purposes of providing a mathematical explanation for the resolution
problem outlined above, the first assumption will be taken in this paper; that is, the
Navier–Stokes equations are assumed to be regular. The nature of this assumption
is discussed in § 3. It cannot be emphasized enough, however, that a flow may be
regular but could nevertheless manifest highly intermittent events at fine scales, thus
rendering the singular set empty.

2. Results based on space–time averages
The setting is the incompressible (divu = 0) three-dimensional Navier–Stokes

equations for the velocity field u(x, t) with mean-zero, divergence-free forcing f (x),

ut + u · ∇u = ν�u − ∇p + f (x) , (2.1)
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on a periodic three-dimensional domain V = [0, L]3. Leray’s energy inequality is
derived by multiplying (2.1) by u and integrating over V to give

1

2

d

dt

∫
V

|u|2 dV � −ν

∫
V

|ω|2 dV +

(∫
V

|u|2 dV

)1/2 (∫
V

|f |2 dV

)1/2

, (2.2)

where ω = curlu is the vorticity. The method of Doering & Foias (2002) is now
applicable in which the space–time averaged velocity U and the energy dissipation
rate ε

U 2 = L−3

〈∫
V

|u|2 dV

〉
, ε = νL−3

〈∫
V

|ω|2 dV

〉
(2.3)

are found to be bounded quantities. In (2.3) the symbol
〈

·
〉

for the long-time average
is

〈g〉 = lim sup
t→∞

1

t

∫ t

0

g(τ ) dτ . (2.4)

For forcing concentrated around one length scale � which, for simplicity, is taken to
be � = L/2π, the Reynolds and Grashof numbers are defined by

Re =
U �

ν
, Gr =

�3 fr .m.s .

ν2
, (2.5)

where f 2
r.m.s. = L−3

∫
V |f |2 dV . From (2.2) we have

〈∫
V

|ω|2 dV

〉
� ν2L−1GrRe ⇒ ε � ν3L−4GrRe . (2.6)

Doering & Foias (2002) have shown that at high values of Gr Navier–Stokes
solutions obey Gr � c Re2 and so the right-hand side of (2.6) can be estimated as
GrRe � c Re3 . Estimates for the respective inverse Taylor microscale and Kolmogorov
lengths are

(
LΛ−1

T

)2
=

L2ε

ν U 2
=

〈L2
∫

V |ω|2 dV 〉
〈
∫

V |u|2 dV 〉 � c Re , LΛ−1
k =

(
ε

ν3

)1/4

� c Re3/4 . (2.7)

These upper bounds are consistent with Kolmogorov’s scaling arguments (Frisch
1995). The Kolmogorov result leads to Landau’s heuristic estimate for the number
of degrees of freedom N(Λk) � c Re9/4 based on the number of vortices of
volume Λ3

k relative to the volume L3. These space–time averages have played a
historically important role but they hide strong spiky variations in local behaviour.
Two new results, extending (2.6) to higher moments of ω (m � 1), are proved in the
Appendix 〈(∫

V
|ω|2m dV

)1/(4m−3)
〉

� c0,mν2m/(4m−3)L−1Re3 (2.8)

and 〈(∫
V

|∇ω|2m dV

)1/(6m−3)
〉

� c1,mν2m/(6m−3)L−1Re3 . (2.9)
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These hint at some control over large fluctuations in ω but not enough information
is available to understand the behaviour of local space–time variations.

3. Local space–time results
The task is now to consider how a fluid can behave in local regions of space–time

based on the assumption that solutions are regular. Some differences of definition
are required, particularly in the Reynolds (Re) and Grashof (Gr) numbers of the
last section, whose definitions were based on spatio-temporal and spatial averages,
respectively. Local Reynolds and Grashof numbers are defined as

Ru(x, t) =
L|u(x, t)|

ν
, G(x) =

L3|f (x)|
ν2

. (3.1)

We consider the evolution of the global enstrophy
∫

V |ω|2 dV using periodic
boundary conditions and note that ∇ω ≡ ωi,j and curlω are synonymous in
L2: that is

∫
V |∇ω|2 dV =

∫
V |curlω|2 dV . A rule for integration by parts can be

deduced from the vector identity div (a × b) = b · curla − a · curl b under volume
integration.

