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Abstract

Two related open problems in the theory of 3D Navier-Stokes turbulence are
discussed in this paper. The first is the phenomenon of intermittency in the dissipa-
tion field. Dissipation-range intermittency was first discovered experimentally by
Batchelor and Townsend over fifty years ago. It is characterized by spatio-temporal
binary behaviour in which long, quiescent periods in the velocity signal are inter-
rupted by short, active ‘events’ during which there are violent fluctuations away
from the average. The second and related problem is whether solutions of the 3D

Navier-Stokes equations develop finite time singularities during these events. This
paper shows that Leray’s weak solutions of the three-dimensional incompressible
Navier-Stokes equations can have a binary character in time. The time-axis is split
into ‘good’ and ‘bad’ intervals: on the ‘good’ intervals solutions are bounded and
regular, whereas singularities are still possible within the ‘bad’ intervals. An esti-
mate for the width of the latter is very small and decreases with increasing Reynolds
number. It also decreases relative to the lengths of the good intervals as the Rey-
nolds number increases. Within these ‘bad’ intervals, lower bounds on the local
energy dissipation rate and other quantities, such as ‖u(·, t)‖∞ and ‖∇u(·, t)‖∞,
are very large, resulting in strong dynamics at sub-Kolmogorov scales. Intersections
of bad intervals for n � 1 are related to the potentially singular set in time. It is
also proved that the Navier-Stokes equations are conditionally regular provided, in
a given ‘bad’ interval, the energy has a lower bound that is decaying exponentially
in time.
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1. Introduction

The questions to be addressed in this paper concern the nature and behaviour
of intermittent high Reynolds number solutions of the three-dimensional Navier-
Stokes equations. Relatively quiescent flows can exist in nature at high Reynolds
numbers. There are also flows that appear turbulent for all practical purposes but
are nevertheless smooth at appropriately small length scales. Typically turbulent
high Reynolds number Navier-Stokes flows, however, generally display a specific
hallmark which is called dissipation-range intermittency. This was first discovered
by Batchelor & Townsend [1] and manifests itself in violent fluctuations of very
short duration in the energy dissipation rate. These fluctuations away from the aver-
age are interspersed by quieter, longer periods in the dynamics. The data in Fig. 1
is an illustration of a typically intermittent signal representing a velocity derivative
versus time recorded at a single point in space.

For theoretical studies of the Navier-Stokes equations it is usual to express
energy dissipation in the L2-volume-integrated sense. Postponing the full definition
of system variables, if the global energy H0 and enstrophy H1 for a three-dimen-
sional Navier-Stokes velocity field u(x, t) are defined as

H0(t) =
∫

V

|u|2 dV, H1(t) =
∫

V

|∇u|2 dV, (1)

then it is well known that while the energy H0 is a uniformly bounded function
of time, only the long-time averaged energy dissipation rate εav = νL−3 〈H1〉 is
known to be bounded [2], whereas the behaviour of ε(t) = νL−3H1(t) pointwise
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Fig. 1. A typical example of dissipation-range intermittency from wind tunnel turbulence
where hot wire anemometry has been used to measure the longitudinal velocity derivative
at a single point (D. Hurst and J. C. Vassilicos). The horizontal axis spans 8 integral time
scales. The Taylor micro-scale-based Reynolds number is about 200.
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in time may be wildly fluctuating or even singular. The long-time average 〈·〉 is
defined later in this section.

Whether H1(t) becomes singular in a finite time is an open question intimately
related to the Navier-Stokes regularity problem. So long as H1(t) is finite the solu-
tion is smooth and unique; any finite time singularity must be accompanied by a
divergence of H1(t) at that time. From Leray onwards [2], this question has led
to a long and rich literature on the nature of weak solutions [3–11]. In terms of
physical length scales, the boundedness of 〈H1〉 allows the time averaged turbulent
energy dissipation rate per unit volume εav = νL−3 〈H1〉 to be used naturally in
forming the inverse Kolmogorov length

η−1
K =

(
εav/ν

3
)1/4

. (2)

Spiky behaviour in H1(t), causing loss of resolution in large-scale computations,
could mean that significant energy lies in wave-numbers k > η−1

K in the dissipa-
tion range of the energy spectrum. The ubiquity of dissipation-range intermittency
in turbulent flows suggests that it should occur naturally in mathematical analy-
ses of the Navier-Stokes equations. Strong temporal excursions in H1(t) are clear
candidates for the formation of singularities and may be related to potentially sin-
gular solutions of the three-dimensional Euler equations [11–14], although nothing
has been rigorously proved in this respect. Beginning with Leray’s seminal paper
in 1934, rigorous methods of analysis on the full three-dimensional domain have
led to seventy years of literature on the Navier-Stokes regularity problem but have
yet to settle this question definitively [2]. Short-time regularity has also been known
for many years, as have various interesting partial and conditional regularity results
[3–11, 15–19]. Batchelor & Townsend [1] suggested that energy dissipation is
not distributed evenly across the full three-dimensional spatial domain but is clus-
tered into smaller spots in the flow with the energy associated with the small-scale
components being distributed unevenly in space and roughly confined to regions
which become smaller with eddy size [20]. A similar observation has been made
by Emmons who observed turbulent spottiness in boundary layer flows [21]. In
contrast to Kolmogorov’s traditional theory that implies that energy dissipation is
space-filling [22], Mandelbrot suggested that the spatial set on which it occurs is
actually fractal [23]. In experimental investigations of the energy dissipation rate
in several laboratory flows, and in the atmospheric surface layer, Sreenivasan &

Meneveau [24, 25] interpreted the evident intermittent nature of their signals in
terms of multifractals (see also [26]). Zeff et al. [27] have shown how more recent
technical advances have made it possible to measure each derivative of all three
velocity components to obtain a fuller experimental picture of the energy dissipa-
tion at a point in a flow. In general, numerical simulations and experiments suggest
that respectively quasi-one- and two-dimensional tubes and sheets are the favoured
low-dimensional sets on which vorticity and strain appear to accumulate [28–30]
although, as Galanti & Tsinober [31] and Tsinober [32] have pointed out, there
are significant differences between these two sets. It is also true that explaining
these phenomena in the simple geometrical terms of tubes and sheets is a visual
over-simplification of much more complicated dynamical spatial structures at small
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scales. Examples of this are the spiral vortex structures introduced by Lundgren

[33] and discussed in detail by Vassilicos & Hunt [34], Flohr & Vassilicos

[35] and Angilella & Vassilicos [36, 37].
Dissipation-range intermittency is a well established, experimentally observ-

able phenomenon; its appearance in systems other than the Navier-Stokes equations
has been discussed in an early and easily accessible paper by Frisch & Morf [38].
One symptom of its occurrence is the deviation of the ‘flatness’ of a velocity signal
(the ratio of the fourth-order moment to the square of the second-order moment)
from the value of 3 that usually holds for Gaussian statistics [39]. More subtle is
the phenomenon of inertial-range intermittency that has exercised the ingenuity
of those of the physics community who focus on scaling methods. In the inertial
range, Kolmogorov’s theory predicts that the exponent, ζp, of the pth velocity
structure function should vary linearly with p, whereas experimental data shows
that the (ζp, p) relation is a concave curve lying below the line p/3 for p � 3.
This departure from Kolmogorov scaling in the inertial range, and therefore from
the five-thirds law, is termed inertial-range intermittency. An extensive literature is
quoted in Frisch’s book [22]. Studies in weak turbulence, applicable to predom-
inantly dispersive systems, have been pursued by Zakharov. These ideas can be
found in papers by Zakharov, L’vov & Falkovich [40] and Zakharov [41].

To prove that solutions of the Navier-Stokes equations (usually taken in a peri-
odic box [8–10, 42]) are typically intermittent in space-time poses formidable tech-
nical challenges to the mathematician. Analysis on time-evolving fractal domains
with ill-defined boundary conditions is not advanced enough to gain rigorous results
by concentrating on one fractal ‘spot’ in the flow. Historically, the partial regular-
ity result of Scheffer [15], proving that the potentially singular set in time has
zero half-dimensional Hausdorff measure, led to that of Caffarelli, Kohn & Ni-

renberg [16] who showed that the potentially singular set in space-time has zero
one-dimensional Hausdorff measure. This implies that if singularities do exist they
must be relatively rare. Lin [43] and Choe & Lewis [44] have recently provided
shorter proofs of this result.

The more realistic option adopted here is to show that solutions of the Navier-
Stokes equations can have a binary nature in time in which the time-axis is divided
into what are designated as good and bad intervals. On the good intervals the Na-
vier-Stokes equations are uniformly regular. The bad intervals are shown to be very
small in width with an upper bound that decreases with increasing Reynolds num-
ber and which also decreases relative to the widths of the good intervals. Within
the bad intervals, very large lower bounds are shown to exist on both the local-
in-time energy dissipation rate and several other quantities, such as ‖u(·, t)‖∞
and ‖∇u(·, t)‖∞. The corresponding local length scales within these intervals are,
at best, comparatively much smaller than the Kolmogorov length. The regularity
question within the bad intervals is still open, so only weak solutions are known to
exist there. The great difficulties encountered by computational fluid dynamicists
in resolving turbulent flows even for modestly high Reynolds numbers could be
because of this binary behaviour.

