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An upper bound on the mixing efficiency is derived for a passive scalar under the
influence of advection and diffusion with a body source. For a given stirring velocity
field, the mixing efficiency is measured in terms of an equivalent diffusivity, which is the
molecular diffusivity that would be required to achieve the same level of fluctuations
in the scalar concentration in the absence of stirring, for the same source distribution.
The bound on the equivalent diffusivity depends only on the functional ‘shape’ of
both the source and the advecting field. Direct numerical simulations performed for
a simple advecting flow to test the bounds are reported.

1. Introduction
In this work we apply some recent developments in the analysis of the Navier–

Stokes equations (Doering & Foias 2002) to mixing and the advection–diffusion
equation. Mixing phenomena are ubiquitous with applications in atmospheric science,
oceanography, chemical engineering, and microfluidics, to name a few. Here we
focus on the generic problem of the advection–diffusion equation with a source that
replenishes the variance of the passive scalar. The stirring is effected by a specified
velocity field, which may or may not be turbulent. Our analysis of an idealized model
lends mathematical precision and rigour to conventional scaling arguments often
invoked for these kinds of problems.

For the passive scalar, complicated behaviour – and efficient mixing – is often
observed even for laminar velocity fields. This is the well-known effect of chaotic
advection (Aref 1984; Ottino 1989). Thus we can choose the stirring (the advecting
velocity field) to be any divergence-free, possibly time-dependent flow field. The
mixing efficiency then depends on specific properties of the stirring field as well as
the manner in which the scalar concentration is injected, which is exactly what would
be expected. The bound on mixing efficiency derived in this paper has that feature:
it depends on the stirring field and the source distribution. This is very helpful as it
allows comparison of the relative effectiveness of various stirring scenarios for, say,
a specified source. The bounds we obtain are also valid for turbulent flows, as we
make no assumptions about the smoothness of the stirring field. A recent study by
Schumacher, Sreenivasan & Yeung (2003) has produced bounds on the derivative
moments of the concentration field; here we shall focus on the undifferentiated
quadratic moment. As will become evident, the methods of this paper can also be
extended to produce bounds on derivatives of the concentration field.
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2. System description
The advection–diffusion equation for the concentration θ(x, t) of a passive scalar is

∂tθ + u · ∇θ = κ �θ + s, (2.1)

where κ is the molecular diffusivity and s(x, t) is a source function with zero
spatial mean. The domain we consider is a periodic box of side L, i.e. x ∈ �d , the
d-dimensional torus. The velocity field u(x, t) could be obtained by solving Navier–
Stokes or some other set of equations, but here we shall simply consider it to be an
arbitrary L2 divergence-free vector field. Hence without loss of generality we may
take the solution θ(x, t) to be spatially mean zero at all times.

Variations in the source term in (2.1) maintain the inhomogeneity of the con-
centration field. The stirring term may lead to the formation of sharp gradients of
concentration that then enhance the effect of molecular diffusion. For definiteness
we assume that both the source and the stirring act on a comparable scale, � � L.
Because of periodicity, L/� is an integer. We introduce these two distinct scales in
order to be able to consider the infinite volume limit, L → ∞ at fixed �, for the final
results.

We shall use the fluctuations in the concentration as a useful measure of the degree
of well-mixedness, as has long been the practice (e.g. Danckwerts 1952; Edwards,
Sherman & Breidenthal 1985; Rehab et al. 2000). To characterize the fluctuations
in θ , we use the variance,

Θ2 := 〈L−d ‖θ‖2
L2(�d ) 〉, (2.2)

of the spatially mean-zero concentration. The angle brackets 〈 · 〉 denote a long-time
average, which we will assume exists for the quantities of interest, and ‖·‖L2(�d ) is
the L2 norm on �d . As control parameters we use the variance of the source and a
measure of the kinetic energy density of the stirring field,

S2 := 〈L−d ‖s‖2
L2(�d ) 〉, U 2 := 〈L−d ‖u‖2

L2(�d ) 〉. (2.3)

Thus, Θ , S, and U are spatio-temporal averages respectively of fluctuations in the
scalar concentration θ(x, t), the source s(x, t), and the fluid velocity u(x, t). An
efficient mixing configuration would have small Θ for a given S and U , indicating
a steady state with small variations in the concentration. In general we expect that
increasing U at fixed S should decrease Θ , for this represents more vigorous stirring,
while increasing S at fixed U should augment Θ . We will show in this paper that Θ

has a lower bound proportional to S�/U , so that a source with large fluctuations
necessarily produces a poorly mixed state unless U is increased sufficiently.

