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This paper is dedicated to the memory of Victor Yudovich
with whom the author discussed some of these ideas in their early stages

Orthonormal quaternion frames, Lagrangian evolution
equations, and the three-dimensional Euler equations

J.D. Gibbon

Abstract. More than 160 years after their invention by Hamilton, quater-
nions are now widely used in the aerospace and computer animation in-
dustries to track the orientation and paths of moving objects undergoing
three-axis rotations. Here it is shown that they provide a natural way of
selecting an appropriate orthonormal frame—designated the quaternion-
frame— for a particle in a Lagrangian flow, and of obtaining the equations
for its dynamics. How these ideas can be applied to the three-dimensional
Euler fluid equations is then considered. This work has some bearing on
the issue of whether the Euler equations develop a singularity in a finite
time. Some of the literature on this topic is reviewed, which includes both
the Beale–Kato–Majda theorem and associated work on the direction of
vorticity by Constantin, Fefferman, and Majda and by Deng, Hou, and
Yu. It is then shown how the quaternion formalism provides an alternative
formulation in terms of the Hessian of the pressure.
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1. General introduction

1.1. Historical remarks. Everyone loves a good story: William Rowan Hamil-
ton’s feverish excitement at the discovery of his famous formula for quaternions on
16th October 1843 as a composition rule for orienting his telescope; his inscription
of this formula on Broome (Brougham) Bridge in Dublin; and then his long and
eventually unfruitful championing of the role of quaternions in mechanics, are all
elements of a story that has lost none of its appeal [1], [2]. Hamilton’s name is still
revered today for the audacity and depth of his ideas in modern mechanics and
what we now call symplectic geometry [3]–[5]. Indeed, evidence of his thinking is
everywhere in both classical and quantum mathematical physics and applied math-
ematics, yet in his own century his work on quaternions evoked criticism and even
derision from many influential fellow scientists.1 Ultimately quaternions lost out to
the tensor notation of Gibbs, which is the basis of the 3-vector notation universally
used today.

In essence, Hamilton’s multiplication rule for quaternions represents composi-
tions of rotations [6]–[11]. This property has been ably exploited in modern inertial
guidance systems in the aerospace industry where computing the orientation and
the paths of rapidly moving rotating satellites and aircraft is essential. Kuipers’
book [12] explains the details of how calculations with quaternions in this field are
performed in practice. Just as importantly, the computer graphics community also
uses them to determine the orientation of tumbling objects in animations. In his
valuable and eminently readable book, Andrew Hanson [2] says in his introduction:

Although the advantages of the quaternion forms for the basic equations
of attitude control — clearly presented in Cayley [6], Hamilton [7], [8], and
especially Tait [9] —had been noticed by the aeronautics and astronau-
tics community, the technology did not penetrate the computer animation
community until the landmark SIGGRAPH-1985 paper of Shoemake [13].
The importance of Shoemake’s paper is that it took the concept of the
orientation frame for moving 3D objects and cameras, which require pre-
cise orientation specification, exposed the deficiencies of the then-standard
Euler-angle methods,2 and introduced quaternions to animators as a solu-
tion.

Hamilton’s 19th century critics were correct, of course, in asserting that quater-
nions need 3-vector algebra to manipulate them, yet the use the aero/astronautics
and animation communities have made of them are one more illustration of the
universally acknowledged truth that while new mathematical tools may not be of
immediate use, and may appear to be too abstract or overly elaborate, they may
nevertheless turn out to have powerful applications undreamed of at the time of
their invention.

1.2. Application to fluid dynamics. The close association of quaternions with
rigid body rotations [9]–[11] points to their use in the incompressible Euler equations
for an inviscid fluid as a natural language for describing the alignment of vorticity

1Kelvin was one such example: see [1].
2A well-known deficiency of Euler-angle methods lies in the problems they suffer at the poles

of the sphere where the azimuthal angle is not defined.
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with the eigenvectors of the strain rate that are responsible for its non-linear evo-
lution. For a three-dimensional fluid velocity field u(x, t) with pressure p(x, t), the
incompressible Euler equations are [14]–[18]

