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A geometric interpretation of coherent
structures in Navier–Stokes flows
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The pressure in the incompressible three-dimensional Navier–Stokes and Euler equations
is governed by Poisson’s equation: this equation is studied using the geometry of three-
forms in six dimensions. By studying the linear algebra of the vector space of three-forms
L3W � where W is a six-dimensional real vector space, we relate the characterization of
non-degenerate elements of L3W � to the sign of the Laplacian of the pressure—and
hence to the balance between the vorticity and the rate of strain. When the Laplacian of
the pressure, Dp, satisfies DpO0, the three-form associated with Poisson’s equation is the
real part of a decomposable complex form and an almost-complex structure can be
identified. When Dp!0, a real decomposable structure is identified. These results are
discussed in the context of coherent structures in turbulence.

Keywords: Navier–Stokes equations; three-forms; turbulence;
almost-complex structures
*A

Rec
Acc
1. Equations for an incompressible fluid

It is rare in fluid dynamics for highly technical abstract geometrical criteria to
have a direct correspondence with experimental observations. In a seminal paper,
Douady et al. (1991; henceforth DCB) devised an experimental method based on
the cavitation in a liquid seeded with bubbles to observe regions of low pressure
corresponding to regions of highly concentrated vorticity. For the incompressible
Navier–Stokes or Euler equations (where viscosity nZ0)

ut Cu$Vu Z nDuKVp; ð1:1Þ
the incompressibility constraint div uZ0 enforces the relation

DpZKui;juj;i Z
1

2
z2KTr S2; ð1:2Þ

where S is the rate of strain matrix; zZV!u is the vorticity; ui, jZvui/vxj ; and
the summation convention is used. DCB established an analogy with
electrostatics; namely that ‘p corresponds to the potential resulting from
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negative and positive charges distributed in proportion to the square of the
vorticity and the energy dissipation, respectively’.

Detailed computations of the three-dimensional incompressible Navier–Stokes
equations illustrate the phenomenon exploited experimentally by DCB that
vorticity has a tendency to accumulate on ‘thin sets’ whose morphology is
characterized by quasi-one-dimensional tubes or filaments and quasi-two-
dimensional sheets. This description is in itself approximate as these thin
structures undergo dramatic morphological changes in time and space. The
topology is highly complicated; sheets tend to roll up into tube-like structures,
while tubes tangle and knot akin to spaghetti boiling in a pan. The first vortex
tubes1 visualized in black and white were seen by Siggia (1981), and in colour by
Kerr (1985). Vortex tubes usually have a short lifetime, vanishing at one place
and reforming at another and correspond to regions of low pressure. Vorticity has
a tendency to concentrate on these thin sets and it is within these where vorticity
dominates strain, whereas the opposite is true outside of them. Thus, DpO0
within, whereas outside Dp!0. Some theoretical reasons why these thin sets
exist has recently been discussed by Gibbon (2008b).

In this paper, it is shown how a change in sign of the Laplacianmay be interpreted
in terms of the geometry of three-forms on a six-dimensional real vector space;
equation (1.2), in which time is a parameter, is the basis of our geometric arguments
and the conclusions reached are valid for both the Navier–Stokes and Euler
equations. It is, of course, to be expected that any geometric structure should be
independent of viscosity.Fromnowonwhenwe refer to theNavier–Stokes equations
it should be implicitly understood that the Euler equations are also included.

The work of Roubtsov & Roulstone (1997, 2001) has shown how quaternionic
and hyper-Kähler structures emerge in models of nearly geostrophic flows in
atmosphere and ocean dynamics. These results were based on earlier work by
McIntyre and Roulstone, and were reviewed by them in McIntyre & Roulstone
(2002). It has also been shown that the three-dimensional Euler equations has a
quaternionic structure in the dependent variables (Gibbon 2002) and that this
idea can be used to discuss the evolution of orthonormal frames on particle
trajectories: see Gibbon et al. (2006), Gibbon (2007, 2008a) and Gibbon & Holm
(2007). The use of different sets of dependent and independent variables in
geophysical models of cyclones and fronts has facilitated some remarkable
simplifications of otherwise hopelessly difficult nonlinear problems: see Hoskins &
Bretherton (1972). Roulstone & Sewell (1997) and McIntyre & Roulstone (2002),
describe how contact and Kähler geometries provide a framework for under-
standing the basis of the various coordinate transformations that have proven so
useful in this context. This present work has evolved from that of Roubtsov &
Roulstone (2001) using the results of Banos (2002).2 We note that the Monge–
Ampère structures developed by Lychagin et al. (1993), Banos (2002) and
Kushner et al. (2007) are not present when (1.2) is studied in the context of the
1 The visualizations by Vincent & Meneguzzi (1994) were mainly of vortex sheets.
2Our initial results arose from our interest in Kähler geometry and Monge–Ampère equations in
two independent variables (Roulstone et al. in press). It is well known that (1.2) gives rise to a
Monge–Ampère equation in two-dimensional incompressible flow (Larchevêque 1990, 1993), which
is elliptic when DpO0. It is straightforward to show, using the formalism of Lychagin et al. (1993),
that an almost-complex structure can be associated with this elliptic equation.
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incompressible Navier–Stokes equations in three dimensions. However, the
representation of (1.2) in terms of three-forms on the six-dimensional phase
space of the fluid (i.e. T �

