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Abstract

By considering the three-dimensional incompressible Euler equations, a 4-vectorζ is constructed out of a combination of
scalar and vector products of the vorticityω and the vortex stretching vectorω · ∇u = Sω. The evolution equation forζ
can then be cast naturally into a quaternionic Riccati equation. This is easily transformed into a quaternionic zero-eigenvalue
Schrödinger equation whose potential depends on the Hessian matrix of the pressure. With minor modifications, this system
can alternatively be written in complex notation. An infinite set of solutions of scalar zero-eigenvalue Schrödinger equations
has been found by Adler and Moser, which are discussed in the context of the present problem. Similarly, when the equations
for ideal magneto-hydrodynamics (MHD) are written in Elsasser variables, a pair of 4-vectorsζ± are governed by coupled
quaternionic Riccati equations. © 2002 Elsevier Science B.V. All rights reserved.

PACS:02.40.−k; 47.32.Cc; 47.27.Gs; 47.65.+a; 47.90.+a
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1. Quaternions and the three-dimensional Euler equations

1.1. Introduction

Quaternions are 4-vectors whose multiplication rules are governed by a simple non-commutative division algebra.
The concept was originally invented by Hamilton to generalize complex numbers toR

4. The purpose of this paper
is to demonstrate that the three-dimensional incompressible Euler equations have a natural quaternionic Riccati
structure in the dependent variable. To convince the reader that this structure is robust and no accident, it is shown in
Section 2that the more complicated equations for ideal magneto-hydrodynamics (MHD) can also be written in an
equivalent quaternionic form. Roubtsov and Roulstone[1,2] have recently shown that a quaternionic formulation,
different from the one in this paper, can be made for two-dimensional nearly geostrophic flows whose origin lies
in balanced models of the atmosphere. They have also shown that a Kähler structure can be associated with this.
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The existence of quaternionic structures in the Euler equations makes it tempting to speculate that the advances
that have been made in the geometry of 4-manifolds in recent years might be applicable to the long enduring and
puzzling phenomena of fluid and MHD turbulence.

1.2. A relation between the strain matrix and the pressure Hessian

We begin this section by writing down the three-dimensional Euler equations that relate the velocity vector
u(x, y, z, t) to the pressurep(x, y, z, t)

Du

Dt
= −∇p (1)

together with the incompressiblity condition divu = 0. The material derivative in(1) is defined as

D

Dt
= ∂

∂t
+ u · ∇. (2)

Eq. (1)can be re-formulated in terms of the vorticity vectorω = curlu

Dω

Dt
= ω · ∇u = Sω. (3)

The ij th element of the strain matrixS in (3) is given by

Sij = 1
2(ui,j + uj,i) (4)

which constitutes the symmetric part of the velocity gradient matrixui,j . Let us begin by defining the scalarα and
the 3-vectorχ as (see[3,4])

α(x, t) = ω · Sω
ω · ω

, χ(x, t) = ω × Sω
ω · ω

. (5)

To find the evolution ofSω = ω ·∇u requires a result, generally credited to Ertel[5] in geophysical fluid dynamics,
that says that ifω evolves according to(3) then any arbitrary scalarµ satisfies

D

Dt
(ω · ∇µ) = ω · ∇

(
Dµ

Dt

)
. (6)

Consequently, ifµ is a material constant thenω · ∇µ must also be a material constant. Depending on howµ is
chosen, the scalar quantityω · ∇µ is generally referred to as the potential vorticity.1 For our purposes, however, let
µ be chosen to be theith component of the velocity fieldµ = ui . Because this evolves according to(1), the vortex
stretching vectorω · ∇u = Sω obeys

D

Dt
(ω · ∇u) = −Pω, (7)

whereP = {p,ij } is the Hessian matrix of the pressure. The form of the result stated in(7) can be found in[13] (see
also[12]) Ohkitani also pointed out thatω must satisfy

D2ω

Dt2
+ Pω = 0. (8)