Du

Dt
= −∇p, (1.1)

where the material (substantial) derivative is defined by

D

Dt
=

∂

∂t
+ u · ∇. (1.2)

The motion is constrained by the incompressibility condition div u = 0. The crucial
dynamics lies in the evolution of the velocity gradient matrix ∇u = {ui,j} which
comes from the differentiation of (1.1),

Dui,j

Dt
= −ui,kuk,j − Pij , (1.3)

where Pij is the Hessian matrix of the pressure,

Pij =
∂2p

∂xi ∂xj
. (1.4)

The incompressibility condition div u = 0 insists that Trui,j = 0 which, when
applied to (1.3), gives

TrP = ∆p = −ui,kuk,i =
1
2
ω2 − TrS2. (1.5)

In (1.5) above, ω is the vorticity and S is the strain matrix, whose elements are
defined by

Sij =
1
2
(ui,j + uj,i). (1.6)

This is a symmetric matrix, the alignment of whose eigenvectors ei is fundamental
to the dynamics of the Euler equations. For instance, vortex tubes and sheets
(Burgers’ vortices and shear layers) always have one eigenvector aligned with the
vorticity vector ω [18].

This review cannot hope to deal with every aspect of the three-dimensional Euler
equations. Here we concentrate on one particular aspect, which is the role played by
quaternions in providing a natural language for extracting geometric information
from the evolution of ui,j . Because they are particularly effective in computing the
orientation of rotating objects moving in three-dimensional paths they might be
useful in understanding how general Lagrangian flows behave, particularly in find-
ing the evolution of the orthonormal frame of particles moving in such a flow. These
particles could be of the passive tracer type transported by a background flow or
they could be Lagrangian fluid parcels. Recent experiments in turbulent flows can
now detect the trajectories of tracer particles at high Reynolds numbers [19]–[28]:
see [19], Fig. 1. For any system involving a path represented as a three-dimensional
space-curve, the usual practice is to consider the Frenet-frame of a trajectory con-
stituted by the unit tangent vector, the normal, and the bi-normal [2], [28]. In
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navigational language, this represents the corkscrew-like pitch, yaw, and roll of the
motion. While the Frenet-frame describes the path, it ignores the dynamics that
generates the motion. Attempts have been made in this direction using the eigen-
vectors ei of S but ran into difficulties because the equations of motion for ei are
unknown [29]. In § 2 another orthonormal frame is introduced that is associated
with the motion of each Lagrangian particle. It is designated the quaternion-frame:
this frame may be envisioned as moving with the Lagrangian particles but its evolu-
tion derives from the Eulerian equations of motion. The advantage of this approach
lies in the fact that the Lagrangian dynamics of the quaternion-frame can be con-
nected to the fluid motion through the pressure Hessian P defined in (1.4).

Let us now consider a general picture of a Lagrangian flow system of equations.
Suppose that w is a contravariant vector quantity attached to a particle following a
flow along characteristic paths dx/dt = u(x, t) of a velocity field u. Let us consider
the abstract Lagrangian flow equation

Dw

Dt
= a(x, t),

D

Dt
=

∂

∂t
+ u · ∇, (1.7)

where the material derivative has its standard definition, and in turn, a satisfies
the Lagrangian equation

D2w

Dt2
=

Da

Dt
= b(x, t). (1.8)

So far, these are just kinematic rates of change following the characteristics of the
velocity generating the path x(t) determined from dx/dt = u(x, t). Examples of
systems that (1.7) might represent are as follows.

1. If w represents the vorticity ω = curlu of the incompressible Euler fluid
equations, then a = ω · ∇u and div u = 0. With rotation w would be
w ≡ ω̃ = ρ−1

0 (ω + 2Ω).
2. For the barotropic compressible Euler fluid equations (where the pressure

p = p(ρ) is density dependent only) w ≡ ωρ = ρ−1ω, in which case a =
ωρ · ∇u and div u = 0.

3. The vector w could also represent a small vectorial line element δ` that is
mixed and stretched by a background flow u, in which case a = δ` ·∇u. For
example, following Moffatt’s analogy between the magnetic field B in ideal
incompressible MHD (magnetic hydrodynamics) and vorticity [30], if w is
chosen such that w ≡ B, then a = B · ∇u with div B = 0. In a more
generalized form, the vector w could also represent the Elsasser variables
w± = u±B, in which case a± = w± · ∇u with two material derivatives.

