L

PHYSICA &

ELSEVIER Physica D 166 (2002) 17-28

www.elsevier.com/locate/physd

A guaternionic structure in the three-dimensional Euler
and ideal magneto-hydrodynamics equations

J.D. Gibbon

Department of Mathematics, Imperial College of Science, Technology and Medicine, London SW7 2BZ, UK

Received 6 September 2001; received in revised form 20 February 2002; accepted 14 March 2002
Communicated by A.C. Newell

Abstract

By considering the three-dimensional incompressible Euler equations, a 4-géstoonstructed out of a combination of
scalar and vector products of the vorticityand the vortex stretching vecter- Vu = Sw. The evolution equation foy
can then be cast naturally into a quaternionic Riccati equation. This is easily transformed into a quaternionic zero-eigenvalue
Schrddinger equation whose potential depends on the Hessian matrix of the pressure. With minor modifications, this system
can alternatively be written in complex notation. An infinite set of solutions of scalar zero-eigenvalue Schrodinger equations
has been found by Adler and Moser, which are discussed in the context of the present problem. Similarly, when the equations
for ideal magneto-hydrodynamics (MHD) are written in Elsasser variables, a pair of 4-veétare governed by coupled
quaternionic Riccati equations. © 2002 Elsevier Science B.V. All rights reserved.

PACS:02.40—k; 47.32.Cc; 47.27.Gs; 47.6ka; 47.90+a

Keywords:Euler; Quaternions; Riccati; Ideal MHD; Zero-eigenvalue Schrodinger

1. Quaternionsand thethree-dimensional Euler equations
1.1. Introduction

Quaternions are 4-vectors whose multiplication rules are governed by a simple non-commutative division algebra.
The concept was originally invented by Hamilton to generalize complex numb&fs the purpose of this paper
is to demonstrate that the three-dimensional incompressible Euler equations have a natural quaternionic Riccati
structure in the dependent variable. To convince the reader that this structure is robust and no accident, it is shown in
Section 2that the more complicated equations for ideal magneto-hydrodynamics (MHD) can also be written in an
equivalent quaternionic form. Roubtsov and Roulstfin2] have recently shown that a quaternionic formulation,
different from the one in this paper, can be made for two-dimensional nearly geostrophic flows whose origin lies
in balanced models of the atmosphere. They have also shown that a Kahler structure can be associated with this.
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The existence of quaternionic structures in the Euler equations makes it tempting to speculate that the advance:
that have been made in the geometry of 4-manifolds in recent years might be applicable to the long enduring and
puzzling phenomena of fluid and MHD turbulence.

1.2. A relation between the strain matrix and the pressure Hessian

We begin this section by writing down the three-dimensional Euler equations that relate the velocity vector
u(x,y,z t)tothe pressur@(x, y, z, t)

Du

— =-V 1

D p 1)
together with the incompressiblity condition div= 0. The material derivative i(l) is defined as

D d

— = — - V. 2

Dr 0t tu &)
Eq. (1)can be re-formulated in terms of the vorticity vecioe= curlu

D

D—?:w-Vu:Sw. A3)
Theijth element of the strain matrixin (3) is given by

Sij = 3 i j +uji) (4)

which constitutes the symmetric part of the velocity gradient mafrix Let us begin by defining the scalaand
the 3-vectory as (seq3,4])

®-Sw w X S®
a(x,t) = PP x(x,t) =

®)

® o
To find the evolution 08w = w - Vu requires a result, generally credited to Efflin geophysical fluid dynamics,
that says that il» evolves according t(3) then any arbitrary scalat satisfies

D Du

—(@w-Vu)=w-V|{— ). 6

2 @ Vi) ( O ) (6)
Consequently, ifx is a material constant thaenm - Vu must also be a material constant. Depending on phow
chosen, the scalar quantity: V. is generally referred to as the potential vortiditfor our purposes, however, let
u be chosen to be thigh component of the velocity field = «;. Because this evolves according(19, the vortex
stretching vectow - Vu = Sw obeys

DEt(w -Vu) = —Po, ()

whereP = {p jj} is the Hessian matrix of the pressure. The form of the result sta{@) ¢éan be found if13] (see
also[12]) Ohkitani also pointed out that must satisfy

D%w
D2 + Pw =0. (8)

1 To understand the meaning of the concept of potential vorticity and its uses in geophysical fluid dynamics see the review by Hoskins et al.
[6]. Two recent papers by Viudé¢Z,8] contain a discussion of the history of this result, its connection with the Cauchy formula, and the work
of Ertel[5] and Rossby9]. Viudez has suggested that Beltrdif] introduced the idea of potential vorticity in a different vectorial form as far
back as 1871, although the commutation form{@lawas first written down by Ertdb] (see alsd11,12)).