1 To understand the meaning of the concept of potential vorticity and its uses in geophysical fluid dynamics see the review by Hoskins et al.
[6]. Two recent papers by Viudez[7,8] contain a discussion of the history of this result, its connection with the Cauchy formula, and the work
of Ertel [5] and Rossby[9]. Viudez has suggested that Beltrami[10] introduced the idea of potential vorticity in a different vectorial form as far
back as 1871, although the commutation formula(6) was first written down by Ertel[5] (see also[11,12]).
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The apparent linearity of(8) is illusory because the dependence ofP on the pressure means that it is connected to
ω through the Poisson equation

−�p = ui,j uj,i , (9)

which arises through application of the incompressibility condition divu = 0. Eq. (9)can be re-expressed as

Tr P = −Tr S2 + 1
2ω

2, (10)

illustrating the relation betweenP , ω andS. While it is not obvious how to reconstructω or u from a knowledge of
α andχ there is a more natural relationship between this latter pair and the spectrum ofS. If S has exact eigenvalues
λ3 ≤ λ2 ≤ λ1 then the incompressibility condition insists that TrS = λ1 + λ2 + λ3 = 0. Henceλ1 ≥ 0 andλ3 ≤ 0
with λ2 of variable sign. From its definition in(5), α is a Rayleigh’s quotient estimate for an eigenvalue ofS, which
is bounded within the spectrum ofS, such thatλ3 ≤ α ≤ λ1. Moreover, the combination

α2 + χ2 = |Sω|2
|ω|2 = ω · S2ω

ω · ω
(11)

is bounded by

|λ2|2 ≤ α2 + χ2 ≤ max{λ2
1, |λ3|2}. (12)

1.3. Quaternionic formulation

The next task is to find evolution equations forα andχ . From(3) and(7) comes the simple pair of equations[3]

Dα

Dt
= χ2 − α2 − αp, Dχ

Dt
= −2χα − χp, (13)

whereαp andχp are defined in terms of the Hessian matrixP

αp(x, t) = ω · Pω

ω · ω
, χp(x, t) = ω × Pω

ω · ω
. (14)

The form of the right-hand sides of the two equations in(13) suggests an algebraic structure inR4 based on
quaternions. Let unit 4-vectors be1 = (1,0,0,0)T, i = (0,1,0,0)T, j = (0,0,1,0)T andk = (0,0,0,1)T with
multiplication rules

m ⊗ 1 = 1 ⊗ m = 1, m = 1, i, j , k, (15)

m ⊗ m = −1, m = i, j , k (16)

andi ⊗ j = −j ⊗ i = k, . . . , cyclically. Based on these we can define 4-vectorsζ andζp as

ζ =
(
α

χ

)
, ζp =

(
αp

χp

)
(17)

and the above rules mean that for any two 4-vectorsζ 1 andζ 2

ζ 1 ⊗ ζ 2 =
(

α1α2 − χ1 · χ2

α1χ2 + α2χ1 + χ1 × χ2

)
. (18)

It is obvious why this process is non-commutative. The conjugateζ ∗ = (α,−χ)T obeys the relationζ ⊗ ζ ∗ =
(α2+χ2)1. Hence the vectorζ represents a point that must lie within the shell between the two concentric 4-spheres
of radii |λ2| and max{λ1, |λ3|}.
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With the rules given in(18), and the labelling of the eigenvalues ofS andP , respectively, asλi(x, t) andλ(p)i (x, t),
the equations forα andχ in (13)can formally be expressed in the following theorem.

Theorem 1. The 4-vectorζ for the three-dimensional incompressible Euler equations evolves according to the
quaternionic Riccati equation

Dζ

Dt
+ ζ ⊗ ζ + ζp = 0 (19)

subject to the relation between the exact eigenvalues ofS andP

2
3∑
i=1

(λ2
i + λ(p)i ) = ω2. (20)

Remark. Note that the quaternionic structure in(19) lies in thedependentvariableζ not in the independent
variables. The Riccati structure in(19)can be linearized by introducing the 4-vectorΨ such that

ζ = DΨ

Dt
⊗ Ψ −1. (21)

Unlike 3-vectors, these 4-vectors have inverses, soΨ −1 exists. Moreover, while they are not multiplicatively
commutative, they are associative. These properties can be used to show that

D2Ψ

Dt2
+ ζp ⊗ Ψ = 0. (22)

This is a zero-eigenvalue quaternionic Schrödinger equation for the 4-vectorΨ with ζp(x, t) as a potential.

