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Abstract

The rich multifractal properties of fluid turbulence illustrated by the work of Parisi and Frisch

are related explicitly to Leray’s weak solutions of the three-dimensional Navier-Stokes equations.

Directly from this correspondence it is found that the set on which energy dissipates, Fm, has

a range of dimensions Dm = 3/m (1 ≤ m ≤ ∞), and a corresponding range of sub-Kolmogorov

dissipation inverse length scales Lη−1
m ≤ Re3/(1+Dm) spanning Re3/4 to Re3. Correspondingly,

the multifractal model scaling parameter h, must obey h ≥ hmin with − 2
3 ≤ hmin ≤ 1

3 .

In memory of Charlie Doering (1956-2021)

1 The need for a mathematical telescope

Despite the cliché that “turbulence is the last great unsolved problem in classical physics” [1], the

challenge that it poses to physicists, mathematicians and engineers remains [2–19]. A natural

correspondence is proposed that helps us relate the rich multifractality of the statistical properties

of homogeneous and isotropic fluid turbulence [2–4] to the methods of mathematical analysis which

are used to study weak solutions of the incompressible Navier-Stokes equations [20–28], including

the Millenial regularity problem [29]. Heretofore the two approaches have taken divergent paths

which has caused a lacuna in our understanding. Multifractality is manifest in the wide sweep

of vortical structures that appear in turbulent flows, ranging from three-dimensional vortices at

many scales, to semi-broken filaments whose fractal dimension is less than unity : see Fig. 1 for

illustrative examples. In telescopic terms, the simultaneous existence of many vortical structures

each with its own fractal dimension requires the mathematical equivalent of an adjustable focus,

somewhat in the manner of a zoom lens. Thus, an adjustable parameter with a wide range of values

is needed. The multifractal model (MFM) of Parisi and Frisch possesses this latter feature through

the allowed variation of its scaling parameter h [2], while the Navier-Stokes equations seemingly do

not. The MFM was developed after it had become clear that Kolmogorov’s 1941 theory needed to

be modified in order to take account of the effects of intermittency [3] : see also [30–35].

The question is this : can this telescopic property be derived from Leray’s weak solution formu-

lation of the three-dimensional incompressible Navier-Stokes equations [20–28]? From the Navier-

Stokes side of the fence, no mathematical tools seemingly exist that would allow us to perform

rigorous analysis on fractal sets. Standard methods of Navier-Stokes analysis involve integration

over the full domain volume, which has the unfortunate consequence of washing out the delicate

nature of the set on which energy dissipates [5,6]. This paper circumvents these problems by show-

ing how the existence of a multifractal set on which energy dissipates is natural to the problem.

Results can be extracted from the Leray formalism which are then compared to the multifractal

theory of Parisi and Frisch [2].
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Figure 1: (left) Iso-surface plot of the magnitude of the vorticity |ω| (two standard deviations above the mean) from a

5123 pseudospectral direct numerical simulation of the unforced 3D Navier-Stokes equations at a representative time at an

integral-scale Reynolds number of 874. Plot courtesy of Nadia B. Padhan, IISc, Bangalore. The second and third are filled-

contour plots of the vorticity from 20482 pseudospectral direct numerical simulations of the forced 2D Navier-Stokes equations

in a statistically steady state, courtesy of Kiran Kolluru, IISc, Bangalore : (middle) forward-cascade-dominated turbulence

(Reλ = 1957) ; (right) inverse-cascade-dominated turbulence (Reλ = 1729).

In recent work, Dubrulle and Gibbon [36] addressed the issue of the equivalence of the Navier-

Stokes equations and the multifractal model. They used the Paladin-Vulpiani1 [32, 33] inverse

dissipation length scale

Lη−1
PV ∼ Re

1/(1+h) (1.1)

as an ad hoc bridge between the two theories, where h is the multifractal scaling parameter. In

this paper we are able to go a step further by showing that this scale, at least in an inequality

form, appears naturally out of the correspondence between the two theories without any ad hoc

introduction.

2 Recasting Leray’s weak solution formulation of the Navier-Stokes equations

2.1 A zoom lens

The incompressible Navier-Stokes equations are

(∂t + u · ∇)u +∇p = ν∆u + f(x) (2.1)

subject to divu = divf = 0, on a periodic domain Vd = [0, L]d for dimensions d = 3, 2, 1.

Results on weak solutions can be expressed in many ways [20] but most appear in time averaged

form [21–28]. In [27], it was shown that for 1 ≤ m ≤ ∞, the Sobolev norms

‖∇nu‖2m =

(∫
Vd

|∇nu|2m dV
)1/2m

, (2.2)

under the Navier-Stokes invariance property x′ = λ−1x ; t′ = λ−2t and u = λ−1u′, have the scaling

property

‖∇nu‖2m = λ−1/αn,m,d‖∇′nu′‖2m (2.3)

αn,m,d =
2m

2m(n+ 1)− d
. (2.4)

1The argument used in [32,33] to estimate this scale is to equate the turnover time to the viscous diffusion time.