J.D. Gibbon/Physica D 166 (2002) 17-28 19

The apparent linearity dB) is illusory because the dependencePobn the pressure means that it is connected to
o through the Poisson equation

—Ap =u,-,juj,,-, (9)
which arises through application of the incompressibility conditiorudiv 0. Eq. (9)can be re-expressed as

TrP =-Trs?+ 3o? (10)
illustrating the relation betweeR, @ andS. While it is not obvious how to reconstruetor u from a knowledge of
a andy there is a more natural relationship between this latter pair and the spectsuii Shas exact eigenvalues
A3 < A2 < A1 then the incompressibility condition insists thatST& A1 + A2 + A3 = 0. Hencehy > 0 andiz < 0

with A of variable sign. From its definition ifb), « is a Rayleigh’s quotient estimate for an eigenvalug,afhich
is bounded within the spectrum 6f such thatz < « < 11. Moreover, the combination

s o S0 ®-S%

a+ x° = > = (112)
|@| @ ®
is bounded by
12 < o® + x? < max(A], [rs[?). (12)

1.3. Quaternionic formulation

The next task is to find evolution equations éoandy . From(3) and(7) comes the simple pair of equatiojs}

2 —
EZX -« _Olpa Dt —_ZXO‘—Xpa (13)
wherea, andy , are defined in terms of the Hessian mathix
®-Pw ® X Pw
ap(xat):—v Xp(x’t)z . (14)
[ORN0] [ORN0)

The form of the right-hand sides of the two equationg18) suggests an algebraic structureRfi based on
quaternions. Let unit 4-vectors Be= (1,0,0,0)7,i = (0,1,0,0)T, j = (0,0,1,0)T andk = (0, 0,0, 1)T with
multiplication rules

mel=1m=1 m=11i,j,k, (15)
mm=-1, m=i,j,k (16)
andi ® j = —j ®i =k, ..., cyclically. Based on these we can define 4-vecioasd¢ , as

=(;) o) @
X Xp

and the above rules mean that for any two 4-vectgrand¢,

o102 — X1 X2 )
. (18)

£1®¢&r = (
a1xXz t+o2x1+ X1 X X2

It is obvious why this process is non-commutative. The conjugate- («, —x)" obeys the relatiog ® ¢* =
(«?+ x?)1. Hence the vectar represents a point that must lie within the shell between the two concentric 4-spheres
of radii |A2| and maxi1, |A3]}.



20 J.D. Gibbon / Physica D 166 (2002) 17-28

With the rules given ii§18), and the labelling of the eigenvaluesdnd P, respectively, as; (x, t) andkgp) (x,1),
the equations fo andy in (13) can formally be expressed in the following theorem.

Theorem 1. The 4-vectorg for the three-dimensional incompressible Euler equations evolves according to the
guaternionic Riccati equation
D¢

subject to the relation between the exact eigenvalugsanfd P

3
23 02+ ") = o (20)
i=1

Remark. Note that the quaternionic structure ([(h9) lies in the dependentariable ¢ not in the independent
variables. The Riccati structure {f9) can be linearized by introducing the 4-vectorsuch that

Dw
=— vl 21
(=5 ® (21)
Unlike 3-vectors, these 4-vectors have inverseswsd exists. Moreover, while they are not multiplicatively
commutative, they are associative. These properties can be used to show that
2

D-w

This is a zero-eigenvalue quaternionic Schrodinger equation for the 4-wectath ¢ ,(x, 7) as a potential.