Proof. Eq. (19)is a re-expression of(13) in quaternionic form using the rules in(18). The relation betweenP,ω
andS expressed in(10) means thatζp is not in itself completely independent ofζ . Eq. (10)can be re-written in
terms of the eigenvalues ofS andP , respectively, as in(20). �

1.4. An alternative complex formulation

There is a close connection between complex numbers and quaternions, the latter being a generalization of the
former. It is therefore natural to ask whether the equations in(13)can be re-formulated in terms of complex variables.
Define

ζc = α + iχ. (23)

The evolution of scalarχ = |χ | can be found by dotting theχ equation in(13)with χ to obtain

Dχ

Dt
= −2χα − χ̃p, (24)

whereχ̃p = χ̂ · χp. Using(23), it is easily shown thatζc obeys the complex Riccati equation that is the obvious
parallel toEq. (19)

Dζc
Dt

+ ζ 2
c + ζ (c)p = 0 (25)

with

ζ (c)p = αp + iχ̃p. (26)
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The exact linearization of this Riccati equation is found from the substitution

ζc = 1

ψ

Dψ

Dt
, (27)

giving the complex zero eigenvalue scalar Schrödinger problem

D2ψ

Dt2
+ ζ (c)p ψ = 0 (28)

with a potential−ζ (c)p . Some information on the relative alignments ofω, Sω andPω has been lost in solely
using the lengthsχ and χ̃p and not the full vectors but the merit of this approach is that it reduces the problem
from four to two components but still gives a zero-eigenvalue Schrödinger equation as before. More will be said
about this class of problems inSection 3where an exact class of solutions due to Adler and Moser[14] will be
discussed.

1.5. A physical interpretation

The components ofζ , consisting of the scalarα and the 3-vectorχ , have a physical interpretation. In addition to
α being an estimate for an eigenvalue ofS, it is also related to the evolution of the scalar vorticityω by

Dω

Dt
= αω. (29)

Hereα plays the role of the vorticity stretching rate: there will be some parts of the flow whereα < 0, indicating
vortex compression, and other parts whereα > 0, indicating vortex stretching. In this context, Constantin[15] has
written down a Biot–Savart-type integral formula that relatesα to a prism of vectors that characterize the relative
alignment of neighbouring vortex lines.

χ has an association with the angleθ betweenω andSω such that

tanθ = χ

α
. (30)

Whereas, in general,α lies only within the spectrum ofS, it is an exact eigenvalue whenω aligns (anti-aligns) with
one of the eigenvectors ofS, in which caseχ = 0 (π). Turbulent vorticity fields tend to be dominated by vortex
tube-like and sheet-like features ([16,17]; see also references in[18]). Idealized, straight vortex tubes or shear layers
would therefore be examples of the caseχ = 0. In such a caseζ = α1 and the system reduces to a problem in
the scalar variableα alone (see[19]). The full 4-vectorζ , and therefore its natural quaternionic structure, only
becomes relevant whenχ �= 0. Becauseχ gives the degree of misalignment betweenω and the eigenvectors ofS, it
is therefore some measure of the degree of local misalignment that occurs when tubes bend, knot and tangle, when
the topology undergoes significant changes or when potentially singular behaviour starts to develop[17,20]. The
tendency forω to align with certain eigenvectors ofS, known as preferential alignment, has been one of the main
themes of computational work in both inviscid and viscous turbulence within the last 15 years[16,21–24].

2. A quaternionic structure for ideal incompressible MHD

The quaternionic relationship expressed inTheorem 1for the 3D Euler equations is degenerate in that a similar
complex structure exists to the one inR4 . The purpose of this section is to show that the equations of ideal
incompressible MHD have a similar quaternionic structure in Elsasser variables but in a non-degenerate form. The
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equations of ideal incompressible MHD couple the inviscid fluid to a magnetic fieldB

Du

Dt
= B · ∇B − ∇p, (31)

DB

Dt
= B · ∇u, (32)

together with divu = 0 and divB = 0. The pressurep in (31) is the combinationp = pf + (1/2)B2, wherepf is
the fluid pressure. Elsasser variables are defined by combining theu andB fields in a±-combination

v± = u ± B. (33)

