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Abstract. After a review of the isentropic compressible magnetohydrodynamics
(ICMHD) equations, a quaternionic framework for studying the alignment
dynamics of a general fluid flow is explained and applied to the ICMHD equations.
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1. Introduction to isentropic compressible magnetohydrodynamics (ICMHD)

Consistent with the topic of this focus issue, this paper will deal with the equations of
ICMHD [1]–[3]. Not only are these sufficiently general to encompass most of the interest
in this area but they also offer a significant challenge even without dissipation. The ICMHD
equations determine the dynamics of a conducting fluid flow with magnetic field B satisfying
div B = 0 and current J = curl B. The equations for the fluid velocity field u, mass density ρ,
specific entropy σ, pressure p(ρ, σ) and divergenceless magnetic field B are, respectively, the
motion equation, Faraday’s law of frozen-in magnetic flux, isentropy along flow lines and the
continuity equation

ρ
Du

Dt
= −∇p + J × B,

∂B

∂t
= curl(u × B), (1.1)

Dσ

Dt
= 0,

Dρ−1

Dt
= ρ−1div u, (1.2)

with the Lagrangian time derivative defined as

D

Dt
= ∂

∂t
+ u · ∇. (1.3)

The equation of state for specific internal energy e(ρ, σ) and the thermodynamic first law yield

De

Dt
= −p

Dρ−1

Dt
+ T

Dσ

Dt
= −p

ρ
div u, (1.4)

so the specific internal energy changes only because of mechanical work. Combining Faraday’s
law with the continuity equation yields

DBρ

Dt
− Bρ · ∇u = 0 with Bρ := ρ−1B. (1.5)

This is the condition for the vector field Bρ · ∇ to be frozen into the flow, i.e.

D

Dt

(
Bρ · ∂

∂x

)
= 0, along

Dx

Dt
:= u. (1.6)

We denote

� := p + 1
2B

2, (1.7)

and set

d

ds
:= Bρ · ∇, (1.8)
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with Bρ defined in (1.5). In this notation, the ICMHD equations (1.1) and (1.2) transform using
standard vector identities into

Du

Dt
= dB

ds
− ρ−1∇� =: F ,

DBρ

Dt
= du

ds
, (1.9)

Dσ

Dt
= 0

Dρ−1

Dt
= ρ−1div u. (1.10)

D/Dt and d/ds are defined in (1.3) and (1.8) respectively. The first equation in (1.9) expresses the
motion equation in terms of the derivative along field lines, while the second expresses Faraday’s
law (1.5) in terms of the derivatives D/Dt and d/ds. The invariance condition (1.6) for vector
field d/ds = Bρ · ∇ along Lagrangian field lines for ICMHD implies equality of the following
cross derivatives

D

Dt

d

ds
= d

ds

D

Dt
. (1.11)

Of course, the invariant vector field d/ds = Bρ · ∇ may be applied to any fluid quantity. For
example, applying d/ds to the equations in (1.9) and using the equality of cross derivatives in
d/ds and D/Dt yields the following exact nonlinear wave equations for ICMHD

D2(ρ−1B)

Dt2
− d2B

ds2
= − d

ds

(
ρ−1∇�

)
, (1.12)

D2u

Dt2
− d2u

ds2
= − D

Dt

(
ρ−1∇�

)
. (1.13)

When linearized, these equations yield Alfvén-sound waves. The present work emphasizes the
alignment dynamics that is inherent in these equations, rather than their wave properties.

1.1. Slow plus fast decomposition and nonlinear waves

It seems natural to define slow and fast aspects of the ICMHD solutions in the sense of the
Lagrangian time derivative. In particular, there are two relations for slow variables

Dσ

Dt
= 0, and

Dβ

Dt
= 0, (1.14)

where β is defined as

β := Bρ · ∇σ. (1.15)

The latter follows from equality of cross derivatives, by computing

Dβ

Dt
:= D

Dt
(Bρ · ∇σ) = D

Dt

dσ

ds
= d

ds

Dσ

Dt
= 0. (1.16)

Thus, the ICMHD equations preserve the projection of Bρ on ∇σ along Lagrangian flow lines,
that is, along the path x(t) of a Lagrangian fluid particle determined from dx/dt = u(x, t).
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Equivalently, one finds the Eulerian conservation law,

∂(ρβ)

∂t
+ div(ρβu) = 0, with ρβ = B · ∇σ = div(σB), (1.17)

upon combining (1.16) with the continuity equation for mass.
Of course, the evolution of the component of Bρ perpendicular to ∇σ is not so simple!