Proof. Eq. (19)is a re-expression dfL3) in quaternionic form using the rules (@8). The relation betweer®, »
andsS expressed i1f10) means that , is not in itself completely independent of Eq. (10)can be re-written in
terms of the eigenvalues 6fand P, respectively, as i20). O

1.4. An alternative complex formulation

There is a close connection between complex numbers and quaternions, the latter being a generalization of the
former. Itis therefore natural to ask whether the equatiofsdjcan be re-formulated in terms of complex variables.
Define

{e=a+ix. (23)
The evolution of scalagy = |x| can be found by dotting thg equation in(13) with x to obtain

Dx ,

D T XeT K (24)

wherey, = X - x ,- Using(23), it is easily shown that. obeys the complex Riccati equation that is the obvious
parallel toEg. (19)

Di . 2, .0
Dle | s2 4 p@ 2
o T+ =0 (25)

with

t$ =ap+ifp. (26)
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The exact linearization of this Riccati equation is found from the substitution

1D
=22 (27)
v Dt
giving the complex zero eigenvalue scalar Schrédinger problem
D2y .
oz * (% =0 (28)

with a potential—g,(,"). Some information on the relative alignments@afSw and Pw has been lost in solely
using the lengthg and j, and not the full vectors but the merit of this approach is that it reduces the problem
from four to two components but still gives a zero-eigenvalue Schrédinger equation as before. More will be said
about this class of problems Bection 3where an exact class of solutions due to Adler and M@k&f will be

discussed.

1.5. A physical interpretation

The components df, consisting of the scalar and the 3-vectog, have a physical interpretation. In addition to
a being an estimate for an eigenvalueSfit is also related to the evolution of the scalar vorticitypy

% =aw. (29)
Herea plays the role of the vorticity stretching rate: there will be some parts of the flow wherd, indicating
vortex compression, and other parts where 0, indicating vortex stretching. In this context, Constafitid] has
written down a Biot—Savart-type integral formula that relaigs a prism of vectors that characterize the relative
alignment of neighbouring vortex lines.

x has an association with the anglbetweenw andSw such that

tang = X. (30)

o

Whereas, in generat, lies only within the spectrum df, it is an exact eigenvalue whenaligns (anti-aligns) with

one of the eigenvectors ¢f, in which casexy = 0 (;r). Turbulent vorticity fields tend to be dominated by vortex
tube-like and sheet-like featurdd 6,17} see also references|it8]). Idealized, straight vortex tubes or shear layers
would therefore be examples of the cgse= 0. In such a casé = «1 and the system reduces to a problem in

the scalar variable alone (sedg19]). The full 4-vector¢, and therefore its natural quaternionic structure, only
becomes relevant when= 0. Becausg gives the degree of misalignment betwaeand the eigenvectors 6f it

is therefore some measure of the degree of local misalignment that occurs when tubes bend, knot and tangle, when
the topology undergoes significant changes or when potentially singular behaviour starts to fef@pThe

tendency fow to align with certain eigenvectors 6f known as preferential alignment, has been one of the main
themes of computational work in both inviscid and viscous turbulence within the last 15y6&%-24]

2. A quaternionic structurefor ideal incompressible MHD

The quaternionic relationship expressed meorem Ifor the 3D Euler equations is degenerate in that a similar
complex structure exists to the oneRf . The purpose of this section is to show that the equations of ideal
incompressible MHD have a similar quaternionic structure in Elsasser variables but in a non-degenerate form. The
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equations of ideal incompressible MHD couple the inviscid fluid to a magneticBield

Du
— =B-VB-Vp, 31
D P (31)
DB
— =B -Vu, (32)
Dt

together with diw = 0 and divB = 0. The pressure in (31) is the combinatiorp = ps + (1/2) B2, whereps is
the fluid pressure. Elsasser variables are defined by combiningahd B fields in at--combination

vF=u+B. (33)

The existence of two velocitias® means that there are two material derivatives

D 9
= —4+0v--V. 34
Dt ~ 9t (34)

In terms of thesg(31) and (32)kan be rewritten as

DT
Dt

=—-Vp (35)

with the magnetic fieldB satisfying
D*B
Dt

=B Vot (36)

together with diw* = 0. Defining thet-stretching vectors i(36) as
ot =B. Vvt (37)

allows us to define

. _B-o*
B-B’