The existence of two velocitiesv± means that there are two material derivatives

D±

Dt
= ∂

∂t
+ v± · ∇. (34)

In terms of these,(31) and (32)can be rewritten as

D±v∓

Dt
= −∇p (35)

with the magnetic fieldB satisfying

D±B

Dt
= B · ∇v± (36)

together with divv± = 0. Defining the±-stretching vectors in(36)as

σ± = B · ∇v± (37)

allows us to define

α± = B · σ±

B · B
, χ± = B × σ±

B · B
(38)

having used Moffatt’s analogy between the vectorsω andB [25,26]. Note that the numerators ofα±,χ± auto-
matically include the magnetic gradient matrixBi,j along with the velocity gradient matrixui,j within vi,j . Theα±

clearly play the role of scalar magnetic field stretching rates

D±B
Dt

= α±B. (39)

It is also necessary, as inSection 1, to define equivalent variables based upon the Hessian matrixP

α(m)p = B · PB

B · B
, χ (m)p = B × PB

B · B
. (40)

As in (17), we define the 4-vectorsζ± andζ (m) as follows:

ζ± =
(
α±

χ±

)
, ζ (m) =

(
α(m)

χ (m)

)
. (41)

The main result of this section is the following.
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Theorem 2. The 4-vectorsζ± satisfy

D∓ζ±

Dt
+ ζ± ⊗ ζ∓ + ζ (m)p = 0 (42)

subject to the Poisson relation

Tr P = −
∑
i,j

v±
i,j v

∓
j,i . (43)

Remark. Despite the fact that there are now two material derivatives, a linearization can be achieved by introducing
the 4-vectorΨ such that

ζ± = D±Ψ

Dt
⊗ Ψ −1 ⇒ D∓

Dt

D±Ψ

Dt
+ ζp ⊗ Ψ = 0. (44)

Proof. The first step in the proof is to calculate the ideal MHD equivalent of the Ertel–Ohkitani relations(7) and (8).
This is found in the following subsidiary lemma.

Lemma 1. σ± are related toP andB by

D±σ∓

Dt
= −PB, (45)

andB satisfies(
D±

Dt

D∓

Dt
+ P

)
B = 0. (46)

Proof. The±-material derivatives ofσ∓ in terms of componentsσ∓
i = Bjv∓

i,j are

D±σ∓
i

Dt
= D±Bj

Dt
v∓
i,j+Bj

∂

∂xj

(
D±v∓

i

Dt

)
−Bjv±

k,j v
∓
i,k = (σ±

j v
∓
i,j−σ±

k v
∓
i,k)+Bj

∂

∂xj

(
D±v∓

i

Dt

)
= −Bjp,ij .

(47)

The proof of(46) follows immediately.
The second step of the proof is to find the evolution ofα± andχ±. The material∓-derivatives ofα± are given by

D∓α±

Dt
= σ∓ · σ±

B · B
− 2α∓α± − α(m)p . (48)

The following vector identity is useful:

(B · B)(σ± · σ∓) = (B × σ±) · (B × σ∓)+ (B · σ±)(B · σ∓) (49)

which can be rewritten as

σ± · σ∓

B · B
= χ± · χ∓ + α±α∓. (50)

This transforms(48) into

D∓α±

Dt
= χ+ · χ− − α+α− − α(m)p . (51)
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For the evolution ofχ±, we find that

D∓χ±

Dt
= σ∓ × σ±

B · B
− 2α∓χ± − χ (m)p . (52)

To handle the first term on the RHS of(52) it is desirable to express this in terms of the three vectorsχ+, χ− and
χ+ × χ−. It is easy to show from the definition ofχ± in (38) that

σ± = α±B − B × χ± (53)

and so

σ+ × σ−

B · B
= −α−χ+ + α+χ− + (B × χ+)× (B × χ−)B−2. (54)

Now, B andχ+ × χ− are orthogonal to bothχ+ andχ− soχ+ × χ− can be written asχ+ × χ− = λ0B, where
λ0 is a scalar. The cross product in the third term on the RHS of(54)can be rewritten as

(B × χ+)× (B × χ−) = B[B · (χ+ × χ−)] = B2(χ+ × χ−), (55)

and soλ0 can be identified as

λ0 = B−2(B · (χ+ × χ−)). (56)