4. The semigeostrophic (SG) model used in atmospheric physics can also be
cast in the form of (1.7); for instance, one could choose w = x, a = u,
and b is computed from the SG-model through the semigeostrophic and
ageostrophic contributions [31]–[33].

5. For a passive tracer particle with velocity w in a fluid transported by a back-
ground velocity field u, the particle’s acceleration would be a (see [34], [16]).

In cases 1–3 above, if w satisfies the standard Eulerian form

Dw

Dt
= w · ∇u, (1.9)
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then to find b it follows from Ertel’s theorem (see [35]) that

D(w · ∇µ)
Dt

= w · ∇
(

Dµ

Dt

)
, (1.10)

which means that the operators D/Dt and w · ∇ commute for any differentiable
function µ(x, t). Choosing µ = u as in [36], and identifying the flow acceleration
as Q(x, t) so that Du/Dt = Q(x, t), we have

D2w

Dt2
= w · ∇

(
Du

Dt

)
= w · ∇Q. (1.11)

In each of the cases 1–3 above, Q is readily identifiable, and thus we have b:

Da

Dt
= w · ∇Q =: b(x, t), (1.12)

thereby completing the quartet of vectors (u,w,a, b). In § 2 it will be shown that
knowledge of the quartet of vectors (u,w,a, b) determines the quaternion-frame,
which is a completely natural orthonormal frame for the Lagrangian dynamics.
Modulo a rotation around w, the quaternion-frame turns out to be the Frenet-frame
attached to characteristic curves w. Although usually credited to Ertel [35], the re-
sult in (1.10), which involves cancellation of non-linear terms of order O(|w| |∇u|2),
actually goes much further back in the literature than this; see [36]–[40]. While Er-
tel’s theorem above enables us to find a b as in cases 1–3, b must be determined by
other means in case 4.

1.3. Blow-up in the three-dimensional Euler equations. The general pic-
ture of Lagrangian evolution and the associated quaternion frame is given in § 2.
Thereafter this paper will focus on the three-dimensional incompressible Euler equa-
tions (1.1) (see § 3) and the global existence of solutions (see § 4).

Many generations of mathematicians could testify to the deceptive simplicity
of the Euler equations. The work of the late V. Yudovich [41], who proved the
existence and uniqueness of weak solutions of the two-dimensional Euler equations
with ω0 ∈ L∞ on unbounded domains, will be remembered as a milestone in Euler
dynamics. In the three-dimensional case, while many special solutions are known in
terms of simple functions [16]–[18], weak Leray-type solutions with L2 initial data
are unknown. This contrasts with known results for the two-dimensional case on
weak and distributional solutions concerning the vortex sheet problem (see Majda
and Bertozzi [15]). One of the great open problems in applied mathematics today
is whether the three-dimensional Euler equations develop a singularity in a finite
time. In physical terms, singular behaviour could potentially occur if a vortex is
resolvable only by length scales decreasing to zero in a finite time. While a review
of certain aspects of the three-dimensional Euler singularity problem will form part
of the later sections of this review, the regularity problem for the Navier–Stokes
equations will not be considered; the interested reader should consult [42]–[44].

In the first demonstrable case of Euler blow-up, Stuart [45]–[47] considered so-
lutions of the three-dimensional Euler equations that had linear dependence in two
variables x and z; the resulting differential equations in the remaining independent
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variables y and t displayed finite time singular behaviour. Stuart then showed how
the method of characteristics leads to the construction of a complete class of singu-
lar solutions [45]. This type of singularity has infinite energy, because the solution
is linearly stretched in the both the x and z directions. In a similar fashion, Gibbon,
Fokas, and Doering [48] considered another class of infinite-energy solutions whose
third component of velocity is linear in z, so that the velocity field takes the form
u =

{
u1(x, y, t), u2(x, y, t), zγ(x, y, t)

}
. These generalize the Burgers’ vortex [18]

and represent tube- and ring-like structures depending on the sign of γ(x, y, t).
Strong numerical evidence of singular behaviour on a periodic cross-section found
by Ohkitani and Gibbon [49] was confirmed by an analytical proof of blow-up by
Constantin [50]. Subsequently, Gibbon, Moore, and Stuart [51] found two explicit
singular solutions using the methods outlined in [45].