+
+_ B xo

B-B

o X (38)
having used Moffatt’s analogy between the vecwrand B [25,26] Note that the numerators aft, x* auto-
matically include the magnetic gradient matax; along with the velocity gradient matrix_; within v; ;. Thea®
clearly play the role of scalar magnetic field stretching rates
DB
= o™ B. 39
o, =% (39)

It is also necessary, as 8ection 1to define equivalent variables based upon the Hessian nfatrix

B.-PB B x PB
o _ B PB Gy _BxPB 40
=B ' T BB (40)

As in (17), we define the 4-vectoks® and¢ ™™ as follows:

+ (m)
+_ [ m _ [ ¢

The main result of this section is the following.
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Theorem 2. The 4-vectorg® satisfy

:Fé-:t
o teTesT e =0 (42)
subject to the Poisson relation
TrP=— Zv”“ (43)

Remark. Despite the fact that there are now two material derivatives, a linearization can be achieved by introducing
the 4-vectowr such that

D*w % w1 DF D*w

:l:— JE—
C_Dt :>Dt D¢

+¢,0% =0. (44)

Proof. The first step in the proofis to calculate the ideal MHD equivalent of the Ertel-Ohkitani reléfipasd (8)
This is found in the following subsidiary lemma.

Lemmal. o* are related toP and B by

D*¢F
D‘: — _PB, (45)
and B satisfies
D* D¥
(EE”’)B =0 ()

Proof. The+-material derivatives of ¥ in terms of componenis™ = B ,vfj are

D*o;" _ D*B; o (DHf - - o (D*vf
D; = D vi’j+ j8xj D1 ka]v —(a vj—ak zk)+B ox, B, = —B;pij.

(47)
The proof of(46) follows immediately.
The second step of the proof is to find the evolutiondfandx *. The materiatr-derivatives otx* are given by
DFfa* oF.o*
Dr BB
The following vector identity is useful:

— 20Fa®t — a;m). (48)

(B-B)(oT - 6T)=BxoF) - BxoT)+B-c5)(B 6T (49)
which can be rewritten as
.6F
GB.‘; =X xT Hata (50)
This transformg48) into
DFa®
* =x+-x_—a+oz_—a§7m). (51)

Dt
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For the evolution of¢*, we find that

DFx* oF xo®
— _ oy Fyt _ ,m)
o~ BB XX X (52)

To handle the first term on the RHS @2) it is desirable to express this in terms of the three vegtdrsy ~ and
xT x x~.lItis easy to show from the definition gf* in (38)that

ocf=a™B—B x x* (53)
and so
+ —
% =—a xt+atx T+ BxxHxBxx)B 2 (54)

Now, B andy™ x x~ are orthogonal to botlg ™ andx ~ sox ™ x x~ can be written ag ™ x x = = AoB, where
Ao is a scalar. The cross product in the third term on the RHS4¥can be rewritten as

(Bx xH)x (Bxx)=B[B-(x" xx)=B*x"xx"), (55)
and so\g can be identified as
ro=B72B-(x" x x). (56)
Using this in(54) and then in(52) we find
DT x*
Dt

The third and final step in the theorem proof is accomplished by observing(fk8jrthat the right-hand sides
of equations (51) and (5®an be written a$42). The trace constraind3) comes from the two divergence-free
conditions diw® = 0 applied acrosg35). O

=@ xT+atx) —xFxxH—x. (57)

3. A complex Schrddinger equation and the work of Adler and M oser

In Section 1we introduced three different zero-eigenvalue Schroédinger equatiorS matrix system involving
the 3-vectomw in (8), a quaternionic system for the 4-vectbrin (21) and a complex scalar system forin (28).
All of these contain slightly different information but it is convenient to choose the complex zero eigenvalue
scalar Schrodinger proble(28)
D2y ,
o+ =0 (58)
with a potential—;l(,c), and look at it in Lagrangian variables using fluid particles as the basis of the co-ordinate
system. A convenient system for these partiqlgs &», £3) is given by their Eulerian position at some chosen
instant (sayp) such that = (&1, &, £3) = (x, y, z). Hence we have(&,1) = x(&,1), u2(&,t) = y(&,t) and
uz(&,1) = z(&,t). Let us therefore writé/ = —;,(f) (&, r) and the zero-eigenvalue Schrodingguation (58pas