R
3, with local coordinates (xi , ui)) can be studied using

the results of Hitchin (2000) upon which Banos’ paper is based.
Banos (2002, definition 4.1) has shown how the generalized complex geometry

of Hitchin and its real counterpart can be associated with elliptic and hyperbolic
Monge–Ampère structures in three dimensions. In this study of turbulent flows in
three dimensions, we show how regions in which DpO0 (referred to as ‘elliptic’ by
Weiss (1991) in the context of two-dimensional flows) are characterized by almost-
complex structures in the sense of Hitchin (2000) and Banos (2002). In a similar
fashion, regions in which Dp!0 (referred to as ‘hyperbolic’ by Weiss 1991) can be
characterized by real structures.

Fluid dynamicists may find the description of exterior calculus given in §5 of
McIntyre & Roulstone (2002) and the text by Kushner et al. (2007) useful in
explaining the geometry of (1.2) in terms of (2.3). The text by McDuff & Salamon
(1998) is an excellent introduction to differential geometry on complex manifolds.
Our notation follows the conventions set out in these references and inHitchin (2000).
2. The geometry of three-forms and Navier–Stokes flows in three
dimensions

One interesting feature of Navier–Stokes flows is the fact that the thin sets
discussed in §1 corresponding to quasi-one- and -two-dimensional topologies are
also the manifestation of exact solutions of the Navier–Stokes equations. Known
as Burgers’ vortices (Burgers 1948), these correspond to either straight tubes or
flat sheets depending on whether stretching is chosen in one or two directions (see
Moffatt et al. 1994; Gibbon et al. 1999). These exact solutions are highly idealized,
whereas computations and experiments show that the reality is closer to a tangle
of spaghetti. Nevertheless, given the ubiquity of such flows, it is reasonable to
think of them as an attracting class of low-dimensional solutions. It could be
speculated that the intense bending, tangling and stretching they undergo may
simply mean that these solutions may move onto complex manifolds of a higher
dimension (cf. Roulstone et al. in press). One of the simplest of these is the Calabi–
Yau manifold. These are smooth complex manifolds with a Ricci-flat Kähler
metric and a holomorphically trivial canonical bundle.

The formulation of the geometry required can be found in Hitchin (2000) and
Banos (2002), and references therein; note that Banos (2002) §3.2 casts Hitchin’s
results in the context of a symplectic vector space, which is what we work with
here. Let W denote a real six-dimensional symplectic vector space, and L3W � the
vector space of multilinear three-forms on W. Hitchin (2000) observes that for a
three-form 62L3W �, we can identify a linear transformation K6 : W1W5
L6W � by

K6ðwÞZAðiðwÞ6o6Þ; ð2:1Þ

where A is the isomorphism A : L5W �yW5L6W � defined by the natural
exterior product pairing W �5L5W �1L6W �, given w2W and the interior
Proc. R. Soc. A
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product iðwÞ6o62L5W �. Hitchin defines lð6Þ2 ðL6W �Þ2 by

lð6ÞZ 1

6
Tr K2

6; ð2:2Þ
and proceeds to use this Pfaffian3 to characterize non-degenerate elements of
L3W �. In particular, depending on the sign of l(6), Hitchin shows how 6 can
be expressed as the sum of two decomposable three-forms. If l(6)O0, then
6ZaCb, where a, b are real decomposable three-forms and aobs0. If l(6)!0,
then 6ZaC �a, where a2L3ðW �5CÞ is a complex decomposable three-form
and ao �as0.