One may decompose Bρ into components parallel and perpendicular to ∇σ as

|∇σ|2Bρ = β∇σ + γ × ∇σ = |∇σ|2(B‖
ρ + B⊥

ρ ) with γ · ∇σ = 0, (1.18)

so that

β = Bρ · ∇σ and γ = Bρ × ∇σ. (1.19)

One then computes the auxiliary equations,

D

Dt
∇σ = −(∇u)T · ∇σ , that is,

Dσ,i

Dt
= −σ,ju

j

,i, (1.20)

and

D

Dt
|∇σ|2 = −∇σ · S · ∇σ. (1.21)

The fluid strain-rate tensor is defined as S = 1
2(∇u + (∇u)T). Consequently, the evolution

equation for the component of Bρ perpendicular to ∇σ is determined from

Dγ

Dt
= D

Dt
(Bρ × ∇σ) = du

ds
× ∇σ − Bρ × (∇uT · ∇σ) (1.22)

which is clearly neither fast nor slow.

1.2. Lagrangian dynamics of specific volume

Two other likely candidates for fast variables are the specific volume ρ−1 and the velocity
divergence div u, which satisfy

Dρ−1

Dt
= ρ−1div u, (1.23)

D

Dt
div u = div F − |∇u|2. (1.24)

The second of these equations is found using the identity

D

Dt
div u = div

(
Du

Dt

)
− |∇u|2 (1.25)
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where |∇u|2 ≡ ui
,ju

j

,i . As a consequence of (1.23) and (1.24), the specific volume ρ−1 satisfies
the ‘Lagrangian oscillation equation,’

D2ρ−1

Dt2
= ρ−1

(
(divu)2 − |∇u|2 + div

(
dB

ds
− ρ−1∇�

))
(1.26)

upon substituting the definition of force F := dB
ds

− ρ−1∇�. Thus, the divergence of the force
combines with compressibility of the flow to drive either Lagrangian oscillations or exponential
variations of the specific volume, depending on the sign of the term on the right-hand side of
equation (1.26). Of course, the sign of this term could be varying rapidly in some physical
applications, and observations of such behaviour would have corresponding implications for the
dynamics of specific volume. In any case, the form of equation (1.26) is universal and one may
conclude that the divergence of the total force drives the second Lagrangian time derivative of
the specific volume.

In what follows, we shall seek equations for alignment dynamics in MHD which have the
same universal property as the Lagrangian oscillation equation (1.26). In particular, we shall find
that gradients of the total force (rather than its divergence) drive the Lagrangian dynamics of
alignment in MHD of the frozen-in magnetic vector field Bρ relative to its projection Bρ · ∇u

on to the shear tensor ∇u of the fluid velocity.

1.3. Stretching and alignment

The magnetic flux equation

DBρ

Dt
= du

ds
:= Bρ · ∇u (1.27)

implies that the contravariant vector Bρ undergoes stretching to the extent it aligns with the shear
∇u. Likewise, this alignment evolves according to

D2Bρ

Dt2
= D

Dt

du

ds
= d

ds

Du

Dt
= d

ds
F = d

ds

(
dB

ds
− ρ−1∇�

)
, (1.28)

which recovers the nonlinear wave equation (1.12) above.
We shall examine this equation from an alignment viewpoint, rather than as a wave

propagation phenomenon. We begin by decomposing the vector Bρ · ∇u into its components
parallel and perpendicular to B̂ρ := Bρ/|Bρ|

Bρ · ∇u = α B̂ρ + χ × B̂ρ , (1.29)

where α and χ are defined by

α = B̂ρ · (B̂ρ · ∇u), and χ = B̂ρ × (B̂ρ · ∇u). (1.30)

This decomposition is explained more fully in section 2.2. In fact, α is the Lagrangian
amplification rate of the magnitude |Bρ| and χ is the Lagrangian frequency of rotation of the
unit vector B̂ρ under the forcing by shear in the flux conservation equation (1.27),