—y + Uy =0, (59)

where the double-dot refers to two Lagrangian time derivatives.
Given a complex potentidl () we seek to solve foyr and hence fot.. In any of these cases this is only half the
solution; the most serious difficulty lies in determining the fluid particle trajectories that correspond to this formal
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set of solutions. As already discussedSection 1 the Hessian matri® is not independent of the other variables
in the problemEg. (10)gives information only on the diagonal but not the off-diagonal elemengs dhe particle
paths corresponding to the set of solutions under discussion must be compatible with this and it is here where the
problem still remains open. It is possible that there may be solutiosffor which this set is empty or is of
measure zero.

Having established that solvireuation (59)s only half the issue, nevertheless this Schrodinger equation has
some interesting solutions which are worth discussing. It is well known that solutions of the KdV equation

Ur — GUUX + Uxxx = 0 (60)

for realu(x, r) and with boundary conditions — 0 as|x| — oo, are associated with the isospectral solutions of a
Schrédinger equation
d?y

Cdx2
in which the KdV dependent variablgx, r) plays the role of the potential arfdithe constant energy eigenvalue.
Soliton solutions of60) are associated with the discrete negative energy spectrum of the Schrédinger operator in
(61) and the continuous spectrum is associated with the positive energy eigenvalues. Adler and #]abawed
that solutions rational im andz correspond to the case when= 0. For the KdV equation expressed in its traditional
form in (60), the independent variable in the Schrddinger equatigfinis x, with r held as a parameter, whereas
in our Lagragian problemis now the independent variable. Adler and Mdde proved the following result (with
t andx exchanged) for the zero eigenvalue sys{é8), which can be generalized to the complex domain.

+uy = Ey (61)

Theorem 3 (Adler and Mosef14]). For potentialsU (¢) in (59) that take the form

32
Uk = —Zﬁ In Qk, (62)
the eigenfunctiong satisfy
Ok+1
Y= (63)
k

where the infinite set of polynomidsof degree:;, = (1/2)k(k+1) can be generated from the nonlinear Wronskian
recurrence relation

Ok 10k-1 — Ok+16k—1 = (2K + 1)H7 (64)

starting fromfo(¢) = 1,601(¢) = t + 11.

Proof. The proof is virtually identical to that in Adler and Mogé#] whereU € R, except that here we allow

to be complex. Summarising the main points, it is based around an idea that involves identifying eigenfunctions of
the zero-eigenvalue Sturm—Liouville probldB®). If v is an eigenfunction of59) with potentialU theny —1 is

also an eigenfunction with a potentidl provided that

. 82In
U-U=-2 1//,
912

(65)

which is obviously true. One identifies the potential= U, with the eigenfunctiony; andU = U1 with the
eigenfunctiontpk‘l. If this identification is correct then there must be another eigenfunqtt;jg]q associated with
Uy in addition toy. To turn this into an induction proof, one assumes thabghés, .. ., 6; have been found via
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(64) and therefore thg are available throug(63). If v and wk__ll are linearly independent eigenfunctions then
their Wronskian must be a non-vanishing constant

Wivi: vl =, (66)
which becomes

V-1 + V-1 = ¥y (67)
In addition, this relation betweepy andx//k__ll must be consistent wittb9) which insists that they must satisfy

e Wiy, (69)

Yk Vi

where the double-dot on the right-hand side refers to two time derivatives on the inverse function inside the round
brackets. Upon re-arrangement and integration this also gives ef@c}pettinggr = 6x+1/6k gives the recursion
formula (64) with the normalization constant {{®6) taken such that = 2k + 1. To complete the induction one
calculates

821n Y 821n O,y 821n O 11
k1= Uy o2 o2 572 (69)
which completes the proof. The theorem is valid on the complex domain by simply allowing thée complex
constants. 0

The recursion relatio(64) will generate any; of any desired order. The first four of these polynomials are
Bo(t) = 1, 01(t) = t + 11, 02(1) = 13 + 1, 03(1) = 1® + 5to1® + 13t — 512, (70)

where ther; are arbitrary complex constants. Adler and Moser have also shown that these polynomials are isobaric;
i.e., they have the homogeneity property

0 nt1, A3to, oo A ) = MO (11, Tos - L T, (71)
wheren, = (1/2)k(k + 1) is the degree. Moreover, they have also shown that a generating function exists for these
polynomials. With &-label, thez ) in (27) can be expressed as

o 9 5 (6
6 =2 (ny) = —n (%) 72)

and the real and imaginary parts of this giveand x;. The ‘solutions’ given above mean that tiig expressed
through they;, correspond to the class of potentialg given in(62).