The Beale–Kato–Majda (BKM) theorem [52] has been the main cornerstone
of the analysis of potential finite-energy Euler singularities: one version of this
theorem is that ‖ω‖∞ must satisfy (see § 4 for a more precise statement)∫ T

0

‖ω‖∞ dτ < ∞ (1.13)

for a global solution to exist up to time T . The most important feature of (1.13)
is that it is a single, simple criterion which is easily monitored.

Several refinements of the BKM theorem exist in addition to those by Ponce [53],
who replaced ‖ω‖∞ by ‖S‖∞, and the BMO-version proved by Kozono and Tani-
uchi [54]. In particular, these take account of the direction in which vorticity grows.
The work of Constantin [55] and of Constantin, Fefferman, and Majda [56], reviewed
in § 4.1, deserves specific mention. They were the first to make a precise mathemat-
ical formulation of how the misalignment of vortex lines might lead to (or prevent)
a singularity. This approach and its variants lays the mathematical foundation for
the next generation of computational experiments on the Euler equations. § 4.2
is devoted to a review of the work of Deng, Hou, and Yu [57], [58], who have es-
tablished different criteria on vortex lines. In § 4.3 quaternions are considered as
an alternative way of looking at the direction of vorticity [59], which provides us
with a different direction-of-vorticity theorem, based on the Hessian matrix of the
pressure (1.4). Further discussion and references are left to § 4.

1.4. Definition and properties of quaternions. In terms of any scalar p and
any 3-vector q, the quaternion q = [p, q] is defined as (Gothic fonts denote quater-
nions)

q = [p, q] = pI −
3∑

i=1

qiσi, (1.14)

where {σ1, σ2, σ3} are the three Pauli spin-matrices defined by

σ1 =
(

0 i
i 0

)
, σ2 =

(
0 1
−1 0

)
, σ3 =

(
i 0
0 −i

)
, (1.15)

I is the 2×2 unit matrix, and {σ1, σ2, σ3} obey the relations σiσj = −δijI−εijkσk.
These give the non-commutative multiplication rule

q1 ~ q2 = [p1p2 − q1 · q2, p1q2 + p2q1 + q1 × q2]. (1.16)
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It can easily be demonstrated that quaternions are associative. One of the main
properties of quaternions not shared by 3-vectors is the fact that they have an
inverse; the inverse of q is q∗ = [p,−q] which means that q ~ q∗ = [p2 + q2, 0] =
(p2 + q2)[1, 0]; of course, [1, 0] really denotes a scalar, so if p2 + q2 = 1, then q is a
unit quaternion q̂.

A quaternion of the type w = [0,w] is called a pure quaternion, with the product
between two of them expressed as

w1 ~ w2 = [0,w1] ~ [0,w2] = [−w1 ·w2,w1 ×w2]. (1.17)

In fact, there is a quaternionic version of the gradient operator ∇ = [0,∇], which,
when acting upon a pure quaternion u = [0,u], gives

∇ ~ u = [−div u, curlu]. (1.18)

If the field u is divergence-free, as for an incompressible fluid, then

∇ ~ u = [0,ω]. (1.19)

This pure quaternion incorporating the vorticity will be used freely in future sec-
tions.

It has been mentioned already in § 1.1 that quaternions are used in the aerospace
and computer animation industries to avoid difficulties with Euler angles. Here the
relation is briefly sketched between quaternions and one of the many ways that have
been used to describe rotating bodies in the rich and long-standing literature of
classical mechanics — for more, see [62]. Whittaker [10] shows how quaternions and
the Cayley–Klein parameters [11] are intimately related and gives explicit formulae
relating these parameters to the Euler angles. Let q̂ = [p, q] be a unit quaternion
with inverse q̂∗ = [p,−q] where p2 + q2 = 1. For a pure quaternion r = [0, r] there
exists a transformation r → r′ = [0, r′]:

r′ = q̂ ~ r ~ q̂∗. (1.20)