These results, which are summarized in Section 2, have been obtained through
the use of a set of quantities κn(t) that have been introduced in previous papers
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[42, 45, 46]. The more physical aspects of these ideas were laid out previously in a
short paper [47]; the present paper gives a detailed and more advanced account of
the methods and results reported there. The κn(t) have the dimensions of inverse
lengths and are formed from ratios of L2 norms of derivatives of the velocity field.
Together with the periodicity of the domain, the L2-spatial integration within the
κn(t) means that spatially intermittent effects are included implicitly and cannot
be averaged away. Clearly they are not the same quantities as those measured by
experimentalists, such as the energy dissipation rate, but estimates for them are rig-
orous, making no appeal to any approximations, and ultimately lead to information
on the energy dissipation. Physically they can be considered as a measure of the
2nth moment of the energy spectrum. Their time-dependence is explicit and their
long-time averages 〈κn〉 are uniformly bounded [46]. Pointwise in time their binary
nature appears for each value of n � 2.

The phrase ‘solutions can have a binary nature in time’ has been used above in
the following sense: if no bad intervals occur, then solutions of the Navier-Stokes
equations are bounded for all time. In this sense, the results in this paper are differ-
ent from conventional short-time regularity proofs because loss of regularity can
only occur in the bad intervals. This is consistent with the partial regularity result in
time [15]: if singularities exist at points in time then these must be clustered within
the intersection of the bad intervals. They are also consistent with the well-known
problems of computational resolution in three-dimensional turbulence: the bounds
indicate a structure so fine that it would be extremely difficult to distinguish between
regular and singular solutions, despite the possibility of a lack of sharpness.

At this point it is appropriate to describe the Navier-Stokes system of partial
differential equations considered on a periodic cube V = [0, L]3,

ut + u · ∇u = ν�u − ∇p + f(x), ∇ · u = 0, (3)

where ν is the kinematic viscosity and p is the pressure. The applied body force
f(x) is taken to be mean-zero and divergence-free so, without loss of generality,
the solution u(x, t) is mean-zero at all times. For simplicity narrow-band body
forces with a single length scale � are considered; that is, with Fourier components
only at wave-number k = �−1 and � � L/2π . For finite energy initial data, the
Navier-Stokes equations admit weak solutions in L2(V ) at each instant of time with
finite time integrals of the L2 norms of the velocity gradients. With the assump-
tion of narrow-band forcing, norms of gradients of f(x) are related to the norm
of f(x); these can all be found in Table 1. Also found there are the definitions of
the root-mean-square velocity scale U and the Reynolds number Re. The angled
brackets 〈·〉 denote the long-time average

〈	(·)〉 = limt→∞
(

1

t

∫ t

0
	(s) ds

)
. (4)

lim is a generalized long-time limit for functionals of (weak) statistical solutions
of the Navier-Stokes equations [5, 6]. The square of the L2-norm ‖ ·‖2

2 is defined as
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Table 1. Definitions of the main parameters in the paper.

Quantity Definition Comment

Box length L
Forcing length scale � � � L/2π

Average forcing f 2 = L−3‖f‖2
2

Narrow-band forcing ‖f‖2
2 ≈ �2n‖∇nf‖2

2
Average velocity U2 = L−3

〈
‖u‖2

2

〉
Grashof Number Gr = f �3ν−2

Reynolds Number [48] Re = U�ν−1 Gr1/2 � c Re as Gr → ∞

‖f‖2
2 =

∫
V

|f |2 dV . (5)

The Grashof number Gr is the natural control parameter, not the Reynolds number
Re, but it is clear that high Reynolds number solutions may be achieved if the Gras-
hof number Gr is sufficiently high; indeed, Doering & Foias [48] have proved
that for body-forced Navier-Stokes flows such as these Gr1/2 � c Re as Gr → ∞.
Next we define the time dependent quantities

Hn(t) =
∫

V

|∇nu(x, t)|2 dV =
∑
k

k2n|û(k, t)|2, (6)

where û(k, t) is the Fourier transform of u(x, t). For higher derivatives of u and
f , the important quantities that will be used in this paper are

Fn =
∫

V

(
|∇nu|2 + τ 2|∇nf |2

)
dV, (7)

where τ is a characteristic time whose origin is discussed later in Section 3. In
approaching this problem conventional L2 norms have been used in (7) to avoid
difficulties with the pressure field.

Not all interesting small-scale spatial behaviour can be averaged away on a
finite periodic box; spatial events must show up in some temporal manner. The next
step is to define the quantities

κn,r (t) = (Fn/Fr)
1/2(n−r) . (8)

The particular one of interest is κn = κn,0 where the r = 0 label has been dropped
for convenience. κ2n

n can be interpreted as being related to the 2nth moment of the
energy spectrum [46]; this can be seen from writing |v|2 = |û|2 + |f̂ |2 and then
applying Parseval’s equality to (8) (with r = 0)

[κn(t)]
2n =

∑
k k2n|v(k, t)|2∑

k |v(k, t)|2 . (9)

Moreover, the κn are ordered in magnitude for all t � 0,

L−1 � κ1 . . . � κn � κn+1 � . . . (10)

which is simply a result of Hölder’s inequality. The full κn,r are also ordered such
that κn,r � κn,r+1 for r + 1 < n.
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Table 2. Definitions of the main variables and constants in the paper. The parameter δ,
which lies in the range 0 < δ < 1

6 , is ignored hereafter.

Definition

Hn Hn(t) = ∫
V |∇nu|2 dV n � 0

εav εav = νL−3 〈H1〉
ηK η−4

K
= εav/ν3

Fn Fn(t) = ∫
V

(
|∇nu|2 + τ2|∇nf |2

)
dV

ω0 ω0 = νL−2

τ ω0τ = Gr−(1/2+δ) 0 < δ < 1
6

κn κn(t) = (Fn/F0)1/2n

λn λn = 3 − 5
2n

+ δ
n

2. Summary of the main results of the paper

Sections 3–5 of this paper give a full account of the ideas with proofs from
first principles. This section has been introduced for readers who prefer to peruse
the proofs later. The next subsection on long-time averages is followed by a sec-
ond describing where problems with regularity lie. The third describes how the
time-axis can be split into two types of intervals, ‘good’ and ‘bad’. Section 2.4
summarises the dynamics on the bad intervals and the very large lower bounds that
can be found within them.

2.1. Long-time averages

The best known long-time average in Navier-Stokes analysis is the explicit
upper bound on the time averaged dissipation rate εav = νL−3 〈H1〉 found from
Leray’s energy inequality [2]

1
2 Ḣ0 � −νH1 + H

1/2
0 ‖f‖2. (11)

Using Doering & Foias’s result [48] that Gr1/2 � c Re, it is easily shown that as
Gr → ∞,

〈H1〉 � c ν2L3�−4Re3. (12)

Recall that the long-time average 〈·〉 is defined in (4). The above Re3 long-time
average estimate for 〈H1〉 leads to an upper bound on the energy dissipation rate
εav � c ν3�−4Re3 and thence to the conventional estimate on the inverse Kolmogo-
rov length η−1

K defined in (2) ,

η−1
K =

(εav

ν3

)1/4
� �−1Re3/4. (13)

Foias, Guillopé & Temam’s generalization of (12), when the inequality Gr1/2 �
c Re is applied [7], can be expressed as (see Theorem 2 in Section 3.3)

�

〈
F

1
2n−1

n

〉
� cn(L�−1)3ν

2n
2n−1 Re3. (14)



122 J. D. Gibbon & Charles R. Doering

When n = 1, (14) recovers the sharp result of Doering & Foias [48] for 〈F1〉,
except for a spurious volume factor (L�−1)3 on the right hand side.

A closely connected and important result used in this paper is the boundedness
of the long-time averages of the κn, for n � 1 taken with � = L/2π (see [46] and
Theorem 1 in Section 3.3),

〈Lκn〉 � cnReλn, λn = 3 − 5

2n
+ δ

n
, (15)

where δ is a small parameter lying in the range 0 < δ < 1
6 . From either (14) or

(15) an upper bound can also found on 〈‖u‖∞〉; see Theorem 2 in Section 3.3 and
Table 5. Note that the case n = 1 gives 〈Lκ1〉 � c1Re1/2, which is consistent with
the traditional scaling of Re−1/2 for the Taylor micro-scale. Boundedness of the
long-time average of κn does not, of course, imply that the κn are bounded pointwise
in time.