As discussed irBection land the beginning of this section, the particle paths corresponding to sol(@@ns
and(63) must be compatible with the traeguation (10jnd it is here where the problem still remains open; the
constants; would need to be calculated in terms of particle path positions. As far as singularities in these solutions
are concerned, they must lie off the real axis unlesglaee taken to be real constants. It is also possible that this
infinite set of solutions can be generalized to the quaternionic Schrédingefl@secausar has an inverse. In
this case the; would be 4-vectors.

4. Conclusion

The two conspicuous open questions of mathematical fluid dynamics; namely, whether the Navier—Stokes equa-
tions are regulg27-31]and whether the three-dimensional Euler equations develop afinite time singdlayg)],
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so far, have not completely yielded to methods of analysis, although great progress has been made. Attempts have
been made to understand the dynamics of the vorticity field by studying the direction of vdft&@@} this par-

ticularly paper is one variation on that theme. The natural quaternionic structireeofem 1ies in the interplay

between the 4-vectogsand¢ ,, which are associated with the relative alignmenb efith eigenvectors of the strain

matrix S and the Hessian matrix of the press#rerespectively. While this geometric formulation is not complete

in that the independent variables need also to be brought into this formulation, nevertheless the problem has been
cast in the form of a constrained (by incompressibility) Lagrangian flow on a quaternionic manifold. The Euler
problem is degenerate in that the structur&fnis almost identical to that if®2, which is not the case for the ideal

MHD problem ofSection 3where no degeneracy occurs. There, the formulation imthege™ variables is messy

but is resolved into a the simple and elegant form in terms of the 4-vegtoos Theorem 2

Acknowledgements

Part of this work was done at the ITP Santa Barbara Hydrodynamic Turbulence Workshop (April-May 2000)
and at RIMS, University of Kyoto (1 July—30 September 2000), where the author held a Visiting Professorship. He
would like to thank his respective hosts K. Sreenivasan and Koji Ohkitani for their hospitality during these two
periods. The author would also like to firstly acknowledge helpful conversations with Charles Doering, Thanasis
Fokas, Robert Kerr, Koji Ohkitani and Trevor Stuart and secondly some helpful and constructive comments by an
anonymous referee.