In order to keep track of the effects of the amplitudes of the source variation
and stirring intensity and their characteristic length scales independently from the
influence of the particular ‘shapes’ of the input and mixing functions, we decompose s

and u into the dimensional amplitudes (S and U ) and dimensionless shape functions
(Φ and Υ ) according to

s(x, t) = S Φ(x/�, t/τ ), 〈L−d ‖Φ‖2
L2(�d ) 〉 = 1, (2.4)

u(x, t) = U Υ (x/�, t/τ ), 〈L−d ‖Υ ‖2
L2(�d ) 〉 = 1, (2.5)

where τ is an appropriate time scale characterizing the source and stirring. Of course
either or both may be time-independent, but in any case we presume periodicity or
statistical stationarity with identifiable periods or relaxation times.
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3. The bounds
Now consider an arbitrary smooth (dimensionless) spatially periodic function

Ψ (x/�, t/τ ) normalized such that〈
L−d

∫
�d

Ψ (x/�, t/τ ) Φ(x/�, t/τ ) ddx

〉
= 1. (3.1)

For example because of the normalization in (2.4), Ψ = Φ could be a possible choice
if it is sufficiently smooth. Multiply (2.1) by Ψ and space–time average. Using (2.4)
and (3.1) and integrating by parts, we may express S as

S = −
〈

L−d

∫
�d

(∂tΨ + u · ∇Ψ + κ �Ψ ) θ ddx

〉
. (3.2)

Note that the operator acting on Ψ in (3.2) is the adjoint of the advection–diffusion
operator, which suggests how the method can be generalized to other linear ope-
rators with a body source (e.g. the magnetic induction operator of dynamo theory
(Childress & Gilbert 1995)).

The Cauchy–Schwartz inequality implies the bound

S � 〈L−d ‖∂tΨ + u · ∇Ψ + κ �Ψ ‖2
L2(�d ) 〉

1/2
Θ. (3.3)

Then substituting the scaled variables T = t/τ and y = x/� and using (2.5), we have

S �
UΘ

�
〈‖Ω‖2

L2(�d ) 〉
1/2

(3.4)

where � = [0, 1] is the unit torus and

Ω( y, T ) := −Sr ∂T Ψ ( y, T ) − Υ ( y, T ) · ∇yΨ ( y, T ) +
1

Pe
(−� yΨ ( y, T )). (3.5)

Here the Péclet number is Pe = U�/κ . If the velocity field is time-dependent with
time scale τ , the dimensionless number Sr := �/Uτ may be regarded as a Strouhal
number; in any case, we shall refer to it as the Strouhal number even if the time
scale τ is unrelated to u.

In principle inequality (3.4) could be sharpened by varying Ψ to provide as tight
a bound as possible, as performed by Doering, Eckhart & Schumacher (2003) for
the power consumption rate in the Navier–Stokes equations. We will not pursue that
direction here; rather we will produce explicit limits via simple estimates.

Applying the Minkowski inequality to (3.4), we see that

S �
UΘ

�
(c1 + Pe−1 c2) (3.6)

where

c1 := 〈‖Sr ∂T Ψ + Υ · ∇ yΨ ‖2
L2(�d ) 〉

1/2
, (3.7a)

c2 := 〈‖� yΨ ‖2
L2(�d ) 〉

1/2
, (3.7b)

are dimensionless constants, independent of Pe and Θ . The constant c1 depends on
dimensional quantities only through the Strouhal number; it also depends explicitly
on the stirring shape-function Υ . Note also that the function Ψ depends indirectly
on the source shape-function Φ through its normalization (3.1), so that both the
source and stirring shapes enter the bound. The constant c2 controls the diffusive part
while κ only enters through the Péclet number in (3.6). We still have the freedom to
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choose Ψ to optimize c1 for a particular problem, that is, for particular source and
stirring shapes Φ and Υ .

For small Pe, we can focus on the c2 term in (3.6) and obtain the bound S � c2Θκ/�2.
As we increase the source amplitude S, holding the other parameters constant, the
time-averaged variance Θ2 must eventually increase. An increase in the variance
implies that the scalar is more poorly mixed. There is no avoiding this unless we
increase κ or decrease the scale of the source �: the efficiency of mixing is intrinsically
related to the diffusive mixing rate on the scale of the source variance injection,
i.e. κ/�2.