1

2

d

dt

∫
V

|ω|2 dV =

∫
V

ω · {ν�ω + ω · ∇u + curlf} dV

=

∫
V

{−ν|∇ω|2 − u · (ω · ∇)ω + f · curlω} dV

� −ν

∫
V

|∇ω|2 dV +

(∫
V

|u|6 dV

)1/6(∫
V

|ω|3 dV

)1/3(∫
V

|∇ω|2 dV

)1/2

+

(∫
V

|∇ω|2 dV

)1/2 (∫
V

|f |2 dV

)1/2

, (3.2)

where the exponents 1/2, 1/6 and 1/3 in the Hölder inequality in the third line
necessarily sum to unity. To estimate

∫
V |ω|3 dV , we integrate by parts as indicated

above and then use a vector identity and a Hölder inequality:∫
V

|ω|3 dV =

∫
V

u · curl (|ω|ω) dV

� 2

(∫
V

|u|6 dV

)1/6 (∫
V

|ω|3 dV

)1/3 (∫
V

|∇ω|3 dV

)1/2

, (3.3)

whereupon we discover∫
V

|ω|3 dV � 33/2

(∫
V

|∇ω|2 dV

)3/4 (∫
V

|u|6 dV

)1/4

. (3.4)

This allows us to re-write (3.2) as

1

2

d

dt

∫
V

|ω|2 dV � −ν

∫
V

|∇ω|2 dV +

(
ν

∫
V

|∇ω|2 dV

)3/4 (
9ν−3

∫
V

|u|6 dV

)1/4

+

(
1

4
ν

∫
V

|∇ω|2 dV

)1/2 (
4ν−1

∫
V

|f |2 dV

)1/2

, (3.5)
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where factors of ν in the coefficients have been inserted appropriately. Two
applications of the Hölder inequality ApBq � pA + qB (with p + q = 1) finally
give

1

2

d

dt

∫
V

|ω|2 dV � −ν

8

∫
V

|∇ω|2 dV +
9

4
ν−3

∫
V

|u|6 dV + 2ν−1

∫
V

|f |2 dV. (3.6)

The appearance of the integral
∫

V |u|6 dV is a feature found by Cao & Titi (2007) in
their study of the primitive equations for the ocean and atmosphere in which their
regularity result revolved around a proof that the horizontal part of this integral is
bounded. The degree of regularity that needs to be assumed for the Navier–Stokes
equations is the existence of what is known as a global attractor (Constantin & Foias
1998; Foias et al. 2001), which means that H1(t) =

∫
V |ω(· , t)|2 dV is assumed to

be confined to a ball of finite radius in the limit t → ∞. Thus, after multiplication
by L6ν−3, the integral of (3.6) over a time interval [0, T ] turns it into a space–time
integral (ω0 = L−2ν)∫ T

0

∫
V

{
− L2

8ω2
0

|∇ω|2 +
9

4
R6

u + 2G2 +
H1(0)

2T ω3
0L

3

}
dV dt > 0 . (3.7)

The right-hand side is positive because H1(T ) > 0 although there are no indications
regarding its magnitude. Even though the four-integral in (3.7) is positive there may
exist regions of space–time where the integrand is negative or zero. The consequences
are

(a) There must be regions of space–time �+ ⊂ �4 where the integrand of the
four-integral (3.7) is positive; that is

L2

8ω2
0

|∇ω|2 <
9

4
R6

u + 2G2 + O(T −1) . (3.8)

(b) As noted above, there are potentially disjoint regions (anomalies) of space–time
where the integrand of the four-integral (3.7) could be negative or zero, in which case

L2

8ω2
0

|∇ω|2 �
9

4
R6

u + 2G2 + O(T −1) . (3.9)

If such regions exist we denote their union by �− ⊂ �4.

(c) It is usual to define the Kraichnan length based on the long-time averaged
palenstrophy (see Foias et al. 2001 and Tsinober 2001). Its local equivalent is

(
Lλ−1

kr

)6
=

|∇ω|2
ν2

=
L2|∇ω|2

ω2
0

, (3.10)

so (3.8) and (3.9) can be re-written as (ignoring the T −1 terms for large T )(
Lλ−1

kr

)6
< 18 R6

u + 16G2 on �+(
Lλ−1

kr

)6
� 8 R6

u + 16G2 on �− . (3.11)

Thus to resolve the structures in �± the number of degrees of freedom is estimated
as

N+ < 3
√

2 R3
u + O(G) on �+

N− � 2
√

2 R3
u + O(G) on �− (3.12)
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(d) Determining the shape and size of the sets �± is an interesting question
which cannot be answered until more regularity properties are established, nor does
inequality (3.7) say anything about their statistics. The local palenstrophy |∇ω|2 also
has an independent constraint controlling its growth through (2.9). For the case
m = 1, this can be written as〈(∫

V
|∇ω|2 dV

)1/3
〉

� c1,1ν
2/3L−1Re3 . (3.13)