This associative product can be explicitly written as

r′ = q̂ ~ r ~ q̂∗ =
[
0, (p2 − q2)r + 2p(q × r) + 2q(r · q)

]
. (1.21)

Choosing p = ± cos 1
2θ and q = ±n̂ sin 1

2θ, where n̂ is the unit normal to r, we find
that

r′ = q̂ ~ r ~ q̂∗ =
[
0, r cos θ + (n̂× r) sin θ

]
≡ O(θ, n̂)r. (1.22)

Equation (1.22) is the Euler–Rodrigues formula for the rotation O(θ, n̂) by an angle
θ of the vector r about its unit normal n̂; θ and n̂ are called the Euler parameters.
With the choice of p and q above, q̂ is given by

q̂ = ±[cos 1
2θ, n̂ sin 1

2θ]. (1.23)

The elements of the unit quaternion q̂ are the Cayley–Klein parameters which are
related to the Euler angles and which form a representation of the Lie group SU(2).
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All the terms in (1.21) are quadratic in p and q, and thus possess the well-known
±-equivalence which is an expression of the fact that SU(2) covers SO(3) twice.3

To investigate the map (1.20) when p̂ is time-dependent, the Euler–Rodrigues
formula in (1.22) can be written as

r′(t) = p̂ ~ r ~ p̂∗ =⇒ r = p̂∗ ~ r′(t) ~ p̂ . (1.24)

Thus, ṙ′ has a time derivative given by

ṙ′(t) = ˙̂p ~ (p̂∗ ~ r′ ~ p̂) ~ p̂∗ + p̂ ~ (p̂∗ ~ r′ ~ p̂) ~ ˙̂p∗

= ˙̂p ~ p̂∗ ~ r′ + r′ ~ p̂ ~ ˙̂p∗

= ( ˙̂p ~ p̂∗) ~ r′ + r′ ~ ( ˙̂p ~ p̂∗)∗

= ( ˙̂p ~ p̂∗) ~ r′ − (( ˙̂p ~ p̂∗) ~ r′)∗ , (1.25)

having used the fact on the last line that because r′ is a pure quaternion, r′∗ = −r′.
Because p̂ = [p, q] is of unit length, and thus pṗ + qq̇ = 0, this means that ˙̂p ~ p̂∗

is also a pure quaternion
˙̂p ~ p̂∗ = [0, 1

2Ω0(t)] . (1.26)

The 3-vector entry in (1.26) defines the angular frequency Ω0(t) as Ω0 = 2(−ṗq +
q̇p− q̇ × q) thereby giving the well-known formula for the rotation of a rigid body

ṙ′ = Ω0 × r′ . (1.27)

For a Lagrangian particle, the equivalent of Ω0 is the Darboux vector Da in Theo-
rem 1 of § 2. This theorem is the main result of this paper and is the equivalent of
(1.27) for a Lagrangian particle undergoing rotation in flight.

Finally, it can easily be seen that Hamilton’s relation in terms of hyper-complex
numbers i2 = j2 = k2 = ijk = −1 will generate the rule in (1.16) if q is written as
a 4-vector q = p+ iq1 + jq2 + kq3. Sudbery’s paper [60] is still the best source for a
study of the functional properties of quaternions; he discusses how various results
familiar for functions over a complex field, such as the Cauchy–Riemann equations,
Cauchy’s Theorem and integral formula, together with the Laurent expansion (but
not conformal maps) have their parallels for quaternionic functions. More recent
work on further analytical properties can be found in [61].

2. Lagrangian evolution equations and an orthonormal frame

This section sets up the mathematical foundation concerning the association of
quaternion frames and can be found in the paper by Gibbon and Holm [62]. Let
us repeat the Lagrangian evolution equations for a vector field w satisfying (1.7)
and (1.8)

Dw

Dt
= a(x, t),

Da

Dt
= b(x, t). (2.1)

3Editor’s note: The next paragraph was inadvertently omitted from the paper in Uspekhi
Mat. Nauk and has been included in the English translation.
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Figure 1. The dotted line represents the tracer particle (•) path mov-
ing from (x1, t1) to (x2, t2). The solid curves represent characteristic
curves w = dx/ds to which bw is a unit tangent vector. The orientation
of the quaternion-frame ( bw, bχa, bw × bχa) is shown at the two space-time
points; note that this is not the Frenet-frame corresponding to the particle
path but to the characteristic curves w.