For large Pe, the more interesting limit for many physical problems, we focus
on the c1 term in (3.6) to get the bound S � c1UΘ/�. (This is true for sufficiently
smooth Ψ .) As we increase the source amplitude S, holding everything else constant,
the bound (3.6) again implies that we must eventually see an increase in the steady-
state variance, Θ2. However, unlike the small-Pe case, we can now (potentially)
postpone that increase by raising U , i.e. by stirring more vigorously. The exact value
of c1 depends on both shape-functions, but (3.7a), where c1 is defined, can be broken
up by the Minkowski and Hölder inequalities to give

c1 � Sr〈 ‖∂T Ψ ‖2
L2(�d ) 〉1/2

+ sup
y,t

|∇ yΨ |, (3.8)

which is uniform in the shape of the stirring. The large-Pe bound has the nice
feature of being independent of the diffusivity κ , a result expected to hold for the
passive scalar under turbulent or chaotic mixing. However, the linear scaling with U

in (3.6) is not always appropriate, as will be seen in § 5 for the specific case we have
studied numerically. Note also that the bound (3.8) on c1 still involves the velocity
for time-dependent Ψ through the Strouhal number. If it is possible to choose Ψ to
be time-independent and still satisfy the normalization condition (3.1) – for example
if the source s is time-independent – then we have the bound

c1 � sup
y

|∇ yΨ |, (3.9)

which is satisfied for all possible stirring flows (i.e. any shape function Υ ) indepen-
dently of U .

We can also derive a lower bound for S. The average variance dissipation rate, ε,
satisfies

ε = 〈κ L−d ‖∇θ‖2
L2(�d ) 〉 =

〈
L−d

∫
�d

s( · , x) θ( · , x) ddx

〉
(3.10)

where we have used the fact that ‖θ‖L2(�d ) is uniformly bounded in time, which

is true under the physical assumption that ‖s‖L2(�d ) is itself uniformly bounded in

time. By using Poincaré’s inequality in (3.10) we have (ε/κ)1/2 � (2πΘ)/L, and the
Cauchy–Schwartz inequality along with the normalization of Φ in (2.4) gives ε � S Θ .
Together these give the bound

S � (2π/L)2 κ Θ. (3.11)

This lower bound reflects that no matter how we stir – or if we do not stir – there
is still some diffusive dissipation of the scalar variance. The lower bound (3.11) also
implies that if there is any variance Θ2 present at the steady state, then it must be
due to some minimum amount of amplitude of the source; stirring alone can never
generate scalar variance in this kind of model.
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The consequence of the two bounds for S is that larger Θ must eventually imply
large S (from (3.11), at fixed κ and L), but large S does not necessarily imply large Θ ,
as the difference can be made up by a large U in (3.6). This is what makes enhanced
mixing possible.

We may also estimate the typical size of small scales in the scalar field. Using the
bound S � ε/Θ mentioned above, we can transform (3.4) and (3.6) into upper bounds
for ε, namely (

2π

L

)2

κ Θ2 � ε �
UΘ2

�
(c1 + Pe−1 c2), (3.12)

where the lower bound is obtained via Poincaré’s inequality. If we define a scalar
dissipation scale λ,

λ−2 :=
〈‖∇θ‖2

L2(�d ) 〉
〈‖θ‖2

L2(�d ) 〉
=

ε

κ Θ2
(3.13)

(the Batchelor scale (Batchelor 1959), an analogue of the Taylor microscale for the
Navier–Stokes equations) then

L/(2π) � λ � � (c1 Pe + c2)
−1/2 . (3.14)

For large Pe, the smallest possible size of this dissipation scale is proportional to
Pe−1/2, a standard theoretical estimate (Childress & Gilbert 1995).

4. Mixing efficiency and equivalent diffusivity
As a physically meaningful measure of mixing efficiency, we define the equivalent

diffusivity†

κeq := β
S�2

Θ
� c̄1 U� + c̄2 κ. (4.1)

The factor β is the norm of the solution of the purely diffusive problem,

β := ‖(Sr Pe ∂T + � y)
−1Φ‖L2(�d ), (4.2)

and the constants c̄1 and c̄2 are respectively c1 and c2 multiplied by β . The extra factor
of β ensures that κeq = κ for U = 0, which is the purely diffusive case. This corresponds
to the choice Ψ = (Sr Pe ∂T + � y)

−2Φ/β , for which c̄2 = 1. Note that (SrPe ∂T +� y)
−N

is defined in the Galerkin sense on the Fourier expansion of Φ .
The equivalent diffusivity κeq compares the source amplitude (S) to the steady-state

fluctuations in the concentration field (Θ); as its name implies, it may be regarded
as the molecular diffusivity needed to give a comparable amount of mixing in the
absence of flow. A high-Péclet-number steady-state mixing device should operate with
as high an equivalent diffusivity as possible compared to the molecular diffusivity.
Alternatively, we may interpret the ratio κ2

eq/κ
2 as the supression factor for the

solution’s variance. That is, if θ0 is the solution of the diffusion equation with the