It is also based on a Reynolds number defined in terms of the energy dissipation rate.
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It has been shown in [27,28] that for n ≥ 1, the weighted time averages of the dimensionless family

Fn,m,d = ν−1L1/αn,m,d‖∇nu‖2m (2.5)

are finite such that2 〈
F

(4−d)αn,m,d
n,m,d

〉
T
<∞ . (2.6)

The brackets 〈·〉T are a time average up to time T > 0. The set of exponents αn,m,d in (2.6)

clearly play a significant role in Navier-Stokes regularity properties3. A series of well known weak

solution results can be recovered by choosing various values of n and m, which all have the same

level of regularity [27]. Increasing m amplifies the larger features in the solution in proportion to

the smaller until m =∞ is reached which corresponds to the maximum. Therefore, adjusting the

value of m acts as a focus control on a telescope that allows us to zoom into different features in

a landscape. The subscript labelling on αn,m,d encodes the nature of the norm of which it is an

exponent : thus (n,m, d) means “n derivatives in L2m in integer-d spatial dimensions”. However,

αn,m,d can be rewritten as

αn,m,d =
2

2(n+ 1)−Dm
, Dm = d/m ,

= αn,1,Dm . (2.7)

The subscripts on αn,1,Dm now suggest that the problem can now be recast into “n derivatives

in L2 on a set, designated as Fm, which has a range of dimensions Dm = d/m”. The range of

dimensions Dm = d/m suggests that Fm is multifractal in character, with a corresponding set of

co-dimensions

Cm = d

(
1− 1

m

)
. (2.8)

Mimicking (2.6), the recasting of αn,m,d into αn,1,Dm suggests that the family of time averages

Xn,Dm(T ) =
〈
F

(4−Dm)αn,1,Dm
n,1,Dm

〉
T
, (2.9)

may be a key set of objects. The Xn,m,Dm are neither necessarily equal to the averages in (2.6) nor

would it be an easy task to prove they are bounded above because there exists no mechanism for

performing analysis on fractal or multifractal domains. Nevertheless, the case n = 1 is an exception

in that it can be bounded because of the cancellation of the factor of (4−Dm) in

[(4−Dm)αn,1,Dm ]n=1 = 2 , 1 ≤ m ≤ ∞ , (2.10)

for every value of 0 ≤ Dm ≤ d. It is this case we consider in the next subsection.

2.2 The three-dimensional case when n = 1

The n = 1 case of (2.9) for d = 3 corresponds, for each m, to a time-averaged energy dissipation

rate εm on the multifractal set Fm. Each εm is defined as

εm = νL−Dm
〈∫

Fm
|∇u|2dV

〉
T

, Dm = 3/m . (2.11)

2The proof of (2.6) in [27] depends heavily on the result in [21]. The case n = 0 is valid only for m > 3.
3It was shown in [27] that to prove full regularity in the d = 3 case a factor of 2αn,m,3 would be needed in the

exponent of (2.6). This result remains elusive.
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Noting that Fm ⊂ T3, (2.11) can be re-written as

εm ≤ νL3−DmL−3

〈∫
T3

|∇u|2dV
〉
T

≤ cL−1−Dmν3Re3 . (2.12)

The Re3 upper bound is derived for generic narrow-band forcing considered by Doering and Foias

[16] where the Reynolds number Re is defined by

Re = UL/ν with U2 = L−3
〈
‖u‖22

〉
T
. (2.13)

(2.12) shows that εmν
−3 can be expressed in terms of a set of inverse lengths η−1

m defined such that

εmν
−3 := η−1−Dm

m (2.14)

leading to

Lη−1
m ≤ cRe

3
1+Dm . (2.15)

(2.15) is a formula4 that appears in Kraichnan [31], but without any identification of the nature

of Fm. The size of the upper bound on Lη−1
m ranges from the standard inverse Kolmogorov bound

Re3/4 when m = 1 to Re3 when m =∞.

2.3 The two-dimensional case

What of the two-dimensional case? Advantage can be taken of the lack of a vortex stretching term

(ω · ∇u = 0) in the vorticity formulation to find the enstrophy dissipation rate [5, 16]

νL−2

〈∫
T2

|∇ω|2dV
〉
T

≤ c ν3L−6Re3 . (2.16)

In a full T2 domain, (2.16) leads to an Re1/2 bound on the set of inverse Kraichnan lengths Lη−1
m,ens.