D|Bρ|
Dt

= α |Bρ| and
DB̂ρ

Dt
= χ × B̂ρ. (1.31)

Note that no confusion should arise between this α and the one appearing in the α-dynamo
equations!
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1.4. A mathematical framework for magnetic fluid alignment dynamics

The quantity α defined in equation (1.30) is the alignment of Bρ with ∇u, which determines
the rates of change of magnitude |Bρ| whereas χ is the misalignment, which determines the
frequency of rotation of the direction B̂ρ. The question asked in this situation is, ‘How long will
Bρ remain aligned with ∇u, so it can continue to be stretched under the fluid shear?’Answering
this question requires an analysis of Dα/Dt and Dχ/Dt using the alignment dynamics (1.28).

In principle, this analysis could be performed by direct computation and algebraic
manipulation. However, the Lagrangian evolution equations for α and χ happen to fit perfectly
into a mathematical framework that was especially designed for analysing orientation dynamics
and for systematically interpreting the results. The key for recognizing this framework is to
notice that the decomposition of a vector into its components parallel and perpendicular to
another vector defines a type of product, or multiplication, that was first discovered by Hamilton
[4]. This product reveals itself when we write the parallel-perpendicular vector decomposition
equation (1.29) as though it were the pure vector components of a equation involving the four-
component scalar-vector object (tetrad) [α, χ] in the form,

[0, Bρ · ∇u] = [0, α B̂ρ + χ × B̂ρ] = [α, χ] � [0, B̂ρ] with χ · B̂ρ = 0. (1.32)

This organization of the decomposition equation (1.29) summons the � product defined by

[p1, q1] � [p2, q2] = [p1p2 − q1 · q2, p1q2 + q1p2 + q1 × q2], (1.33)

which is the multiplication rule that Hamilton invented for the field of quaternions [4]. The origin
of this rule and its connection to the definition of a quaternion is given in section 2.1. Of course,
quaternions have everything to do with orientation [5, 6]. The remainder of this paper sets-up
the quaternionic framework for alignment dynamics of a general fluid flow and applies it to the
ICMHD equations.

The plan of this paper is as follows: section 2 summarizes the results of [7, 8] and shows
how the evolution of the ortho-normal frame can be calculated in general terms. Section 3
then discusses the ICMHD equations (1.9) and (1.10) in these terms, while section 4 examines
alignment and growth properties to begin answering the question raised above for magnetic
dynamos using these results. Finally, section 5 discusses the potential for other applications of
this general method in compressible MHD turbulence.

2. Quaternions and Lagrangian alignment dynamics

2.1. Background for quaternions

The resurgence of practical interest in quaternions during the last two decades has been stimulated
by progress in the computer animation and inertial navigation industries because of the ease with
which quaternions handle moving objects undergoing three-axis rotations [5, 6]. The tracking of
aircraft and satellites and the animation of tumbling objects in computer graphics are obvious
examples. Quaternion methods have also been recently been applied to the three-dimensional
Euler equations for incompressible fluid motion [9, 10] and to passive tracer particles transported
by an underlying Lagrangian flow field; see [11]–[21] and references in [7, 8]. The final result
of these endeavours is that equations of motion can be derived for an ortho-normal frame. This
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‘quaternion frame’follows the evolution of particles in a Lagrangian flow whose evolution derives
from the Eulerian equations of motion.

Three-axis rotations lie at the heart of the definition of a quaternion [22]. In terms of any
scalar p and any three vector q, the quaternion q = [p, q] is defined (using gothic fonts to denote
quaternions) as

q = [p, q] = pI −
3∑

i=1

qiσi, (2.1)

where {σ1, σ2, σ3} are the Pauli spin-matrices and I is the unit matrix. The relations between
the Pauli matrices σiσj = −δijI − εijkσk then give a non-commutative multiplication rule

q1 � q2 = [p1p2 − q1 · q2, p1q2 + q1p2 + q1 × q2]. (2.2)

It is easily demonstrated that quaternions are associative. In fact the individual elements of a unit
quaternion provide the Cayley–Klein parameters of a rotation. This representation is a standard
alternative to Euler angles in describing the orientation of rotating objects, as the books by
Whittaker and Klein show [23, 24].