† We refrain from calling κeq an ‘effective’ diffusivity because this already carries a definition in
the literature (e.g. Young 1999). There the effective diffusivity is defined in terms of a large-scale
gradient in the concentration, whereas here we use the amplitude of the source, which makes more
sense in the present context. The relationship between that traditional effective diffusivity κeff and κeq

is κeq = κeff (Θ/G�)2, where G is a linear gradient of concentration (Schumacher et al. 2003). Other
notions of effective diffusivity are also used in the context of anomalous diffusion (e.g. Isichenko
1992) and turbulence (e.g. Pope 2000).
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Figure 1. The sine flow (5.1) for (a) the first half and (b) the second half of each period,
represented here with random phases χ1 and χ2. The velocity field alternates direction, but the
source distribution (as represented by the shaded background) is stationary.

same source but no stirring and Θ2
0 is its variance, then the definition (4.1) is simply

κ2
eq/κ

2 = Θ2
0/Θ

2.
In the regime of small U , the variance is proportional to the amplitude of the

source, a response we expect when the stirring does not play an important role. A
large equivalent diffusivity means that we are obtaining a well-mixed distribution
(small Θ) compared to the initial inhomogeneity in the source (S); as explained in
§ 3, for fixed κ and � this can only be achieved by increasing U .

The equivalent diffusivity can also be bounded from below by using (3.11),

κeq � κ β (2π �/L)2 . (4.3)

The worst lower bound for the mixing efficiency would be achieved by injecting scalar
variance at scale � while stirring to keep the dominant scale of the concentration
fluctuation field as L.

5. Bounds for the sine flow
As an example application, we consider the well-studied two-dimensional Zeldovich

sine flow, or random wave flow (Pierrehumbert 1994; Antonsen et al. 1996). This flow
consists of alternating horizontal and vertical sine shear flows, with phase angles χ1

and χ2 ∈ [0, 2π] randomly chosen at each time period, τ (see figure 1). In the first
half of the period, the velocity field is

u(1)(x, t) =
√

2 U (0, sin(2πx1/L + χ1)); (5.1a)

and in the second half-period it is

u(2)(x, t) =
√

2 U (sin(2πx2/L + χ2), 0). (5.1b)

The flow is incompressible, and U is defined consistently with (2.3), so that Υ is
read off from (5.1) by dropping U and replacing x/L by y. As a source function, we
choose s(x) =

√
2 S sin(2πx1/L), from which Φ( y) =

√
2 sin(2πy1). Here the source and

stirring scale length � is equal to the system size L. The purely diffusive solution with
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Figure 2. Ratio of equivalent diffusivity κeq to molecular diffusivity κ for the sine flow (5.1).
The upper solid line is the upper bound (5.3) and the lower bound (4.3) is shown as a horizontal
solid line. The upper limit (3.9) indicated by the dotted line is valid for any stirring flow with
this source distribution. The dashed line is the result of direct numerical simulations with U
and τ fixed (i.e. with constant Sr= 1). The dashed-dot curve plots simulation data with κ and
τ held constant while varying U (in this case Sr= Pe−1).

this source distribution gives β = 1/(2π)2 in (4.2), and hence the lower bound κeq � κ

for the equivalent diffusivity.
The challenge now lies in choosing Ψ to optimize the bound as best we can. The

simplest choice is to take Ψ = Φ , as this automatically satisfies the normalization (3.1).
Inserting that form into (3.7) (with ∂T Ψ = 0), we find c1 =

√
2 π and c2 = (2π)2, for a

bound on the equivalent diffusivity

κeq

κ
�

Pe

2
√

2π
+ 1. (5.2)

We can get a tighter bound by using (3.4), which does not use the Minkowski
inequality, and exploiting the statistical isotropy and homogeneity of the flow:

κeq

κ
�

√
Pe2

8π2
+ 1. (5.3)

The bound (5.3) is optimal over time-independent Ψ for our choice of stirring and
source shape functions. Because Υ is discontinuous in time (which is not an obstacle to
the bounding procedure), this particular velocity field does not yield a form of Ω that
is easily optimized over time-dependent Ψ . So for this example with a steady source
and a time-independent multiplier Ψ , our bound is uniform in the Strouhal number Sr.