2.2. Problems with regularity: an illustration

Normal practice has been to consider the time evolution of the Fn using differ-
ential inequalities. With variations, this has been the standard approach taken since
the early days of the subject [8–10, 42]. One such inequality is

1
2 Ḟn � − 1

2 νFn+1 +
(
cnν

−1‖u‖2∞ + ν�−2Re
)

Fn, (16)

where ‖u(·, t)‖∞ is, in effect, the peak velocity on the whole domain. The reader
can find the precise derivation of (16) in Proposition 1 in Section 3.2. The right-hand
side has two dominant terms: one negative term associated with the dissipation, and
the dominant positive ‖u‖2∞ term. Rewriting the Fn+1 term in (16) in terms of the
κn defined in (8), we obtain

Fn+1 = κ2
n

(
κn+1

κn

)2(n+1)

Fn. (17)

Using a Sobolev inequality ‖u‖2∞ � c κ3
nF0 for n � 2, (16) becomes

1
2 Ḟn �

{
− 1

2 νκ2
n

(
κn+1

κn

)2(n+1)

+ cnν
−1κ3

nF0 + ν�−2Re

}
Fn. (18)

From (10) the ratio κn+1/κn has a lower bound of unity, κn+1/κn � 1, for all
periodic divergence-free functions. This reduces (18) to

1
2 Ḟn �

(
− 1

2 νκ2
n + cnν

−1κ3
nF0 + ν�−2Re

)
Fn. (19)

The manifestly negative term ∼ κ2
n in (19) is not sufficient to control the κ3

n term:
arbitrarily large initial data on Fn can be chosen that makes the right hand side
positive. Despite the finiteness of the time averages (14) and (15), this leads to a
failure to control either Fn or κn, other than for short times or small initial data [3].
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2.3. The potentially binary nature of the time-axis

One way of proceeding with this difficult problem is to ask whether the lower
bound of unity on κn+1/κn could be raised, thereby effectively increasing the dis-
sipation in (18). Batchelor & Townsend [1] experimentally identified a similar
quantity to κn+1/κn for n = 2, 3 that was larger than expected for Gaussian data.
The principal result of this paper, proved in Section 4, is that an improved lower
bound on κn+1/κn can be found which is valid only on sections of the time-axis.
The estimates in Theorem 3 in Section 4, the key result of the paper, show that for
Navier-Stokes weak solutions〈[

cn

(
κn+1

κn

)]1/µ−1

− [
(Lκn)

µRe−λn
]1/µ−1

〉
� 0, (20)

where the real parameter µ can take any value in the range 0 < µ < 1. The cn

are the same as in (15). Given that the long-time average in (20) is nonnegative
means that there must be intervals of the time-axis, called good intervals, where
the inequality

cn

(
κn+1

κn

)
� (Lκn)

µ Re−λn (21)

holds. It is easily seen that when (21) is applied to (18) on these intervals the strength
of the dissipation is increased. This applies at small scales (Lκn > cnReλn/µ) where
the lower bound on κn+1/κn in (21) is raised away from unity. The divisor (F0)
within κn is bounded both above and below. Thus (18) can be turned into a proper
differential inequality in Fn; the reader can refer to Section 4.1 for details. The
result, which is intuitively obvious from (18), is that the negative dissipation term
is stronger than the positive nonlinear term when

µ >
1

2(n + 1)
, (22)

so no singularities are possible on these intervals (see Section 4.1).
However, the integrand in (20) cannot be guaranteed to always be positive, so

intervals on the rest of the time-axis, where it could be negative, are designated as
bad intervals. On these the reverse inequality must be satisfied,

cn

(
κn+1

κn

)
< (Lκn)

µ Re−λn . (23)

Because its is always true that κn+1 � κn, then

Lκn(t) > cnReλn/µ (24)

on these intervals. It is, of course, possible that there are no bad intervals and that the
whole time-axis is ‘good’. The positivity of the average in (20), however, ensures
that the complete time-axis cannot be ‘bad’. This paper is based on the worst-case
supposition that bad intervals exist and need to be dealt with accordingly. There
appears to be no further information within (20) as to their distribution, which may
depend on the value of n.
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2.4. Dynamics on the bad intervals

Various questions remain. Firstly, if the bad intervals exist, are they finite in
width? The answer to this is in the affirmative. Estimates for the widths of bad
intervals (�t)b are displayed in Table 5 (see Theorem 5 in Section 5.2) with upper
bounds on µ lying in two ranges together with a lower bound given in (21). It can be
seen that these widths are exceedingly small; in fact (�t)b → 0 as Re → ∞. The
large lower bound on κn in (24) indicates the predominance of high wave-numbers
within these very short intervals.

Fig. 2 is a descriptive picture of a typical distribution of good/bad intervals on
the t-axis. It is drawn in such a way that κn(t) looks like a relatively flat function.
While this is probable, some artistic licence has been taken for the following rea-
sons. The lower bound in (24) makes values of κn(t) much larger than the upper
bound on the time average (15), so it has to spend relatively long amounts of time
in the good intervals to recompense. Nevertheless, this does not prove that it is qui-
escent in the central part of the interval. As is shown in Section 4, there is enough
freedom within the upper bound on κn, under the constraint of the long-time aver-
age, to allow it to reach large enough values so that it can connect with the next
bad interval. While we believe that it is likely that κn is flat in the central region,
we have been unable to prove this. It is pathologically possible that enough fine
structure might exist within the good interval without violating the average.

The positions of the intervals may differ as n varies so a new figure is needed
for each n; Lemma 1 shows that if any one κn is bounded then all are bounded.
Only if the intersection of all bad intervals is itself ‘bad’ is a singularity possible;
Section 5.3 addresses this question. The set containing the intersection of all the
bad intervals for all n � 1 is designated there as S(∞) and must be related to the

�

�

κn(t)

t

....................................................................................................

.............................. .................................................................

Reλn Long-time average

Lκn > Reλn/µ� �
Reλn/µ

(�t)b (�t)g

��

Fig. 2. A descriptive picture, not to scale, of good/bad intervals for some value of n � 2;
constants have been omitted.
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potentially singular set [15]. As Theorem 6 of Section 5.3 shows, taking the limit
to the potentially singular set narrows the range of µ.

The bad intervals (& their intersection) can be divided into sub-intervals; for
the ith bad interval let us take the j th sub-interval on which Ḟn � 0. This we call
the ij th ‘dangerous’ sub-interval of width (�t

i,j
+ ). Singularities can occur on any

interval within these because Fn is increasing, whereas for sub-intervals on which
Ḟn � 0 no singularities can occur because Fn is bounded (n � 1) by its initial value
at the start of the sub-interval. Estimates for the width of dangerous sub-intervals,
of width (�t

i,j
+ ), are smaller than those for (�t)b and can be found in Theorem

7 of Section 5.4 (see Table 5). It is then possible to find very large lower bounds
within (�t

i,j
+ ) on various quantities such as an equivalent of the inverse Kolmogo-

rov length η−1+ , based upon lower bounds on F1 within (�t
i,j
+ ); it is here where

the intermittency of the dissipation field shows up. Additionally, the peak velocity
and the peak velocity gradient matrix also have very large lower bounds. These are
displayed in Table 3.

Conclusions that can be drawn from Tables 3, 4 and 5 at the end of this section
are:

1. The bad intervals are exceptionally narrow for large Re.
2. The action within these intervals is intense; the lower bound on F1 within them

illustrates the strength of the dissipation field there.
3. The dynamics within these intervals is so fine, even if no singularities occur,

that they would be exceptionally difficult to resolve numerically.

Theorem 4 bounds from below, in the average sense, the ratio of the widths of
the good and bad intervals

(�t)g

(�t)b
� Re

λn

(
1
µ

−1
)
, (25)

showing that relative to the bad intervals, the widths of the good intervals increase
with Re.

Table 3. A comparison between the upper bounds on the long-time averages in column
two (see Theorems 1 and 2 in Section 3.3) and the very large lower bounds in dangerous

sub-intervals (�t
i,j
+ ) in column three (see Theorem 7 in Section 5.4). Notice there the very

large lower bounds on F1 illustrating the strong intermittency in the dissipation field. All
multiplicative constants have been omitted to save space. In addition � = L/2π .

Long-time average 〈·〉 On (�t
i,j
+ ) intervals

Energy moments 〈Lκn〉 � Reλn Lκn � Re4+bn

Enstrophy L−3 〈F1〉 � ω2
0Re3 L−3F1 � ω2

0Re4+bn

(Kolmogorov scale)−1 Lη−1
K

� Re3/4 Lη−1+ � Re(4+bn)/4

(Taylor micro-scale)−1 〈Lκ1〉 � Re1/2 Lκ1 � Rebn/2

Peak velocity 〈‖u‖∞〉 � Lω0Re3 ‖u‖∞ � Lω0Re4+bn

Vel. gradient matrix
〈
‖∇u‖1/2∞

〉2
� ω0Re3 ‖∇u‖∞ � ω0Re4+bn
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Table 4. Definitions of λn, an and bn. On the intersection set S(∞) of Section 5.3, λn can
be replaced by �

(∞)
n .

Definition Range

λn λn = 3 − 5
2n

an an = λn+1
µ

(
2n−2
2n−1

)
− 10n−1

2n−1 an > 0

bn bn = λn+1
µ − 4 bn > an

Table 5. Estimates of widths of bad intervals, their sub-intervals (�t
i,j
+ ), and corresponding

ranges of an, bn & µ (see Theorem 5 in Section 5.2 and Theorem 7 in Section 5.4). It is
always true that bn > an (see Table 4). For the case n = 1, µ > 1

2 .

Range of µ an, bn Width of interval n � 2

µ � λn+1

(
n−1
6n−1

)
an � 1 ω0(�t)b � Re−an

λn+1

(
n−1
6n−1

)
< µ < λn+1

(
2n−2
10n−1

)
0 < an < 1 ω0(�t)b � Re−1 ln Re

bn > 1 ω0(�t
i,j
+ ) � Re−bn

1
2(n+1)

< µ (�t)g � (�t)b Re
λn

(
1
µ

−1
)

The final result of Section 6 displayed in Theorem 8 is a conditional regular-
ity result. Assume that the energy H0(t) has a lower bound within the dangerous
sub-intervals, �t

(i,j)
+ = t − t

i,j
0 , of the form

H0(t) � H0(t
i,j
0 )e−ω0Re�t

(i,j)
+ , (26)

then solutions of the Navier-Stokes equations are regular there. Note that t
i,j
0 is the

initial time for the dangerous sub-interval. The very large initial conditions on the
energy H0(t

i,j
0 ) at the junction of the intervals is the main obstacle to completing

a regularity proof.