2.2. Quaternions and Lagrangian alignment dynamics in fluids

A general quaternionic picture of the process of Lagrangian flow and acceleration in fluid
dynamics is explained in this section by considering the abstract Lagrangian flow equation

Dw

Dt
= a(x, t), (2.3)

whose Lagrangian acceleration equation is given in general by

D2w

Dt2
= Da

Dt
= b(x, t). (2.4)

These are the rates of change of these vectors following the characteristics of the velocity
generating the path x(t) of a Lagrangian fluid particle determined from dx/dt = u(x, t).

Given the Lagrangian equation (2.3) one defines the scalar αa and the three vector χa as

αa = w−1(ŵ · a) χa = w−1(ŵ × a), (2.5)

in which w = wŵ with w = |w|. As observed in (1.29), the three vector a is decomposed into
parts that are parallel and perpendicular to w as

a = αaw + χa × w = [αa, χa] � [0, w], (2.6)

and thus the quaternionic product (2.6) is summoned in a natural manner. By definition, the
growth rate αa of the scalar magnitude w = |w| obeys

Dw

Dt
= αaw, (2.7)
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Figure 1. The dotted line represents the path of Lagrangian fluid particle (•)

moving from (x1, t1) to (x2, t2). The solid curves represent lines of constant w

to which ŵ is a unit tangent vector. The orientation of the quaternion-frame
(ŵ, χ̂a, ŵ × χ̂a) is shown at the two space-time points; note that this is not the
Frenet-frame corresponding to the particle path but to lines of constant w.

while the unit tangent vector ŵ = ww−1 satisfies

Dŵ

Dt
= χa × ŵ. (2.8)

Now define two quaternions

qa = [αa, χa] and qb = [αb, χb], (2.9)

where αb, χb are defined as in (2.5) for αa, χa with a replaced by b. Let w = [0, w] be the pure
quaternion satisfying the Lagrangian evolution equation (2.3) with qa defined in (2.9). Then (2.3)
can automatically be re-written equivalently in the quaternion form

Dw

Dt
= [0, a] = [0, αaw + χa × w] = qa � w. (2.10)

Moreover, if a is Lagrangian-differentiable as in (2.4) then it is clear that a similar decomposition
for b as that for a in (2.6) gives

D2w

Dt2
= [0, b] = [0, αbw + χb × w] = qb � w. (2.11)

Using the associativity property, compatibility of (2.11) and (2.10) implies that
(

Dqa

Dt
+ qa � qa − qb

)
� w = 0, (2.12)

which establishes a Riccati relation between the quaternions qa and qb

Dqa

Dt
+ qa � qa = qb. (2.13)

From equation (2.13) there follows the main result of the paper.
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Theorem 1. (The ortho-normal quaternion-frame) F = (ŵ, χ̂a, ŵ × χ̂a) ∈ SO(3) has
Lagrangian time derivatives expressed as

Dŵ

Dt
= Da × ŵ, (2.14)

D(ŵ × χ̂a)

Dt
= Da × (ŵ × χ̂a), (2.15)

Dχ̂a

Dt
= Da × χ̂a, (2.16)

where the Darboux vector Da defined as

Da = cb

χa

ŵ + χa with cb = χb · (ŵ × χ̂a), (2.17)

is the angular frequency of rotation of the ortho-normal frame F .

Remark. 1. The frame orientation is controlled by the Darboux vector Da = (cb/χa, 0, χa)

which lies in the (ŵ, χ̂a) plane and is so named for its similarity to the Darboux vector in
the Frenet–Serret (FS) equations for a space curve. Note that the vector Da depends on χb

but is independent of αb.
2. The frame dynamics equations (2.14)–(2.17) may also be re-written in matrix form by

defining the 3 × 3 skew-symmetric matrix Ca ∈ so(3) with entries [Ca]ij = − εijkD
k
a as,

DF

Dt
= CaF where F =


 ŵ

ŵ × χa

χa


 and Ca =


 0 −χa 0

χa 0 −cb/χa

0 cb/χa 0


 . (2.18)

Proof. Finding an expression for the Lagrangian time derivatives of the components of the
frame (ŵ, ŵ × χ̂a, χ̂a)