Figure 2 shows the upper and lower bounds together with the results of direct
numerical simulations of the advection–diffusion equation (2.1) with this single-mode
source and the sine flow (5.1). The upper and lower bounds (5.3) and (4.3) are plotted
as solid lines.
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There are various ways of varying Pe in this model. For one, we can hold U and τ

fixed (both at the value 1) and vary κ , in which case the Strouhal number is fixed. The
dashed line in figure 2 is the result of the simulation with Sr =1 (in all simulations
reported here, � = L =1). We see that the bound qualitatively captures the behaviour
of the equivalent diffusivity in this case, although we do not have a wide enough
high-Pe range to determine if the high-Pe asymptotic scaling agrees with the bounds.

Another simulation strategy is to hold κ and τ fixed (in this case at 10−3 and 1,
respectively) and vary U . The data from this simulation with Sr= Pe−1 are plotted
as the dash-dot line in figure 2. We observe that this method of stirring is less
effective at suppressing variance in the concentration at any value of Pe 	= 103 where
all the parameters coincide. In particular, with this stirring the enhancement of the
equivalent diffusivity tends to saturate rather than increase indefinitely at high Pe.
This can be understood as a ‘resonance’ effect of the periodic boundary conditions:
as U increases at fixed τ and the typical displacement Uτ exceeds �, the velocity
field merely maps the concentration fluctuations onto periodic copies of themselves
rather than mixing them up within each periodic cell. Because the bound in (5.3) is
uniform in τ , it should be compared at a given value of Pe to the largest possible
equivalent diffusivity achievable by any τ , which can only improve the agreement
with the bound. These different simulation schemes illustrate the importance of the
Strouhal number for the mixing efficiency and, not unexpectedly, highlight the need
for further analysis to extract the Strouhal number dependence of the best bounds.

The dotted line in figure 2 is a weaker upper bound obtained from (3.9) using Ψ = Φ;
it sets an absolute limit on the mixing efficiency achievable with any stirring field
shape at any Strouhal number for this particular source distribution.

Finally, we note that there are flow fields at arbitrarily high values of Pe and
arbitrary Sr that saturate the lower bound κeq/κ = 1 for this source shape. Indeed,
any flow field u with no x2 dependence (and arbitrary x1 and t dependence) simply
moves the scalar along iso-concentration lines to no effect whatsoever. This simple
example is a particular case of a more general result concerning the existence of
‘ineffective’ stirring fields (W. R. Young 2004, personal communication) – essentially
integrable fields without chaos.

6. Conclusions
It is encouraging that the equivalent diffusivities in figure 2 rise away from the

diffusive lower bound as Pe increases, indicating that there is hope of more nearly
saturating the upper bound with more complex flows. From the example of the sine
flow, it is clear that in general there is a non-trivial Sr dependence, even for steady
sources, that warrants further investigation. Unlike the solution of the full problem
which requires a non-zero diffusivity to keep Θ uniformly bounded in time, the
bounding procedure does not require any diffusivity. That is, for large Pe we may
neglect c2 from the bound altogether and focus on c1 to try and minimize it with
respect to Ψ . Of course, the resulting optimal bound on κeq/U� may still depend in
a complicated way on Pe and Sr for specific stirring and source distributions.

The high-Pe scaling of the bound obtained in this paper might be related to an
analogous one in combustion theory (Constantin et al. 2000). There it was found
that the bulk burning rate V can satisfy an ‘optimal linear enhancement bound’,
V � KU , where K is a constant and U is the magnitude of the advecting field. The
type of flow required for linear enhancement, called ‘percolating flows’ in Constantin
et al. (2000), connects distant regions of unburned material. Perhaps these flows also
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produce linear asymptotic scaling with Pe for the equivalent diffusivity enhancement,
but we have not yet investigated this.

Although we specified a body source in our problem with periodic conditions, a
source of concentration at impenetrable boundaries can be mimicked by a sharp
source concentrated near the walls (Balmforth & Young 2003). However, the type of
wall boundary condition that can be modelled in this manner is restricted to fixed
scalar flux.

In closing we note that all of our analysis, as well as the general result that
κeq/κ:= βS�2/κΘ � c̄1Pe+ c̄2, depend on the source distribution being smooth enough
to have a finite variance S2. Point sources, for example where s ∼ δ(x), may be of
interest in applications but do not have finite variance. In this situation we may still
define the mixing efficiency and an equivalent diffusivity via κeq/κ := Θ0/Θ where Θ2

and Θ2
0 are the scalar variances with and without the stirring; these scalar variances

are finite even for δ-like sources in two and three spatial dimensions. However, the
anticipated behaviour suggested by the consideration of smooth sources, i.e. that the
equivalent diffusivity enhancement κeq/κ and/or its upper bound could be ∼ Pe, may
not be realized with more singular sources. The investigation of those models is left
for future work.
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