Using this in(54)and then in(52)we find

D∓χ±

Dt
= −(α−χ+ + α+χ−)− (χ± × χ∓)− χ (m)p . (57)

The third and final step in the theorem proof is accomplished by observing from(18) that the right-hand sides
of equations (51) and (57)can be written as(42). The trace constraint(43) comes from the two divergence-free
conditions divv± = 0 applied across(35). �

3. A complex Schrödinger equation and the work of Adler and Moser

In Section 1, we introduced three different zero-eigenvalue Schrödinger equations: a 3×3 matrix system involving
the 3-vectorω in (8), a quaternionic system for the 4-vectorΨ in (21)and a complex scalar system forψ in (28).

All of these contain slightly different information but it is convenient to choose the complex zero eigenvalue
scalar Schrödinger problem(28)

D2ψ

Dt2
+ ζ (c)p ψ = 0 (58)

with a potential−ζ (c)p , and look at it in Lagrangian variables using fluid particles as the basis of the co-ordinate
system. A convenient system for these particles(ξ1, ξ2, ξ3) is given by their Eulerian position at some chosen
instant (sayt0) such thatξ ≡ (ξ1, ξ2, ξ3) = (x, y, z). Hence we haveu1(ξ , t) = ẋ(ξ , t), u2(ξ , t) = ẏ(ξ , t) and
u3(ξ , t) = ż(ξ , t). Let us therefore writeU = −ζ (c)p (ξ , t) and the zero-eigenvalue Schrodingerequation (58)as

−ψ̈ + Uψ = 0, (59)

where the double-dot refers to two Lagrangian time derivatives.
Given a complex potentialU(t)we seek to solve forψ and hence forζc. In any of these cases this is only half the

solution; the most serious difficulty lies in determining the fluid particle trajectories that correspond to this formal
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set of solutions. As already discussed inSection 1, the Hessian matrixP is not independent of the other variables
in the problem.Eq. (10)gives information only on the diagonal but not the off-diagonal elements ofP . The particle
paths corresponding to the set of solutions under discussion must be compatible with this and it is here where the
problem still remains open. It is possible that there may be solutions of(59) for which this set is empty or is of
measure zero.

Having established that solvingequation (59)is only half the issue, nevertheless this Schrödinger equation has
some interesting solutions which are worth discussing. It is well known that solutions of the KdV equation

ut − 6uux + uxxx = 0 (60)

for realu(x, t) and with boundary conditionsu→ 0 as|x| → ∞, are associated with the isospectral solutions of a
Schrödinger equation

−d2ψ

dx2
+ uψ = Eψ (61)

in which the KdV dependent variableu(x, t) plays the role of the potential andE the constant energy eigenvalue.
Soliton solutions of(60) are associated with the discrete negative energy spectrum of the Schrödinger operator in
(61)and the continuous spectrum is associated with the positive energy eigenvalues. Adler and Moser[14] showed
that solutions rational inx andt correspond to the case whenE = 0. For the KdV equation expressed in its traditional
form in (60), the independent variable in the Schrödinger equation in(61) is x, with t held as a parameter, whereas
in our Lagragian problemt is now the independent variable. Adler and Moser[14] proved the following result (with
t andx exchanged) for the zero eigenvalue system(59), which can be generalized to the complex domain.

Theorem 3 (Adler and Moser[14]). For potentialsU(t) in (59) that take the form

Uk = −2
∂2

∂t2
ln θk, (62)

the eigenfunctionsψk satisfy

ψk = θk+1

θk
, (63)

where the infinite set of polynomialsθk of degreenk = (1/2)k(k+1) can be generated from the nonlinear Wronskian
recurrence relation

θ̇k+1θk−1 − θk+1θ̇k−1 = (2k + 1)θ2
k (64)

starting fromθ0(t) = 1, θ1(t) = t + τ1.