Given the Lagrangian equations in (2.1), define the scalar αa and the 3-vector χa

as4

αa = |w|−1(ŵ · a), χa = |w|−1(ŵ × a), w 6= 0. (2.2)

Moreover, let αb and χb be defined as in (2.2) for αa and χa with a replaced by b.
The 3-vector a can be decomposed into parts that are parallel and perpendicular
to w (and the same for b):

a = αaw + χa ×w = [αa,χa] ~ [0,w], (2.3)

and thus the quaternionic product is summoned in a natural manner. By definition,
the growth rate αa of the magnitude |w| obeys

D|w|
Dt

= αa|w|, (2.4)

while the unit tangent vector ŵ = ww−1 satisfies

Dŵ

Dt
= χa × ŵ. (2.5)

Now identify the quaternions5

qa = [αa,χa], qb = [αb,χb], (2.6)

and let w = [0,w] be the pure quaternion satisfying the Lagrangian evolution
equation (2.1). Then the first equation in (2.1) can automatically be re-written
equivalently in the quaternion form

Dw

Dt
= [0,a] = [0, αaw + χa ×w] = qa ~ w. (2.7)

4The role of null points w = 0 is not yet clear, although, as § 3 shows, this problem is neatly
avoided by the Euler fluid equations. It has been discussed at greater length in [62].

5Dropping the a, b labels and normalizing, the Cayley–Klein parameters are q̂ = [α, χ](α2 +
χ2)−1/2.
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Moreover, if a is differentiable in the Lagrangian sense as in (2.1), then it is clear
that a similar decomposition for b as that for a in (2.3) gives

D2w

Dt2
= [0, b] = [0, αbw + χb ×w] = qb ~ w. (2.8)

By using the associativity property, the compatibility of (2.8) and (2.7) implies
that (provided |w| 6= 0) (

Dqa

Dt
+ qa ~ qa − qb

)
~ w = 0, (2.9)

which establishes a Riccati relation between qa and qb:

Dqa

Dt
+ qa ~ qa = qb. (2.10)

This relation is closely allied to the orthonormal quaternion-frame6 (ŵ, χ̂a, ŵ×χ̂a)
whose equations of motion are given as follows.

Theorem 1 [62]. For the system of equations (2.1) relating the 3-vectors w , a,
and b, the orthonormal quaternion-frame (ŵ, χ̂a, ŵ× χ̂a) ∈ SO(3) has Lagrangian
time derivatives expressed as

Dŵ

Dt
= Dab × ŵ, (2.11)

D(ŵ × χ̂a)
Dt

= Dab × (ŵ × χ̂a), (2.12)

Dχ̂a

Dt
= Dab × χ̂a, (2.13)

where the Darboux angular velocity vector Dab is defined as

Dab = χa +
cb

χa
ŵ, cb = ŵ · (χ̂a × χb), (2.14)

χa is defined in (2.2), and likewise χb .

Remark. The analogy with the formula for a rigid body is obvious when compared
to (1.27), but the Darboux angular velocity Dab is itself a function of χ, ŵ, and
other variables and sits in a two-dimensional plane. In turn this is driven by cb =
ŵ · (χ̂a × χb), for which b must be known. Given this, it may then be possible to
numerically solve equations (2.11)–(2.14) for the particle paths.