The relationship between Dp, z and S, given by (1.2), is the starting point for
our geometric interpretation of vortex structures in Navier–Stokes turbulence.
We observe that (1.2) can be expressed in terms of the vanishing of the three-
form 62L3W �,

6ZDpdx1odx 2odx 3K2ðdu1odu2odx3Cdu1odx2odu3Cdx1odu2odu3Þ;
ð2:3Þ

on the graph of du, i.e. 6jduZ0 (e.g. McIntyre & Roulstone 2002, §5). It is
the incompressibility condition that allows us to write (1.2) in terms of this
three-form. Introducing the canonical symplectic form UZdxodu2L2W �,
then a three-form 6 is said to be effective if Uo6Z0 (Kushner et al. 2007) and
we note that this condition is satisfied by (2.3).

Three invariants can be associated with the effective form (2.3): the tensor K6

(defined by (2.1)), the Pfaffian l(6) (defined by (2.2)) and a metric q6 defined by

q6ðw;wÞhK
1

4
t2ðiðwÞ6o iðwÞ6Þ; ð2:4Þ

where

t6Z i
v

vx
o

v

vu

� �
6; ð2:5Þ

with w2W. This metric is related to the tensor K6 via the symplectic structure:
q6(w, w)ZU(K6w, w) (see Banos 2002, §3.9).

The components of the metric derived from (2.3) can be written as a 6!6
matrix, which can be expressed in block thus,

q6 ZK2

1

2
DpI 0

0 I

0
B@

1
CA: ð2:6Þ

The components of the tensor K6 are found from K6ZUq6,

K6 ZK2

0 I

K
1

2
DpI 0

0
BB@

1
CCA: ð2:7Þ
3 A characteristic polynomial of the components of 6.
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We find that Tr K2
6ZK12Dp, and therefore the Pfaffian

lð6ÞZ 1

6
Tr K2

6 ZK2Dp: ð2:8Þ

Hence, when DpO0—which from (1.2) implies vorticity dominates over strain—
we find l(6)!0. When l(6)!0, Hitchin shows how the real three-form 6
determines the structure of a complex vector space with a complex three-form on
the real vector space W. In particular, when l(6)!0, the tensor

J6 Z
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Klð6Þ
p K6 ð2:9Þ

is an almost-complex structure and the real three-form 6 is the real part of the
complex form

6c Z6C i6̂; ð2:10Þ
with 6̂Z ið�aKaÞ. From (2.3) we find

6Z ðm1C in1Þoðm2C in2Þoðm3C in3ÞCðm1K in1Þoðm2K in2Þoðm3K in3Þ
haC �a; ð2:11Þ

where miZðDp=2Þ1=3 dxi and niZðDp=2ÞKð1=6Þ dui, when DpO0, in accordance
with Hitchin’s results. When Dp!0, and hence l(6)O0, we have a real
decomposable structure

6ZKðm1Cn1Þoðm2Cn2Þoðm3Cn3ÞKðm1Kn1Þoðm2Kn2Þoðm3Kn3Þ
haCb; ð2:12Þ

where miZðKDp=2Þ1=3 dxi and niZðKDp=2ÞKð1=6Þ dui. Banos (2002) shows how
the pair (q6, J6) is the starting point for constructing a generalized Calabi–
Yau geometry.

3. Discussion

Equation (2.8) is our key result. It provides us with a generalization of the notion
of elliptic and hyperbolic flows, as described by Weiss (1991), from the two-
dimensional case to the three-dimensional Navier–Stokes equations. In three
dimensions, ‘elliptic flows’ are characterized by an almost-complex structure. In
contrast to the results of McIntyre & Roulstone (2002), in which vorticity—and
hence the ellipticity of a Monge–Ampère equation—were salient features in
large-scale atmospheric and oceanic flows (in which the rotation of the Earth is
an important factor), we have shown how real and complex structures coexist in
turbulent flows. Following Weiss (1991), we also note that KDpZ(SijSjiCxij xji),
where SijZ(1/2)(ui, jCuj,i) and xijZ(1/2)(ui, jKuj,i) are the symmetric and
antisymmetric parts of the velocity gradient tensor, Vu, respectively. The
invariants of the velocity gradient tensor have been much studied in connection
with the analysis of vortical structures (Chong et al. 1990; Kida & Miura 1998;
Dubief & Delcayre 2000), and we note that l(6) is proportional to the second
invariant of Vu.

It may be possible to show that certain coherent or canonical flow states
correspond to generalized Calabi–Yau structures: such structures exist when the
almost-complex geometry satisfies certain integrability conditions (although
Proc. R. Soc. A
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these conditions are likely to correspond to severe restrictions on Dp; cf.
Roulstone et al. in press). We remark that, while geometers are usually interested
in classifying global structures, our results are local. That is, in general, different
regions of the flow will be associated with real or complex structures in the sense
defined in §2.

The authors wish to thank two anonymous referees for their helpful comments.
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