The equivalent of (2.11) for the enstrophy dissipation rate on Fm is

εm,ens = νL−Dm
〈∫

Fm
|∇ω|2dV

〉
T

, (2.17)

with Dm = 2/m. Then εm,ensν
−3 can be expressed in terms of a set of inverse lengths η−1

m,ens such

that εm,ensν
−3 = η−4−Dm

m,ens , leading to

Lη−1
m,ens ≤ cRe

3
4+Dm , (2.18)

and thus a spread of Re1/2 to Re3/4. In this two-dimensional case Alexakis and Doering [17] derived

a tighter bound of Re2 on the right hand side of (2.16) when the forcing has a single wave-number

or has a constant flux. An amendation of the numerator in (2.18) gives a spread ranging from

Re1/3 to Re1/2, thus implying even less multifractality.

4It was common in the literature of that period to assign a single value to the fractal dimension introduced from

another source, as in [31].
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3 Correspondence with the multifractal model

Kolmogorov’s 1941 theory (K41) of three-dimensional, homogeneous, isotropic turbulence [3] re-

volves around the pth-order velocity structure function Sp defined as

Sp = 〈|u(x + r)− u(x)|p〉stat.av. . (3.1)

The scaling properties of Sp have their origin in the invariance property enjoyed by the incompress-

ible Euler equations under the transformation x′ = λ−1x ; t′ = λh−1t and u = λhu′. The scaling

parameter h can take any value, unlike the Navier-Stokes equations where it must satisfy h = −1.

The invariance property shows that Sp scales as Sp ∼ rhp. As explained in [3], the axioms of K41

lead to h = 1
3
, which is consistent with the “four-fifths law” S3 = − 4

5
εr. The problem with the

result Sp ∼ rp/3 is that experimental data deviate from the linear in p scaling but instead lie on

a concave curve ζp below the line 1
3
p. The multifractal model of Parisi and Frisch [2, 3] adapted

the K41 formalism by relaxing the requirement that h = 1
3

by insisting that the energy dissipation

rate is invariant in h only in an average sense. They achieved this by introducing the probability

P (h) ∼ r3−D(h) of observing a given scaling exponent h at the scale r. Each value of h belongs to

a given fractal set of dimension D(h). This procedure produces the result

Sp ∼ rζp where ζp = min
h

[hp+ 3−D(h)] . (3.2)

This must be constrained by the four-fifths law which requires ζ3 = 1, thus leading to the inequalities

for D(h) and the co-dimension C(h) (which sum to the spatial dimension)

D(h) ≤ 3h+ 2 ⇒ C(h) ≥ 1− 3h . (3.3)

Given that K41 and the MFM models revolve around the flow being homogeneous and isotropic,

any comparison with results from the Navier-Stokes equations will likely only be valid when the

flow has reached a fully turbulent state : i.e. when T is sufficiently large.

To make the two theories touch, it is natural to suggest a correspondence between Dm and

D(h) and Cm and C(h), which leads to a simple inequality relating m and h

3

m
≤ 2 + 3h , (3.4)

from which we find h ≥ hmin with hmin = m−1 − 2
3
. The two opposite limits m → 1 and m → ∞

give

− 2
3
≤ hmin ≤ 1

3
, (3.5)

which is precisely the range found in [36].

A more modern version of the multifractal model uses the theory of large deviations to re-

express P (h) as P (h) ∼ rC(h), where C(h) is the multifractal spectrum [3, 6, 35]. C(h) therefore

plays the role as the co-dimension. In the theory of large deviations it is possible that C(h) ≥ 3,

the domain dimension, corresponding to D(h) < 0, but only with an infinitesimal probability. This

would correspond to m < 0, which must be excluded here. The exponent 3/(1 + Dm) in (2.15) is

bounded below by
3

1 + Dm
≥ 1

1 + h
. (3.6)
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The left hand side of (3.6) is derived directly from the Navier-Stokes equations, while the right

hand side comes from the MFM and can be recognized as the Paladin-Vulpiani inverse dissipation

scale η−1
PV defined in (1.1). Paladin and Vulpiani [32] treated (3.3) as an equality, which would

change the ≥ in (3.6) to equality. Thus we see that the Paladin-Vulpiani scale appears naturally

in this formulation.

Finally, given that there exists a continuum of sub-Kolmogorov scales from the n = 1 case

alone, the role of higher derivatives (n > 1) in the Xn,Dm in (2.9) is an open question and one that

is relevant to the regularity problem. Dubrulle and Gibbon [36] have shown that the lower bound

on C(h) ≥ 1 − 3h holds for all values of n, meaning that one can do no better than the result

given by the four-fifths law at n = 1. In (3.5), h ≥ − 2
3

bounds h away from the dangerous value

of h = −1, where real singularities can occur [3, 35–37]. Recent work in [38, 39] has characterized

small structures using values of h.
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