3. Standard estimates

3.1. The forcing does not dominate the fluid

The technical parts of this paper revolve around the quantities

Fn(t) = Hn + τ 2‖∇nf‖2
2, (27)

where the Hn are defined in (6). The Fn contain the fluid velocity derivatives and
those of the forcing, although the latter has been assumed to have a narrow-band
character, as shown in Table 1. They are included within Fn in order to circum-
vent problems that may arise when dividing by these (squared) semi-norms. Once
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these terms have been introduced it is necessary to demonstrate that they do not
dominate the fluid [46], a point that has also made by Tsinober [49] in numerical
computations. The characteristic time τ will be chosen for convenience but as long
as τ 
= 0, the Fn are bounded away from zero by the explicit value τ 2L3�−2nf 2.
Moreover, τ may be chosen to depend on the parameters of the problem such that
〈Fn〉 ∼ 〈Hn〉 as Gr → ∞. To see how to achieve this, let us define

τ = �2ν−1Gr−(δ+1/2) (28)

with δ > 0, which is a parameter yet to be determined. Then the additional term in
(27) is

τ 2‖∇nf‖2
2 = L3ν−2�4−2nf 2Gr−(2δ+1) = ν2�−(2n+2)L3Gr1−2δ. (29)

Now it has also been shown by Doering & Foias [48] that the energy dissipation
rate εav = νL−3 〈H1〉 has a lower bound for high Gr:

εav � c ν3�−3L−1Gr, (30)

which can be used in the far right hand side of (29) ,

τ 2‖∇nf‖2
2 � c εav �−(2n−1)L4ν−1Gr−2δ

= c
(
L�−1

)(2n−1)

L−2(n−1)
〈
H1

〉
Gr−2δ

� c
(
L�−1

)(2n−1) 〈
Hn

〉
Gr−2δ, (31)

where Poincaré’s inequality has been used at the last step. Hence, for any δ > 0,
the additional forcing term in (27) is seen to be negligible with respect to 〈Hn〉 as
Gr → ∞. The parameter δ is left arbitrary at this stage, although it will be restricted
further in the course of proving results in the next section. Our interest lies in results
for high Gr so correction terms described above will be ignored and it can safely
be said that for δ > 0 ,

〈F1〉 � c ν2L3�−4Re3. (32)

This is Leray’s result for weak solutions with narrow-band forcing included in a
rational manner; the next section deals with long-time averages of other quantities.

3.2. The Fn ladder

In the calculations that follow the Hn are formally manipulated even though
they are not known to be finite pointwise in time for weak solutions; the end results
may be justified in the standard way by proceeding from a Galerkin approximation
to the solutions and then removing the regularization in the final results. In the usual
manner ‘c’ and cn are used as generic constants.
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Proposition 1. For Gr → ∞ and δ > 0, the Fn satisfy the differential inequalities

1
2 Ḟ0 � −νF1 + c1ν�−2Re1+2δF0, (33)

1
2 Ḟ1 � − 1

4νF2 + c2ν
−3F 3

1 + c ν�−2Re1+2δF1, (34)

and for n � 2, there are two alternative versions

1
2 Ḟn � −νFn+1 + cn,1

(
‖∇u‖∞ + ν�−2Re1+2δ

)
Fn, (35)

1
2 Ḟn � − 1

2 νFn+1 + cn,2

(
ν−1‖u‖2∞ + ν�−2Re1+2δ

)
Fn. (36)

Remark 1. When the inequality F 2
1 � F2F0 is used in (34), the resulting differen-

tial inequality for F1 demonstrates the inability of these methods, as they stand, to
gain control over F1 for arbitrarily large initial data.

Proof. The proof follows in four steps.

Step 1. Let us begin with the proof of (33). Leray’s energy inequality is

1
2 Ḣ0 � −νH1 + H

1/2
0 ‖f‖2. (37)

Adding and subtracting the quantity ντ 2‖∇f‖2
2, it is seen that

1
2 Ḟ0 � −νF1 + ντ 2‖∇f‖2

2 + H
1/2
0 ‖f‖2. (38)

Because the forcing is narrow-band as in Table 1, it is possible to reduce a derivative
on the ‖∇f‖2

2 term. This, together with Young’s inequality (using gτ 2 > 0 as a
parameter where g is to be suitably chosen below) to break up the last term yields

1
2 Ḟ0 � −νF1 + 1

2gτ 2 H0 + τ 2
(

1
2 g + ν

�2

)
‖f‖2

2, (39)

where g is determined by making the coefficients of H0 and τ 2‖f‖2
2 equal, giving

g = − ν

�2 +
{
ν2�−4 + τ−2

}1/2
. (40)

With τ chosen as in (28) with δ > 0, g becomes

g = τ−1
({

1 + Gr−(2δ+1)
}1/2 − Gr−(δ+1/2)

)
. (41)

Consequently, g ∼ τ−1 as Gr → ∞ in which case

τ−1 = ν�−2Gr
1
2 +δ � c ν�−2Re1+2δ. (42)

In this limit (39) can be written as in (33).
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Step 2. The proof of (34) is found directly from (ω = curl u)

1
2 Ḣ1 � −νH2 +

∫
�

ω · (ω · ∇)u dV + H
1/2
1 ‖∇f‖2. (43)

The middle term can be estimated as∫
�

ω · (ω · ∇)u dV � ‖ω‖2
4‖∇u‖2 � c F

3/4
2 F

3/4
1 , (44)

having used the Sobolev inequality ‖ω‖4 � c ‖∇ω‖3/4
2 ‖ω‖1/4

2 . The procedure with
the forcing is then used as in Step 1 to obtain

1
2 Ḟ1 � −νF2 + c F

3/4
2 F

3/4
1 + c ν�−2Re1+2δF1. (45)

Young’s inequality on the middle term finally gives (34).

Step 3. For a proof of (35), consider the ladder of differential inequalities satisfied
by the Hn for n � 2 (see [42, 50]):

1
2 Ḣn � −νHn+1 + cn‖∇u‖∞Hn + H

1/2
n ‖∇nf‖2. (46)

Then (35) is proved by following the procedure with the forcing as in Step 1.

Step 4. The alternative to the differential inequality (46) for n � 2 is

1
2 Ḣn � − 1

2 νHn+1 + cnν
−1‖u‖2∞Hn + H

1/2
n ‖∇nf‖2. (47)

Then (36) is found by using the same procedure as in Step 1 except that the quantity
1
2 ντ 2‖∇n+1f‖2

2 is subtracted whereas ντ 2‖∇n+1f‖2
2 is added. ��

3.3. Long-time averages

In Section 1 it was shown how the quantities κn are ordered such that κn � κn+1.
There is no κn that is known to be a priori bounded. What is known is the bound-
edness of the long-time averages defined in (4). The equivalent of Leray’s bulk
dissipation estimate in terms of κ1 instead of F1 is found from (33) by dividing
through F0 and long-time averaging:

�2
〈
κ2

1

〉
� c Re1+2δ. (48)

The first of the following two theorems states results on long-time averages for
higher values of n. This estimate can be found in [46] with a wider range of δ.

Theorem 1. For Gr → ∞ and the parameter δ lying in the range 0 < δ < 1
6 ,

� 〈κn〉 � cn

(
L�−1

) 3(n−1)
n

Reλn, n � 1, (49)

where λn is defined by

λn = 3 − 5

2n
+ δ

n
. (50)
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Proof. Step 1. Consider first κ2,1:

〈
κ2,1

〉 =
〈(

F2

F1

)1/2
〉

�
〈

F2

F 2
1

〉1/2

〈F1〉1/2

� ν2

2

〈
F2

F 2
1

〉
+ 1

2ν2
〈F1〉 , (51)

where Young’s inequality has been used at the last step. Dividing inequality (34) in
Proposition 1 in Section 3.2 by F 2

1 and long-time averaging give

ν2

〈
F2

F 2
1

〉
� c ν−2 〈F1〉 + ντ−1

〈
F−1

1

〉
, (52)

and so
〈
κ2,1

〉
� c ν−2 〈F1〉 + ντ−1

〈
F−1

1

〉
. (53)

The last term is

ντ−1
〈
F−1

1

〉
� ντ−1

τ 2�−2L3f 2 = �2L−3Gr3δ− 1
2 (54)

from which it is concluded that δ must lie in the range 0 < δ < 1
6 to be certain that

this term decreases as Gr → ∞. Because

〈F1〉 � ν2L3�−4Re3 (55)

it then follows that

�
〈
κ2,1

〉
� c

(
L�−1

)3
Re3. (56)

Step 2. Now consider the quantities
〈
κn+1,n

〉
for n � 2:

〈
κn+1,n

〉 =
〈(

Fn+1

F
2n/(2n−1)
n

)1/2

F
1/2(2n−1)
n

〉

�
〈

Fn+1

F
2n/(2n−1)
n

〉1/2 〈
F

1/(2n−1)
n

〉1/2
, (57)

〈
F

1
2n−1

n

〉
=

〈
κ

(2n−2)/(2n−1)
n,1 F

1/(2n−1)
1

〉

�
〈
κn,1

〉(2n−2)/(2n−1) 〈F1〉1/(2n−1) . (58)

Having used the fact that κn,1 � κn+1,n, (57) and (58) give

〈
κn+1,n

〉
�

[
ν

2
2n−1

〈
Fn+1

F
(2n−1)/2n
n

〉] (2n−1)
2n [

ν−2 〈F1〉
] 1

2n
, (59)
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so a Hölder inequality yields

2n
〈
κn+1,n

〉
� (2n − 1)ν

2
2n−1

〈
Fn+1

F
2n/(2n−1)
n

〉
+ ν−2 〈F1〉 . (60)

To estimate the first long-time average on the right-hand side, consider the second
Fn ladder in (36) ,

1
2 Ḟn � − 1

2 νFn+1 + cn

(
ν−1‖u‖2∞ + ν�−2Re

)
Fn. (61)

Now define

Yn = F
− 1

2n−1
n (62)

and turn (61) into a differential inequality inYn which involves dividing byF
2n/(2n−1)
n .