T requires the derivative of χ̂a. For this, one first recalls that the three
vector b may be expressed in this ortho-normal frame as the linear combination

w−1b = αbŵ + cbχ̂a + db(ŵ × χ̂a), (2.19)

where cb is defined in (2.17) and db = − (χ̂a · χb). The three vector product χb = w−1(ŵ × b)

yields

χ̂b = cb(ŵ × χ̂a) − dbχ̂a. (2.20)

To find the Lagrangian time derivative of χ̂a, we use the three vector part of the equation for the
quaternion qa = [αa, χa] in theorem 1

Dχa

Dt
= −2αaχa + χb, ⇒ Dχa

Dt
= −2αaχa − db, (2.21)

where χa = |χa|. Using (2.20) and (2.21) there follows

Dχ̂a

Dt
= cbχ

−1
a (ŵ × χ̂a),

D(ŵ × χ̂a)

Dt
= χaŵ − cbχ

−1
a χ̂a, (2.22)

which gives equations (2.14)–(2.17). ��
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3. Application of the quaternionic alignment theorem to ICMHD

The way is now clear to apply theorem 1 of section 2 to the ICMHD equations (1.9) and (1.10).
First, we identify from (1.27) and (1.28)

w = Bρ, a = Bρ · ∇u, b = D(Bρ · ∇u)

Dt
= Bρ · ∇

(
Du

Dt

)
. (3.1)

The latter result is achieved through the use of Ertl’s theorem (see [10, 28, 29]). Although messy,
this provides an explicit expression for b that depends upon the pressure p, Bρ, J and their
derivatives, as determined from the fluid evolution equations for u, ρ and σ,

b = Bρ · ∇(−ρ−1∇p + J × Bρ). (3.2)

The alignment parameters {α, χ, αb, χb} are now identified as

α = B̂ρ · (B̂ρ · ∇u), χ = B̂ρ × (B̂ρ · ∇u), (3.3)

αb = |Bρ|−1(B̂ρ · b), χb = |Bρ|−1(B̂ρ × b). (3.4)

These parameters appear in the vector decompositions,

a = Bρ · ∇u = α B̂ρ + χ × B̂ρ , (3.5)

and

b = Bρ · ∇
(

Du

Dt

)
= αbB̂ρ + χb × B̂ρ . (3.6)

The parameters αb and χb derive from Bρ and from b in equation (3.2) at each time step. The
vector b represents the coupling of the kinematic flow variables (Bρ, ∇u) to the gradients of the
magnetic and thermodynamic forces. These identifications enter the two quaternions q = [α, χ]
and qb = [αb, χb] that satisfy the Riccati equation (2.13). The results of theorem 1 for the
Lagrangian time derivatives of the orthonormal frame Fmag = (B̂ρ , B̂ρ × χ̂ , χ̂)T ∈ SO(3) are
then expressed as

DB̂ρ

Dt
= D × B̂ρ, (3.7)

D(B̂ρ × χ̂)

Dt
= D × (B̂ρ × χ̂), (3.8)

Dχ̂

Dt
= D × χ̂, (3.9)
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Figure 2. The solid curves represent magnetic field lines to which B̂ is a unit
tangent vector. The dotted line represents the path of a Lagrangian fluid particle
(•) moving from (x1, t1) to (x2, t2). The orientation of the quaternion-frame
(B̂, χ̂, B̂ × χ̂) is shown at the two space-time points.

where the Darboux angular velocity vector D is defined as

D = cb

χ
B̂ρ + χ, with cb = χb · (B̂ρ × χ̂), (3.10)

which depends explicitly on the ICMHD force gradients through χb but is independent of αb.
The frame dynamics equations (3.7)–(3.10) for ICMHD may also be re-written in matrix

form using the 3 × 3 skew-symmetric matrix C ∈ so(3) with entries Cij = − εijkD
k as,

DFmag

Dt
= CFmag where Fmag =


 B̂ρ

B̂ρ × χ̂

χ̂


 and C =


0 −χ 0

χ 0 −cb/χ

0 cb/χ 0


 . (3.11)

Remark. 1. The skew-symmetric matrix C = DFmag

Dt
F−1

mag expresses the Lagrangian angular
frequency of rotation of the magnetic orthonormal frame Fmag in terms of the magnitudes
χ and cb.