References

[1] V.N. Roubtsov, I. Roulstone, Examples of quaternionic and Kahler structures in Hamiltonian models of nearly geostrophic flow, J. Phys.
A 30 (1997) L63-L68.
[2] V.N. Roubtsov, I. Roulstone, Holomorphic structures in hydrodynamical models of nearly geostrophic flow, Proc. Roy. Soc. London 457
(2001) 1519-1531.
[3] B. Galanti, J.D. Gibbon, M. Heritage, Vorticity alignment results for the 3D Euler and Navier—Stokes equations, Nonlinearity 10 (1997)
1675-1695.
[4] J.D. Gibbon, B. Galanti, R. Kerr, Stretching and compression of vorticity in the 3D Euler, in: J.C.R. Hunt, J.C. Vassilicos (Eds.), Turbulence
Structure and Vortex Dynamics, Cambridge University Press, Cambridge, 2000, pp. 23-34.
[5] H. Ertel, Ein Neuer Hydrodynamischer Wirbelsatz, Met. Z. 59 (1942) 271-281.
[6] B.J. Hoskins, M.E. Mclintyre, A.W. Robertson, On the use and significance of isentropic potential vorticity maps, Quart. J. Roy. Met. Soc.
111 (1985) 877-946.
[7] A. Viudez, On the relation between Beltrami's material vorticity and Rossby—Ertel’s potential, J. Atmos. Sci. (2001), in press.
[8] A. Viudez, On Ertel’s potential vorticity theorem, On the impermeability theorem for potential vorticity, J. Atmos. Sci. 56 (1999) 507-516.
[9] C.-G. Rosshy, Planetary flow patterns in the atmosphere, Quart. J. Roy. Met. Soc. 66 (2) 68—-87.
[10] E. Beltrami, Sui principii fondamentali dell’ idrodinamica razionali, Memorie della Accademia delle Scienze dell'Istituto di Bologna 1
(1871) 431-476.
[11] C. Truesdell, R.A. Toupin, in: S. Flugge (Ed.), Classical Field Theories, Encyclopaedia of Physics, Vol. lll, No. 1, Springer, Berlin, 1960.
[12] K. Ohkitani, S. Kishiba, Nonlocal nature of vortex stretching in an inviscid fluid, Phys. $iid (1995) 411.
[13] K. Ohkitani, Eigenvalue problems in three-dimensional Euler flows, Phys.d=Aitsl (1993) 2570.
[14] M. Adler, J. Moser, On a class of polynomials connected with the Korteweg de Vries equation, Commun. Math. Phys. 61 (1978) 1-30.
[15] P. Constantin, Geometric statistics in turbulence, SIAM Rev. 36 (1994) 73.
[16] A. Vincent, M. Meneguzzi, The dynamics of vorticity tubes of homogeneous turbulence, J. Fluid Mech. 225 (1994) 245-254.
[17] R. Kerr, Evidence for a singularity of the 3-dimensional, incompressible Euler equations, Phys A§1{d993) 1725.
[18] U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov, Cambridge University Press, Cambridge, 1995.
[19] P. Vieillefosse, Internal motion of a small element of fluid in an inviscid flow, Physica A 125 (1984) 837.
[20] P. Constantin, Ch. Fefferman, A. Majda, Geometric constraints on potentially singular solutions for the 3D Euler equations, Commun.
Partial Diff. Egs. 21 (1996) 559-571.
[21] W. Ashurst, W. Kerstein, R. Kerr, C. Gibson, Alignment of vorticity and scalar gradient with strain rate in simulated Navier—Stokes
turbulence, Phys. Fluids 30 (1987) 2343.



28 J.D. Gibbon / Physica D 166 (2002) 17-28

[22] J. Jiminez, Kinematic alignments in turbulent flows, Phys. Hd} (1992) 652—-654.

[23] A. Tsinober, E. Kit, T. Dracos, Experimental investigation of the field of velocity gradients in turbulent flows, J. Fluid Mech. 242 (1992)
169.

[24] A. Tsinober, L. Shtilman, A. Sinyavskii, H. Vaisburd, Vortex stretching and enstrophy generation in numerical and laboratory turbulence,
in: M. Meneguzzi, A. Pouquet, P.-L. Sulem (Eds.), Small Scale Structures in Three-dimensional Hydro- and MHD Turbulence, Vol. 462,
Lecture Notes in Physics, Springer, Berlin, 1995, p. 17.

[25] H.K. Moffatt, Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology, J. Fluid Mech. 159 (1985) 359-378.

[26] H.K. Moffatt, Energy spectrum of a knotted magnetic flux tube, Nature 347 (1990) 367-369.

[27] J. Leray, Essai sur le mouvement d’'un liquide visquex emplissant I'espace, Acta Math. 63 (1934) 193-248.

[28] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, Vol. 68, Springer, New
York, 1988.

[29] P. Constantin, C. Foias, Navier—Stokes Equations, University of Chicago Press, Chicago, 1988.

[30] L. Caffarelli, R. Kohn, L. Nirenberg, Commun. Pure Appl. Math. 35 (1982) 771.

[31] C.R. Doering, J.D. Gibbon, Applied analysis of the Navier—Stokes equations, Cambridge University Press, Cambridge, 1995.



	A quaternionic structure in the three-dimensional Euler and ideal magneto-hydrodynamics equations
	Quaternions and the three-dimensional Euler equations
	Introduction
	A relation between the strain matrix and the pressure Hessian
	Quaternionic formulation
	An alternative complex formulation
	A physical interpretation

	A quaternionic structure for ideal incompressible MHD
	A complex Schrödinger equation and the work of Adler and Moser
	Conclusion
	Acknowledgements
	References