To achieve this we use ‖u‖2∞ � c κ2,1F1 and recall that κ2,1 � κn,1. Then

‖u‖2∞F
− 1

2n−1
n � c κ2,1

[
κ−1
n,1F1

] 2n−2
2n−1 � c κ

1
2n−1

2,1 F
2n−2
2n−1

1 . (63)

Hence (61) can be rewritten as

(n − 1
2 )(Ẏn + ν�−2ReYn) � 1

2 ν
Fn+1

F
2n

2n−1
n

− c ν−1κ
1

2n−1
2,1 F

2n−2
2n−1

1 . (64)

Setting the coefficient in ν to that in (60), a Hölder inequality on the last term gives

ν
2

2n−1
Fn+1

F
2n/(2n−1)
n

� (2n − 1)ν
3−2n
2n−1

[
Ẏn + ν�−2ReYn

]

+ 1

2n − 1

{
κ2,1 + c (2n − 2)ν−2F1

}
. (65)

Taking the long-time average of this in (60) we have

2n
〈
κn+1,n

〉
�

〈
κ2,1

〉 + cn ν−2 〈F1〉 + ν
2

2n−1 (2n − 1)�−2Re 〈Yn〉 . (66)

The long-time average of Ẏn has vanished and the last term 〈Yn〉 is bounded above
(because Fn is bounded below), so the long-time average is zero. Thus when (55)
and (56) are used we have

�
〈
κn,1

〉
� �

〈
κn+1,n

〉
� cn

(
L�−1

)3
Re3. (67)

Note that the exponents of Re and L/� are uniform in n; only the constant is not.
So (67) can now be used to estimate 〈κn〉 in the final step.
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Step 3. Rewrite 〈κn〉 in the following way:

〈
κ

2n
2n−1
n

〉
=

〈(
Fn

F0

) 1
2n−1

〉
=

〈(
Fn

F1

) 1
2n−1

(κ2
1 )

1
2n−1

〉

=
〈
κ

2n−2
2n−1
n,1 (κ2

1 )
1

2n−1

〉
�

〈
κn,1

〉 2n−2
2n−1

〈
κ2

1

〉 1
2n−1

. (68)

Using our estimate for
〈
κn,1

〉
from (67) and also that for

〈
κ2

1

〉
from (48), the result

in (49) is proved. ��
The first infinite set of non-trivial, bounded, long-time averages were those found
by Foias, Guillopé & Temam [7]. These are related to those in Theorem 1, and
particularly to the estimates for κn,1 in (67).

Theorem 2. For Gr → ∞, the long-time averaged quantities of Foias, Guillopé

& Temam [7] are estimated in terms of Re as

� 〈‖u‖∞〉 � c1ν
(
L�−1

)3
Re3, (69)

�

〈
F

1
2n−1

n

〉
� cn,2ν

2
2n−1

(
L�−1

)3
Re3, (70)

�
〈
‖∇u‖1/2∞

〉
� c3ν

1/2
(
L�−1

)3
Re3. (71)

Remark 2. The case n = 1 is distinct from the result in [48] because of the
(
L�−1

)3

on the right-hand side.

Proof. The proof follows from the Sobolev inequalities

‖u‖∞ � c κ
1/2
n,1 F1, ‖∇u‖∞ � c κ

3/2
n,1 F

1/2
1 (72)

with the estimates (67) for κn,1 and (32) for 〈F1〉. The quantities in (70) can be
rewritten in terms of κn,1 and F1, and the result follows. ��
A lemma is now proved that will be useful in later sections:

Lemma 1. If any Fm (κm) is bounded on a time interval [0, T ] for 1 � m � n

then so are all Fn (κn) for n > m.

Proof. Consider (35) in Proposition 1 in Section 3.2 above: for n � 3 a Sobolev
inequality gives

‖∇u‖∞ � c ‖∇nu‖a
2‖∇u‖1−a

2 � F
a/2
n F

(1−a)/2
1 , (73)

where a = 3/[2(n − 1)]. There is an inequality for the Fn of the form

F
p+q
N � FN−p F

p
N+q . (74)
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The choice of N = n, p = n − 1 and q = 1 gives

−Fn+1 � −F
n

n−1
n /F

1
n−1

1 (75)

so, as a consequence, (35) becomes

1
2 Ḟn � −νF

n
n−1

n /F
1

n−1
1 + c F

1+a/2
n F

(1−a)/2
1 + c ν�−2Fn. (76)

Because n/(n − 1) > 1 + a/2, (76) makes it clear that if F1 is bounded above at
any time then all Fn are bounded. If any Fm is bounded for m > 1 then F1 must
also be bounded (from (74)), in which case all Fn are bounded for any n > m.
The same results hold for the κn because the divisor F0 is bounded from above and
below. ��

4. Intermittency: the binary form of the time-axis

In the summary section, Section 2, it was discussed how the effective viscosity
could be increased by proving that the ratio κn+1/κn has a lower bound that is
greater than unity under certain circumstances. This was discussed in the context
of the ladder of differential inequalities (18) for the Fn, which is repeated here:

1
2 Ḟn �

(
− 1

2 νκ2
n

(
κn+1

κn

)2(n+1)

+ cnν
−1κ3

nF0 + ν�−2Re

)
Fn. (77)

The task of this section is to investigate lower bounds on the ratio κn+1/κn. In the
rest of this paper, the two lengths L and � will be taken such that � = L/2π to
reduce algebra. Additionally, the parameter δ, lying in the range 0 < δ < 1

6 , that
appears in the exponents of many of the estimates of the previous section, will be
taken as arbitrarily small (but fixed) and ignored hereafter.

Theorem 3. For the parameter µ taking any value in the range 0 < µ < 1, the
ratio κn+1/κn obeys the long-time averaged inequality (n � 1)

〈[
cn

(
κn+1

κn

)]1/µ−1

− [
(Lκn)

µRe−λn
]1/µ−1

〉
� 0, (78)

where the cn are the same as those in (49). Hence there exists at least one interval
of time, designated as a ‘good interval’, on which the inequality

cn

(
κn+1

κn

)
� (Lκn)

µ Re−λn (79)

holds. Those other parts of the time-axis on which the reverse inequality

cn

(
κn+1

κn

)
< (Lκn)

µ Re−λn (80)

holds are designated as ‘bad intervals’.
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Remark 3. In principle, the whole time-axis could be a good interval, whereas the
positive time average in (78) ensures that the complete time-axis cannot be ‘bad’.
This paper is based on the worst-case supposition that bad intervals exist, that they
could be multiple in number, and that the good and the bad are interspersed. This is
what is meant in this paper by a ‘potentially binary character’, although the precise
distribution and occurrence of the good/bad intervals and how they depend on n

remains an open question. It is even possible that the time-axis may take on a fractal
structure. It will be left until later (Theorem 5) to prove that the bad intervals are
finite in width.

Proof. Take two parameters 0 < µ < 1 and 0 < α < 1 such that µ + α = 1. The
inverses µ−1 and α−1 will be used as exponents in the Hölder inequality on the far
right-hand side of

〈
κα
n

〉
�

〈
κα
n+1

〉 =
〈(

κn+1

κn

)α

κα
n

〉
�

〈(
κn+1

κn

)α/µ
〉µ

〈κn〉α , (81)

thereby giving
〈(

κn+1

κn

)α/µ
〉

�
( 〈

κα
n

〉
〈κn〉α

)1/µ

= 〈
κα
n

〉 ( 〈
κα
n

〉
〈κn〉

)α/µ

. (82)

Navier-Stokes information can be injected into these formal manipulations: the
weak solution upper bound (49) and the lower bound Lκn � 1 can be used in the
ratio on the far right-hand side of (82) to give (78), with the same cn as in (49). ��

4.1. Bounds within good intervals

On the good intervals, application of the improved lower bound (79) to the
differential inequality (77) appears to imply that µ must satisfy 2µ(n + 1) > 1 for
the exponent of the negative term to be larger than the positive. To strengthen this
argument it is necessary to convert (77) into a differential inequality in Fn alone.
This can be achieved because the divisor within κn, namely F0, is bounded above:

1
2 Ḟn � −νRe−2λn(n+1)L2µ(n+1)F

(1+µ)(n+1)
n

n F
− µ(n+1)+1

n

0

+c ν−1F
2n+3

2n
n F

2n−3
2n

0 + νL−2ReFn. (83)

For n � 2 and arbitrarily large initial data, a singularity can be prevented from
forming if the exponent of the negative Fn term is greater than that of the positive:

(1 + µ)(n + 1)

n
>

2n + 3

2n
⇒ µ >

1

2(n + 1)
(84)

as predicted. It is not possible to take the infinite time limit because of the finiteness
of the interval, but the value of Fn = Fn,max that turns the sign of the right-hand
side of (83) is bounded by

Fn,max � L−2nReγnF0,max ≡ Ubd, (85)
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γn = 4n[λn(n + 1) + 2]
2µ(n + 1) − 1

, (86)

where the exponent γn > 0 when 2µ(n + 1) > 1 and we have used the fact that
F0,max = c Lν2Re4. In terms of Fig. 2 in Section 2, it is necessary to prove that the
solution in the good region can become large enough to form an initial condition
for weak solutions in the bad region. This can be proved by the following argument:
consider that on bad intervals the κn are bounded below uniformly by

[Lκn(t)]
µ > cnReλn, (87)

where cn,µ = c
1/µ
n . In terms of Fn this can be expressed as

Fn > cn,µL−2nRe
2nλn

µ F0,min ≡ Lbd. (88)

The question revolves around the relative sizes of the lower bound Lbd in (88) and
Ubd in (85):

Ubd

Lbd

=
(

F0,max

F0,min

)
Re

2n(λn+4µ)
µ[2µ(n+1)−1] > 1, Re � 1. (89)

Hence it is possible for Fn to reach magnitudes at the edges of the good region that
lie above the lower bound in (88).