2. At a given moment in time, the flow lines of Bρ may be constructed from its characteristic
equations dx/ds = Bρ(x). The FS equations describe how the orientation of an orthonormal
frame changes along each flow line of Bρ as a function of its shape parameters, curvature and
torsion. Applying equality of cross derivatives to equations (3.11) and FS yields a relation
for the Lagrangian time derivatives of the shape parameters of a given flow line of Bρ.

Figure 1 now becomes figure 2.

4. Alignment and growth properties in ICMHD

The growth rate α(x, t), defined in (3.3), satisfies (see equations (2.7) and (2.8))

D|Bρ|
Dt

= α|Bρ|. (4.1)

Here α can take either sign and this is the key to how fast the magnitude |Bρ| increases (or
decreases) at each point in the flow. In contrast, the three vector χ(x, t) is the key to the alignment
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properties of the system, because it satisfies

DB̂ρ

Dt
= χ × B̂ρ. (4.2)

As such, it can be interpreted as the swing rate of the unit vector B̂ρ about a = Bρ · ∇u. Clearly,
if Bρ is aligned with a then χ = 0 and the quaternion q involves only the scalar α. Violent
corkscrew-like motions of the magnetic field lines would be consistent with significant values of
χ and such motions can therefore be regarded as a diagnostic for the misalignment of B̂ρ with a.
One of the messages of this paper is that putting α and χ together as the quaternion q = [α, χ] is
a natural way to approach this problem because the full quaternion q with χ 	= 0 is summoned
whenever vortex or magnetic field lines bend or tangle. The Darboux vector D is the angular
frequency of rotation of the orthonormal frame Fmag = (B̂ρ , B̂ρ × χ̂ , χ̂)T, but is itself controlled
by the gradients of forces in the expression (3.2) for b.

When written out in terms of α and χ, the Riccati relation (2.13) becomes

Dα

Dt
= χ2 − α2 + αb,

Dχ

Dt
= −2αχ + χb. (4.3)

Some years ago, these four equations were first expressed in this form for the incompressible
Euler equations without any recourse to quaternions [25]. The quaternionic form first appeared
in [8] (see [7]–[9], [28, 29] for a history). Equations (4.3) appear to behave as Lagrangian ODEs
driven by qb = [αb, χb]. If the latter terms remain roughly constant equations (4.3) can easily
be shown to have two fixed points [25]; one has a negative value of α and the other has a
positive value. The negative one is associated with an unstable spiral and the positive one with
a stable spiral in the phase plane for this simplified ODE system. Equations (4.3) with constant
q = [αb, χb] have also recently been studied as a remarkably interesting kinematic model for the
creation of non-Gaussian statistics in hydrodynamic turbulence [26]. This simple picture would
seem not apply if the driving terms αb, χb were to vary on the same timescales as α, χ, or faster.
This breakdown in applicability of equations (4.3) with constant q = [αb, χb] would be indicated
if the force gradients in (3.2) were observed to undergo rapid changes.

5. Conclusion

The quaternionic approach to Lagrangian frame dynamics developed here for ICMHD applies
generally in fluid dynamics. Because the form of these equations is universal; that is, independent
of the specific choice of forces, one may expect them to have many other applications. For
example, in MHD one may use these equations to consider the effects on frame dynamics
of rotation, or the effects of various kinds of subgrid-scale models, simply by identifying
the corresponding expressions for the vectors a and b in equations (2.3) and (2.4). Subgrid-
scale models of MHD turbulence may be a particularly fruitful arena for these applications,
especially for those models derived from Lagrangian averaging, because Faraday’s law for such
models is preserved for the averaged field [27]. Depending as it does on Faraday’s law, the
quaternionic method for MHD is fundamental, but it is also mainly kinematic. Thus its best
role may be as a means of developing diagnostics for determining the effects of total force
gradients. Therefore, additional applications of the quaternionic approach may also be foreseen,
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as improved Lagrangian diagnostic methods are developed in the future. For example, future
diagnostics may be able to distinguish between effects described by equations (4.3) with fixed
values of the quaternion qb = [αb, χb], versus its self-consistent exact dynamics when the vector
b is determined from the varying force gradients in equation (3.2).
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