Proof. The proof is virtually identical to that in Adler and Moser[14] whereU ∈ R, except that here we allowU
to be complex. Summarising the main points, it is based around an idea that involves identifying eigenfunctions of
the zero-eigenvalue Sturm–Liouville problem(59). If ψ is an eigenfunction of(59) with potentialU thenψ−1 is
also an eigenfunction with a potentialŨ provided that

Ũ − U = −2
∂2 lnψ

∂t2
, (65)

which is obviously true. One identifies the potentialU = Uk with the eigenfunctionψk andŨ = Uk+1 with the
eigenfunctionψ−1

k . If this identification is correct then there must be another eigenfunctionψ−1
k−1 associated with

Uk in addition toψk. To turn this into an induction proof, one assumes that theθ0, θ1, . . . , θk have been found via
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(64) and therefore theψk are available through(63). If ψk andψ−1
k−1 are linearly independent eigenfunctions then

their Wronskian must be a non-vanishing constant

W [ψk;ψ−1
k−1] = c, (66)

which becomes

ψkψ̇k−1 + ψ̇kψk−1 = cψ2
k−1. (67)

In addition, this relation betweenψk andψ−1
k−1 must be consistent with(59)which insists that they must satisfy

ψ̈k

ψk
= (ψ̈−1

k−1)

ψ−1
k−1

, (68)

where the double-dot on the right-hand side refers to two time derivatives on the inverse function inside the round
brackets. Upon re-arrangement and integration this also gives exactly(67). Settingφk = θk+1/θk gives the recursion
formula (64) with the normalization constant in(66) taken such thatc = 2k + 1. To complete the induction one
calculates

Uk+1 = Uk − 2
∂2 lnψk
∂t2

= −2
∂2 ln θkψk
∂t2

= −2
∂2 ln θk+1

∂t2
, (69)

which completes the proof. The theorem is valid on the complex domain by simply allowing theτk to be complex
constants. �

The recursion relation(64)will generate anyθk of any desired order. The first four of these polynomials are

θ0(t) = 1, θ1(t) = t + τ1, θ2(t) = t3 + τ2, θ3(t) = t6 + 5τ2t
3 + τ3t − 5τ2

2 , (70)

where theτi are arbitrary complex constants. Adler and Moser have also shown that these polynomials are isobaric;
i.e., they have the homogeneity property

θk(λτ1, λ
3τ2, . . . , λ

2k−1τk) = λnk θk(τ1, τ2, . . . , τk), (71)

wherenk = (1/2)k(k+ 1) is the degree. Moreover, they have also shown that a generating function exists for these
polynomials. With ak-label, theζ (c) in (27)can be expressed as

ζ
(c)
k = ∂

∂t
( lnψk) = ∂

∂t
ln

(
θk+1

θk

)
, (72)

and the real and imaginary parts of this giveαk andχk. The ‘solutions’ given above mean that theψk expressed
through theθk correspond to the class of potentialsUk given in(62).

As discussed inSection 1and the beginning of this section, the particle paths corresponding to solutions(62)
and(63) must be compatible with the traceequation (10)and it is here where the problem still remains open; the
constantsτk would need to be calculated in terms of particle path positions. As far as singularities in these solutions
are concerned, they must lie off the real axis unless theτi are taken to be real constants. It is also possible that this
infinite set of solutions can be generalized to the quaternionic Schrödinger case(19) becauseΨ has an inverse. In
this case theτi would be 4-vectors.

4. Conclusion

The two conspicuous open questions of mathematical fluid dynamics; namely, whether the Navier–Stokes equa-
tions are regular[27–31]and whether the three-dimensional Euler equations develop a finite time singularity[17,20],
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so far, have not completely yielded to methods of analysis, although great progress has been made. Attempts have
been made to understand the dynamics of the vorticity field by studying the direction of vorticity[15,20]; this par-
ticularly paper is one variation on that theme. The natural quaternionic structure ofTheorem 1lies in the interplay
between the 4-vectorsζ andζp, which are associated with the relative alignment ofω with eigenvectors of the strain
matrixS and the Hessian matrix of the pressureP , respectively. While this geometric formulation is not complete
in that the independent variables need also to be brought into this formulation, nevertheless the problem has been
cast in the form of a constrained (by incompressibility) Lagrangian flow on a quaternionic manifold. The Euler
problem is degenerate in that the structure inR4 is almost identical to that inR2, which is not the case for the ideal
MHD problem ofSection 3where no degeneracy occurs. There, the formulation in theα±,χ± variables is messy
but is resolved into a the simple and elegant form in terms of the 4-vectorsζ± of Theorem 2.
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