For the case n = 1, the following Lemma is applicable.

Lemma 2. When n = 1 no singularity can form on good intervals provided µ > 1
2 .

Proof. This follows immediately by applying Theorem 3 to (34). ��
Nothing has yet been proved with regards to the widths of the good and bad inter-
vals, (�t)b and (�t)g respectively, nor have we any further information regarding
their nature. While it is possible that they may form pathological fractal subsets of
the time-axis it will be assumed that these intervals are simple open or closed sets;
the next section is devoted to estimating upper bounds on (�t)b. Here it is shown
that a lower bound can be found on the ratio of the average widths of the good and
bad intervals. The argument is based on an elementary application of the Markov-
Chebychev inequality. Consider an interval of time [tp, tq ] that contains an equal

number N of good and bad intervals of widths (�t)
(i)
g and (�t)

(i)
b respectively.

Define the average widths as

(�t)g = lim
N→∞

1

N

N∑
i=1

(�t)(i)g , (�t)b = lim
N→∞

1

N

N∑
i=1

(�t)
(i)
b . (90)

Theorem 4. Consider an interval of time [tp, tq ] containing N pairs of good and
bad intervals. In the limits N → ∞ and [tp, tq ] → ∞, provided (�t)b > 0, the
ratio (�t)g/(�t)b diverges as

(�t)g

(�t)b
� cnRe

λn

(
1
µ

−1
)

and Re → ∞ (91)
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Proof. Given (90), the fraction of time occupied by the bad intervals satisfies

∑N
i=1(�t)

(i)
b∑N

i=1[(�t)
(i)
g + (�t)

(i)
b ]

� 1

tq − tp

∫
Tp,q

dt

� 1

tq − tp

(∫
[tp, tq ] Lκndt

cn,µReλn/µ

)
, (92)

where Tp,q = [Lκn(t) � cn,µReλn/µ] ∩ [tp, tq ]. So as N → ∞ and tq − tp → ∞,
we have

(�t)b

(�t)g + (�t)b
� 〈Lκn〉

cn,µReλn/µ
�

[
cnReλn

]1− 1
µ , (93)

where we have used (87) and (49). Hence we have the result. ��

5. What happens in the bad intervals?

It is necessary to prove that the bad intervals are of finite width: that is, an upper
bound is required on �t = t − t0 where t0 is the initial time of some arbitrary bad
interval. Technically speaking, there should be a superscript label for the ith bad
interval such that �t ≡ �t(i) and another on t0 ≡ t

(i)
0 , but these have been dropped

for convenience. Recall that ω0 = νL−2 and

E(�t) = eω0Re �t − 1

ω0Re
. (94)

It will become necessary to solve inequalities of the type

E(�t) � ω−1
0 Re−β (95)

for β > 0 as Re → ∞. It is not difficult to show that when β � 1, to leading order

ω0(�t) � Re−β, (96)

whereas when 0 < β < 1 then, to leading order

ω0(�t) � (1 − β)Re−1 ln Re. (97)

The main task of this section is to show that the bad intervals have a finite widths
and to find an upper bound on these. This requires two subsidiary estimates for

∫
�t

eω0Re �tF1(t) dt and
∫

�t

eω0Re �tκ2,1(t) dt. (98)
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5.1. Two subsidiary estimates

Lemma 3. An estimate for the exponentially weighted time integral of F1 is∫
�t

eω0Re �tF1(t) dt � c1νLRe4 + c2ν
2L−1E(�t)

[
Re5 + O(Re4)

]
. (99)

Proof. Let us denote H0(t) = X2(t) with H0(t0) = X2
0 then Leray’s energy

inequality (11) for weak solutions,

1
2 Ḣ0 � −νH1 + H

1/2
0 ‖f‖2 (100)

in combination with Poincaré’s inequality k2
1H0 � H1, gives

Ẋ � −νk2
1X + ‖f‖2. (101)

Let us also denote Xf by (k1 = 2π/L),

Xf = ‖f‖2

νk2
1

=
(

ν

L3/2k2
1

)
Gr � c νL1/2Re2, (102)

which has the same dimensions as X. Integration of (101) from t0 to t results in

X(t) � X0e
−νk2

1�t + Xf

(
1 − e−νk2

1�t
)

. (103)

Because there is no specific knowledge of t0 the upper bound on H(t) is taken over
the full time-range 0 � t � ∞ which, from (103), is

H0(t0) �
(

ν2

L3k4
1

)
Gr2 � c ν2LRe4. (104)

This is properly valid after the time when transients have died out. The exponential
decay in (103) is trivial compared to exp(ω0Re �t) so we obtain∫

�t

eω0Re �tX(t) dt � c νL1/2E(�t)Re2. (105)

Now multiply (100) by eω0Re �t and integrate by parts to obtain

ν

∫
�t

eω0Re �tH1(t) dt �
∫

�t

eω0Re �t
(− 1

2 Ḣ0 + X‖f‖2
)
dt

� 1
2 H0(t0) − 1

2 H0(t)e
ω0Re �t + 1

2 ω0Re
∫

�t

H0e
ω0Re �tdt

+c ν3L−1E(�t)Re4. (106)

In the general case the negative term can be dropped, leaving

ν

∫
�t

eω0Re �tH1(t) dt � c1ν
2LRe4

+c2ν
3L−1E(�t)

(
Re5 + O(Re4)

)
(107)
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The predominant Re5 term has a correction term of O(Re4) from the fourth term
in (106) and another of O(Re2) from making up H1 to F1.

Note that the first term on the right hand side of (99) in Lemma 3 can be removed
if the energy has the lower bound H0(t) � H0(t0)e

−ω0Re �t (see Section 6 for a
discussion of this). ��
Lemma 4. An estimate for the exponentially weighted time integral of κ2,1 is

∫
�t

κ2,1(t)e
ω0Re �t dt � c ν−2

∫
�t

eω0Re �tF1dt

+c E(�t)(LGr)−1Re. (108)

Proof. The time integral of κ2,1 can be estimated from
∫

�t

κ2,1e
ω0Re �t dt =

∫
�t

eω0Re �t (F2/F
2
1 )1/2F

1/2
1 dt

� ν2

2

∫
�t

eω0Re �t (F2/F
2
1 ) dt + 1

2ν2

∫
�t

eω0Re �tF1 dt.

(109)

The first integral on the far right-hand side of (109) can be estimated by using the
inequality for F1 from (34) in Proposition 1 in Section 3.2,

1
2 Ḟ1 � −ν

4
F2 + c ν−3F 3

1 + ω0ReF1. (110)

Dividing (110) by F 2
1 , multiplying by eω0Re �t and integrating yield

ν

4

∫
�t

eω0Re �t (F2/F
2
1 )dt � c ν−3

∫
�t

eω0Re �tF1dt

+ 1
2

(
F−1

1 (t)eω0Re �t − F−1
1 (t0)

)
. (111)

The last term can be rewritten in terms of E(�t) which leaves a F−1
1 term. The

upper bound on this is proportional to Gr−1, which can be ignored as small. Then,
∫

�t

κ2,1e
ω0Re �t dt � c ν−2

∫
�t

eω0Re �tF1dt

+c L−1E(�t)Gr−1Re (112)

as in (108) above. ��

5.2. An estimate for (�t)b when n � 2

The two estimates above for the weighted time integrals of F1 and κ2,1 allow
us to prove the main result of this section for n � 2. Define

an = λn+1

µ

(
2n − 2

2n − 1

)
− 4

2n − 1
− 5. (113)
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Then an � 1 if µ is chosen such that

µ � λn+1

(
n − 1

6n − 1

)
, (114)

whereas 0 < an < 1 if µ is chosen to lie in the range1

λn+1

(
n − 1

6n − 1

)
< µ < λn+1

(
2n − 2

10n − 1

)
. (115)

Theorem 5. For n � 2, if an � 1 then the width of a bad interval is bounded by

c̃n,1ω0(�t)b � Re−an, (116)

whereas if 0 < an < 1,

c̃n,2ω0(�t)b � Re−1 ln Re. (117)

Remark 4. There appears to be no obvious parallel result for the finiteness of bad
intervals in the case n = 1, although Lemma 2 gives a lower bound µ > 1

2 for the
prevention of singularities forming on good intervals.