Because of the difference between the global and local Reynolds numbers Re and
Ru, it is difficult to draw absolute conclusions based on (3.8), (3.9) and (3.13). Much
depends upon how much Ru locally fluctuates about Re. Nevertheless, it is clear
that the very large sixth-power local nonlinearity R6

u acting as a lower bound in
(3.9) amplifies the response in the magnitude of |∇ω|2. It is possible that �+ and
�− may have similar sizes if the fluctuations in Ru are small or, alternatively, �+

may heavily dominate over �− if the fluctuation is large. An example of the latter
might occur if Ru >Re3/2 in subsets of �−. In this case, the lower bound in (3.9)
is greater than the upper bound in (3.13), which is allowable only if this subset is
sufficiently small and comparatively smaller values of |∇ω|2 in �+ compensate for the
larger than average values in �−. Thus, in a general sense, very large behaviour of
|∇ω|2 in �− must therefore be balanced by smaller behaviour in �+. The result of
this amplified and highly uneven response would be an intermittent spectrum. This
is consistent with the remark of Batchelor & Townsend (1949) where they suggested
that ‘large wavenumber components are concentrated in isolated flow regions with
an uneven energy distribution associated with the small-scale components’. Both they,
and Emmons (1951), referred to this phenomenon as ‘spottiness’.

Moreover, if a sudden increase of the gradient |∇ω| occurs as one moves from a
region in �+ across into an anomaly in �− then this is consistent with the formation
of vortex sheet-like structures or perhaps tightly coiled filaments (see Madja &
Bertozzi 2001). The subsequent roll up of these sheets into tubes when they interact,
as observed in numerical experiments (Vincent & Meneguzzi 1994), is not explained
but the occurrence of both is consistent with the fact that both topologies have a
small packing fraction.

4. Summary and discussion: vorticity versus strain
The arguments of the previous section show that even if solutions of the Navier–

Stokes equations are assumed to live on a global attractor, space–time can potentially
be split into two parts �± with the potential for intermittent behaviour. Bounds on
the number of degrees of freedom N± in (3.12) are dependent on the velocity field at
local space–time points of the flow. Particularly within �−, the value of Ru would have
to be compared with Re: if Ru � Re then the number of grid points needed to locally
resolve that part of the flow would be significantly larger than the global average
Re9/4 . This illustrates the need to monitor carefully values of Ru in a numerical
calculation. The Lλ−1

k > 181/6Ru lower bound in �− is similar in spirit to the result
of Yakhot (2003) who concluded that the structure function inverse dissipation scale
η−1

n,0 = O(Re) is much larger than the inverse Kolmogorov scale Re3/4 . We agree with
his conclusion that this places a severe constraint on the resolution requirements of
direct numerical simulations of turbulence, and that existing simulations based on the
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mesh-size LRe−3/4 cannot accurately predict the properties of the violent structures
of turbulence (Yakhot 2003).

These ideas can also be used in an alternative manner to see the effect of strain (see
Jimenez et al. 1993; Tsinober 1998, 2000, 2001; Kerr 2001). It is more appropriate to
define different local Reynolds numbers as

Rω =
L2|ω|

ν
, Rρ =

L2ρs

ν
. (4.1)

In (4.1) ρs(x, t) is the spectral radius of the strain rate matrix S which appears
because ω · ω · ∇u = ω · Sω. The equivalent of the four-integral in (3.7) is∫ T

0

∫
V

{
2RρR2

ω − L2

ω2
0

|∇ω|2 + G2 + O(T −1)

}
dV dt � 0 . (4.2)

Similar conclusions can be reached to those of § 3 regarding the effect the strain field
and vorticity fields have on |∇ω| in regions �±

s of space–time. These will be different
from those regions contained in �± of (3.7). An estimate for the number of degrees
of freedom needed to resolve �±

s – the equivalent of (3.12) – is

N±
s �

√
2 R1/2

ρ Rω + O(G) . (4.3)

My thanks to Panagiota Daskalopoulos, Charles Doering, Raymond Hide, Darryl
Holm, Bob Kerr, Gerald Moore, Trevor Stuart, Edriss Titi, Jörg Schumacher and
Arkady Tsinober for discussions. The referees made several helpful comments that
have greatly improved the presentation of this paper.

Appendix. Proof of (2.8) and (2.9) given in § 2
Consider the result of Foias, Guillopé & Temam (1981) for time averages of

Hn =
∫

V |∇nu|2dV which here are written in terms of Gr and Re (n � 1)〈
H 1/(2n−1)

n

〉
� cnν

2/(2n−1)L−1GrRe . (A 1)

Using the norm notation ‖ω‖p
p =

∫
V |ω|pdV , a Sobolev inequality gives

‖ω‖2m � cm‖∇2ω‖a
2‖ω‖1−a

2 , (A 2)

where a = 3(m − 1)/4m for m > 1. Thus, taking n = 3 in (A 1), we have〈
‖ω‖2m/(4m−3)

2m

〉
� cm,1

〈(
H

1/5
3

)15(m−1)/4(4m−3)
H

(m+3)/4(4m−3)
1

〉
� cm,1

〈(
H

1/5
3

)〉15(m−1)/4(4m−3) 〈H1〉(m+3)/4(4m−3)

� cm,1ν
2m/(4m−3)L−1GrRe . (A 3)

The result on |∇ω|2m in (2.9) can be found in the same way using n = 4 in (A 1).
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