Proof. Let us return to inequality (36) of Proposition 1 in Section 3.2, recalling
that ω0 = νL−2:

1
2 Ḟn � − 1

2 νFn+1 + cn

(
ν−1‖u‖2∞ + ω0Re

)
Fn. (118)

This was manipulated in Section 3.3 to produce (64) which is restated here as

(n − 1
2 )(Ẏn + ω0ReYn) � 1

2 ν
Fn+1

F
2n

2n−1
n

− c2ν
−1κ

1
2n−1

2,1 F
2n−2
2n−1

1 (119)

The first term on the right-hand side of (119) can be estimated as

Fn+1

F
2n/(2n−1)
n

� κ
2n−2
2n−1
n+1 F

− 1
2n−1

0 � c κ
2n−2
2n−1
n+1 (ν2LRe4)−

1
2n−1 (120)

having used the fact that κn � κn+1. This result, together with a Hölder inequality,
gives

(n − 1
2 )

d

dt

[
Yne

ω0Re �t
]

� c ν
2n−3
2n−1 (LRe4)−

1
2n−1 eω0Re �tκ

2n−2
2n−1
n+1

−c
2n−2
2n−1
2 eω0Re �t

{
ν

2n−3
2n−1 κ2,1 + ν− 2n+1

2n−1 F1

}
. (121)

1 Note that for n = 2 the lower bound on µ in (115) is greater than 1
2(n+1)

.
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So far this has just been a rearrangement of (118). The lower bound on κn is now
applied to the first term on the right-hand side along with a time integration to yield

(n − 1
2 )

{
Yn(t)e

ω0Re �t
}

� c
2n−2
2n−1
n+1 ν

2n−3
2n−1 L−1E(�t)Re

(2n−2)λn+1
(2n−1)µ

− 4
2n−1

−c
2n−2
2n−1
2 ν

2n−3
2n−1

∫
�t

eω0Re �tκ2,1 dt

−c
2n−2
2n−1
2 ν− 2n+1

2n−1

∫
�t

eω0Re �tF1 dt

+(n − 1
2 )Yn(t0). (122)

For the left-hand side it is sufficient to show that this is bounded above by a very
small number on a bad interval, i.e.,

Yn = κ
− 2n

2n−1
n+1 F

− 1
2n−1

0 � Lν− 2
2n−1 Re− 2nλn+1

µ(2n−1) Gr−
1

2n−1 . (123)

Using Lemmas 3 and 4, a comparison of the major terms in (122) shows that

ω0E(�t)

{
c

2n−2
2n−1
n+1 Re

(2n−2)λn+1
(2n−1)µ

− 4
2n−1 − c3Re5

}
� c4Re4. (124)

For n � 2 the left-hand side is always positive provided µ is chosen in the range

λn+1

µ

(
2n − 2

2n − 1

)
− 4

2n − 1
> 5, (125)

or in the range

µ < λn+1

(
2n − 2

10n − 1

)
. (126)

To solve (124) use the definition of an in (113) to obtain

c̃n ω0E(�t) � Re−an . (127)

The solution of this depends on whether an lies in the range an � 1 or 0 < an < 1.
The estimates in (95) and (96) are appropriate. ��

5.3. Intersection of bad intervals: the relation to the singular set

Fig. 2 of Section 2.4 is a representation of good and bad intervals for some
n � 2. Since it must be assumed that the position of the intervals changes with n,
the intersection of all the bad intervals for n � 2 is pertinent: only if this intersec-
tion is non-empty will singularities be possible. For each n � 2, let us designate a
bad interval as the set Bn on the time-axis on which

cn

κn+1

κn

< (Lκn)
µRe−λn . (128)
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Moreover, because Lκn � Lκn+1, on this set there is a lower bound

(Lκn)
µ > cnReλn . (129)

Now consider the set Bn+1 on which

cn+1
κn+2

κn+1
< (Lκn+1)

µRe−λn+1 ⇒ (Lκn+1)
µ > cn+1Reλn+1 . (130)

Then on the intersection In+1 = Bn ∩ Bn+1, we have

c1+µ
n cn+1(Lκn+2) < (Lκn)

(1+µ)2
Re−λn+1−(1+µ)λn . (131)

Using (Lκn+2)
µ � (Lκn+1)

µ > cn+1Reλn+1 on In+1, a new lower bound is

(Lκn)
1+µ >

(
cn+1Reλn+1

)1/µ (
cnReλn

)
. (132)

Now consider the intersection In+2 = Bn ∩ Bn+1 ∩ Bn+2. On this set there is a
larger lower bound

(Lκn)
(1+µ)2

>
(
cn+2Reλn+2

)1/µ (
cn+1Reλn+1

) (
cnReλn

)1+µ
. (133)

We wish to find a lower bound on Lκn on the set of p intersections

In+p = Bn ∩ Bn+1 ∩ . . . ∩ Bn+p. (134)

By inspection, the general formula for the lower bound of Lκn on In+p is

(Lκn)
(1+µ)p+1

>
(
cn+p+1Reλn+p+1

)1/µ (
cn+pReλn+p

)
. . .

(
cnReλn

)(1+µ)p

= (
cn+p+1Reλn+p+1

)1/µ
(
�

p
i=0c

ξp,i

n+i

)
ReLn,p , (135)

where

ξp,i = (1 + µ)p−i , Ln,p =
p∑

i=0

λn+i ξp,i . (136)

Now �
(p)
n and c

(p)
n are defined as

�
(p)
n = λn+p+1 + µ Ln,p

(1 + µ)p+1 , c
(p)
n =

{
cn+p+1

(
�

p
i=0c

ξp,i

n+i

)µ} 1
(1+µ)p+1

, (137)

and then, because λn+p > λn and cn+p > cn, it follows that

ξpλn < Ln,p < ξpλn+p, c
ξp
n < �

p
i=0 c

ξp,i

n+i < c
ξp

n+p, (138)

where ξp is defined by the sum

ξp =
p∑

i=0

ξp,i = µ−1
{
(1 + µ)p+1 − 1

}
. (139)
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�

�

κn(t)

t

....................................................................................................

.............................. .................................................................

Reλn Long-time average

(Lκn)µ > Reλn� �
Reλn/µ

(�t)b (�t)g

��

Fig. 3. Similar to Fig. 2, a representation of good/bad intervals for κn with a black strip
representing the bad interval used in the intersection Table 6.

Then in the limit p → ∞ we have

(Lκn)
µ > c(∞)

n Re�
(∞)
n > cnReλn . (140)

The potentially singular set S(∞), given by

S(∞) = B1 ∩ B2 ∩ . . . ∩ Bn ∩ . . . , (141)

must necessarily include B1, the singular set of κ1 (and therefore F1). The range of
values of µ expressed in (115) and Theorem 5 are valid for n � 2. From (114) and
(115), we define

Mn =



λn+1

(
n−1
6n−1

)
an � 1,

λn+1

(
2n−2
10n−1

)
an < 1,

(142)

which gives

lim
n→∞ Mn ↘

{
1
2 an � 1,
3
5 an < 1.

(143)

As already pointed out in Lemma 2 of Section 4.1, a corresponding separate cal-
culation for F1 shows that µ lies in the range 1

2 < µ < 1 for n = 1. When the
allowed ranges of µ are taken into account for good and bad intervals we conclude

Theorem 6. For all bad intervals to be finite for n � 2 and for no singularities to
form in good intervals for n � 1, the allowed range of µ is

1
2 < µ < lim

n→∞ Mn = 3
5 . (144)
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In+8
κn+8
κn+7
κn+6
κn+5
κn+4
κn+3
κn+2
κn+1
κn

Table 6. The lowest continuous horizontal black strip is the bad interval of κn shown as the
black strip in Fig. 3. The strips in the next 8 levels are a cartoon illustration of how some
randomly chosen bad intervals (κn → κn+8) could appear. The thicker strips at the highest
level are the intersection of the 9 strips below.

Remark 5. In the infinite limit the upper and lower bounds coincide at 1
2 for the nar-

rower intervals, thereby creating a problem because of the inequalities in (144). It
is necessary, however, to take into account the existence of wider intervals (an < 1)
which accounts for the wider range 1

2 < µ < 3
5 .

The set S(∞) is related to the potentially singular set of Scheffer [15]; this set is
technically the union of all sets S(∞) associated with every bad interval. This set has
zero 1

2 -dimensional Hausdorff measure and consists of, at most, points. Whether the
κn actually become singular on this set is still an open question. From (137)-(139)
we have

cnReλn < c(∞)
n Re�

(∞)
n < lim

p→∞ cn+p+1Reλn+p+1 . (145)

Divergence in this limit would guarantee singular behaviour if the set S(∞) is non-
empty but there is no evidence that the sum and product in (137) diverges in the
limit even though the upper bound in (145) is infinite. From (145) it is clear that
�

(∞)
n > λn so all the estimates of the previous sections dependent upon λn should

be replaced by �
(∞)
n . This paper, however, provides no evidence on the distribution

of the intervals; Table 6 is simply a pictorial cartoon representation of some ran-
domly chosen bad intervals associated with κn → κn+8 to illustrate how the final
intersection may form.

5.4. Dangerous sub-intervals

In addition to the intersection idea of the last section, we consider the special set
of sub-intervals within each bad interval on which Ḟn � 0. Consider the j th sub-
interval within the ith bad interval: this is designated as a dangerous sub-interval of
width (�t

i,j
+ ) with an initial value of designated as t

i,j
0 . It is on these sub-intervals

where singularities are possible: they are not possible where any one of the Fn is
decreasing. Ranges (114) and (115) show that the smallest lower bound on λn/µ
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is λn/µ > 5. Because λn+1 > λn, and replacing λn+1 by �
(∞)
n+1, we define

bn = �
(∞)
n+1

µ
− 4 > 1. (146)

Theorem 7. Dangerous sub-intervals are bounded in width by (n � 2)

ω0(�t
i,j
+ ) � cnRe−bn, bn > 1, (147)

and on these sub-intervals,

L−3F1 � ω2
0Rebn+4, ‖u‖∞ � Lω0Rebn+4, (148)

‖∇u‖∞ � ω0Rebn+4. (149)

Remark 6. Note that bn > an so the upper bounds of these sub-intervals in (147)
are smaller than those in Theorem 5.

Proof. Consider (16):

1
2 Ḟn � − 1

2 νFn+1 +
(
cnν

−1‖u‖2∞ + ω2
0Re

)
Fn. (150)

Now use the Sobolev inequality ‖u‖2∞ � c κn,1F1, and divide (150) by Fn. Then
on these sub-intervals,

κ2
n+1,n � cnν

−2κn,1F1 + c L−2Re. (151)

Now we know that κn+1,n � κn+1 so

κ2
n+1 �

(
cnν

−2F1

)2 + c L−2Re. (152)

Now the lower bound Lκn+1 � Re�
(∞)
n+1/µ is invoked giving

(
c(∞)
n Re�

(∞)
n+1/µ

)2 − c Re �
(
cnLν−2F1

)2
. (153)

Because λn/µ > 1 for n � 2, the Re term is small in comparison, leaving

c(∞)
n Re�

(∞)
n+1/µ � Lν−2F1 (154)

By multiplying by the exponential term, integrating over �t+, and then using the
exponentially time-weighted integral of F1 in Lemma 3, we obtain

cn ω0E(�t+)
[
Re�

(∞)
n+1/µ − Re5

]
� Re4. (155)

Now we know that �
(∞)
n+1/µ > 5 and bn > 1, so the result in (147) follows. The

definition of an in (113) guarantees that

bn = �
(∞)
n+1

µ
− 4 > an, (156)

which is the correct way round. Then (148) and (149) follow from (154). ��
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6. A conditional regularity result

The reader who has followed the proof of Theorem 5 will have noticed that
attempts to prove Navier-Stokes regularity fail in the bad intervals. There, use was
made of the variables Yn(t) = F

−1/(2n−1)
n defined in (62). To prevent the formation

of singularities, it would be necessary to show that Yn can never touch zero in a
finite time. Within the dangerous sub-intervals of Section 5.4 this can be achieved
provided the energy is bounded below in a certain manner. Specifically the result
is

Theorem 8. The Navier-Stokes equations are regular if, in dangerous sub-intervals
(�t

i,j
+ ), there is a lower bound on the energy

H0(t) � H0(t
i,j
0 )e−ω0Re�t . (157)

Remark 7. Over the very short time interval �t the exponent on the right-hand
side of (157) is very small, so the right-hand side is almost H0(t

i,j
0 ).

Proof. They key point preventing progress regarding bounding Yn(t) away from
zero is the set of extra terms in Lemmas 3 and 4 that are not proportional to E(�t).
This creates negative terms on the right-hand side of (122) that cannot be controlled.
To circumvent this problem it is necessary to remove two hurdles. The first is the
last pair of terms within inequality (111)

ν

4

∫
�t

eω0Re �t (F2/F
2
1 )dt � c ν−3

∫
�t

eω0Re �tF1dt

+ 1
2

[
F−1

1 (t)eω0Re �t − F−1
1 (t0)

]
. (158)

On dangerous sub-intervals t
i,j
0 where F1 is increasing, the last term in (158) can

be rewritten as

1
2

(
F−1

1 (t)eω0Re �t − F−1
1 (t

i,j
0 )

)
� 1

2 ω0Re F−1
1 (t

i,j
0 )E(�t

i,j
+ ). (159)

This term is now classed as one of the E(�t
i,j
+ ) terms and is merely a term of lower

order than the dominant Re5 term.
Secondly, in (106) if it assumed that on these sub-intervals (157) is true then

the extra terms in (99) can be removed, leaving∫
�t

eω0Re �tF1(t) dt � c2ν
2L−1E(�t

i,j
+ )

[
Re5 + O(Re4)

]
, (160)

which again is proportional to E(�t
i,j
+ ). Thus (122) becomes

(n − 1
2 )

{
Yn(t)e

ω0Re (�t
i,j
+ )

}
� (n − 1

2 )Yn(t
i,j
0 )

+cnν
2n−3
2n−1 L−1E(�t

i,j
+ )

{
Re

(2n−2)λn+1−4µ

(2n−1)µ − Re5
}

(161)
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with no negative terms on the right-hand side. Given that µ is chosen in the restricted
ranges of (114) and (115) within Theorem 5, and that E > 0 for t > 0, then Yn(t)

can never be zero. ��

7. Discussion

To summarize the arguments of this paper, it has been shown that very strong
fluctuations in the κn(t) can occur in time, and lower bounds on these are much
higher than the long-time average (15):

〈Lκn〉 � cnReλn, λn = 3 − 5

2n
+ δ

n
. (162)

This is based on the raising of the lower bound on the ratio κn+1/κn away for unity,
a result which is expressed in Theorem 3 of Section 4, i.e.,

cn

κn+1

κn

� (Lκn)
µRe−λn, (163)

and is effective only on the good parts of the time axis. On those parts of the time-
axis where the reverse of (163) is true, no upper bound has been found on the κn

but very large lower bounds exist of the form

Lκn > cnReλn/µ. (164)

The above results are valid for n � 2. By including intervals at n = 1 the intersec-
tion set of bad intervals S(∞) is related to the set of potential singularities, in which
case the right-hand side of (164) can be raised again by replacing λn by �

(∞)
n . As

inequality (144) of Theorem 6, makes clear, the constant2 µ is then constrained to
the range 1

2 < µ < 3
5 .

A picture emerges of Navier-Stokes solutions that are regular on ‘most’ of the
time-axis which is punctured by short, active intervals. While no upper bound on
κn has yet been found within these intervals, to become singular κn would have to
find its way through a non-empty intersection in a similar manner as the illustration
in Fig. 3. Notwithstanding the widely held belief that the Navier-Stokes equations
must be regular for arbitrarily long times, an equally credible alternative is that no
formal upper bound exists on the κn, but the potentially singular set S(∞) in Section
5.3 allows only extremely rare singular events.

The results in this paper are consistent with ideas that have existed for many
decades concerning intermittent flows [1, 20, 24, 25, 39] but it has to be acknowl-
edged that our results are lacking in four areas:

1. It is possible that the bounds based on λn in (15) and Table 4 may not be sharp.
Given this, the state of the analysis is such that it may be premature to suggest
specific numerical tests.

2 In fact (163) breaks the dimensional scaling of the standard Sobolev and Gagliardo-
Nirenberg inequalities, although how the introduction of the exponent µ affects this in a
precise manner is not yet clear.
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2. In addition to a lack of control over the κn within the bad intervals, their distri-
bution and sensitivity to the value of n is an important but unanswered question.

3. The nature of solutions in the good intervals has yet to be properly established.
Because solutions are bounded point-wise in time and are also constrained by
the long-time average (162) it is to be expected that they should show a strong
degree of quiescence, particularly within the central parts of these intervals.
This has yet to be demonstrated.

4. How solutions at the junctions of the good and bad intervals connect to each
other is not clear.

Results of this type derived in the manner of Section 4 are not confined to the three-
dimensional Navier-Stokes equations but could be applied to simpler problems.
All that is needed are long-time average bounds for weak solutions constructed in
such a way that the equivalents of κn are bounded below. An example that springs
to mind is the case of the two-dimensional Navier-Stokes equations. Not only are
these regular, but tight estimates exist both for the attractor dimension [51] and the
number of determining modes and nodes [52]. Other examples might be the alpha
and Leray models of turbulence [53–55] or the complex Ginzburg-Landau equation
[56, 57].

For many years the physics community has used scaling arguments based on
Kolmogorov’s original work. Frisch’s book gives a detailed factual and historical
account of these arguments [22]. It has been argued in [46] that the scaling in the
rigorous upper bounds on 〈κn〉 from (15) (repeated in (162) above) may be inter-
preted in terms of the Fourier spectrum Es(k) if a scaling of the form Es ∼ k−q

is assumed in the inertial range, up to the cut-off wave-number Lkc ∼ Reqc . Dis-
regarding the correction from δ, the a priori bounds in (162) are consistent with
q = 8/3 and qc = 3. Such a k−8/3 spectrum has arisen in at least two previous
studies. Sulem & Frisch [58] have shown that a k−8/3 spectrum is the borderline
steepness capable of sustaining an energy cascade in the Navier-Stokes equations
when the total energy is finite. Mandelbrot [23], and later Frisch, Sulem &

Nelkin in their toy β-model [59, 22], came upon this same scaling exponent as an
extreme limit of intermittency in the energy cascade. They found that if the energy
dissipation is assumed to be concentrated on a fractal set (in space) of dimension
D = 8 − 3q, then the energy spectrum scaling is of the form Es ∼ k−q . Within
this picture, the exponent q = 8/3 thus corresponds to dissipation concentrated
at points in space. Interestingly, the conventional Kolmogorov k−5/3 spectrum for
homogeneous isotropic turbulence is associated with D = 3; that is, a complete
lack of intermittency with dissipation spread uniformly in space is consistent with
q = 5/3. Departures from Kolmogorov scaling, otherwise known as anomalous
scaling, can be associated with intermittency in the inertial-range. These arguments
have been applied to and tested on various models such as the β-model [59], and
the bifractal and multi-fractal models [22]. While they suffer by comparison in not
having the same degree of complexity as the Navier-Stokes equations – as Frisch

[22] and Sreenivasan [60] have both pointed out – these models are both simple
and capture the main essence of the phenomena in question. More recent work on
anomalous scaling has centred on the role of the SO(3) symmetry group in the
expansion of the correlation functions [61, 62].
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