Proof. To find an expression for the Lagrangian time derivatives of the components
of the frame (ŵ, χ̂a, ŵ×χ̂a) requires the derivative of χ̂a. To find this it is necessary
to use the fact that the 3-vector b can be expressed in this orthonormal frame as
the linear combination

w−1b = αbŵ + cbχ̂a + db(ŵ × χ̂a), (2.15)
6According to Hanson [2] the quaternion-frame is similar to the Bishop-frame in computer

graphics.
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where cb is defined in (2.14) and db = −(χ̂a · χb). The 3-vector product χb =
w−1(ŵ × b) yields

χb = cb(ŵ × χ̂a)− dbχ̂a. (2.16)

To find the Lagrangian time derivative of χ̂a, we use the 3-vector part of the
equation for the quaternion qa = [αa,χa] in Theorem 1:

Dχa

Dt
= −2αaχa + χb =⇒ Dχa

Dt
= −2αaχa − db, (2.17)

where χa = |χa|. By (2.16) and (2.17) there follows

Dχ̂a

Dt
= cbχ

−1
a (ŵ × χ̂a),

D(ŵ × χ̂a)
Dt

= χaŵ − cbχ
−1
a χ̂a, (2.18)

which gives equations (2.11)–(2.14). This proves Theorem 1.

How to find the rate of change of acceleration represented by the b-vector is
an important question regarding computing the paths of passive tracer particles
when b is not known through Ertel’s theorem. The result that follows describes the
evolution of qb in terms of three arbitrary scalars.

Theorem 2 [62]. The Lagrangian time derivative of qb can be expressed as

Dqb

Dt
= qa ~ qb + λ1qb + λ2qa + λ3I, (2.19)

where the λi = λi(x, t) are arbitrary scalars
(
I = [1, 0]

)
.

Proof. To establish (2.19), we differentiate the orthogonality relation χb · ŵ = 0
and use the Lagrangian derivative of ŵ:

Dχb

Dt
= χa × χb + s0, where s0 = µχa + λχb. (2.20)

The vector s0 lies in the plane perpendicular to ŵ in which χa and χb also lie,
and µ = µ(x, t) and λ = λ(x, t) are arbitrary scalars. Explicitly differentiating
χb = w−1(ŵ × b) gives

w−1ŵ(χa · b) + s0 = −αaχb − αbχa + w−1ŵ(χa · b) + w−1

(
ŵ × Db

Dt

)
, (2.21)

which can easily be manipulated into

ŵ ×
{

Db

Dt
− αba− αab

}
= ws0. (2.22)

This means that
Db

Dt
= αba + αab + s0 ×w + εw, (2.23)

where ε = ε(x, t) is a third unknown scalar in addition to µ and λ in (2.20). Thus,
the Lagrangian derivative of αb = w−1(ŵ · b) is

Dαb

Dt
= ααb + χa · χb + ε. (2.24)
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Lagrangian differential relations have now been found for χb and αb, but at the
price of introducing the triplet of unknown coefficients µ, λ, and ε, which can be
re-defined as

λ = αa + λ1, µ = αb + λ2, ε = −2χa · χb + λ2αa + λ1αb + λ3. (2.25)

The new triplet has been subsumed into (2.19). Then (2.20) and (2.24) can be
written in the quaternion form (2.19). Theorem 2 is proved.

3. Quaternions and the incompressible 3D Euler equations

The results of the previous section on Lagrangian flows are immediately appli-
cable to the incompressible Euler equations, but to present them in this manner is
actually to do so in the chronologically reverse order in which they were first de-
veloped. Looking ahead in this section, we note that the variables α and χ in (3.4)
for the Euler equations, and the two coupled differential equations (3.10) that they
satisfy, were first written down almost ten years ago in [63], [64] without the help of
quaternions. It was then discovered in [65] that these equations could be combined
to form a quaternionic Riccati equation. Finally, the more recent paper [59], in
combination with [62], put all these results in the form expounded in this present
paper. Because data for the three-dimensional Euler equations gets very rough very
quickly, it should be understood that all our manipulations are formal.

In § 2 it was shown that a knowledge of the quartet of vectors (u,w,a, b) is
necessary to be able to use the results of Theorem 1. With w ≡ ω and ω = curlu,
the vortex stretching vector is a = ω · ∇u. Thus, the w- and u-fields are not
independent in this case. Within a = ω · ∇u, the dot-product of ω sees only
the symmetric part of the velocity gradient matrix ∇u, which is the strain matrix
Sij = 1

2 (ui,j + uj,i) defined in (1.6). With a = ω · ∇u = Sω, the triad of vectors is

(u,w,a) ≡ (u,ω, Sω). (3.1)

To find the b-field, Ertel’s theorem of § 1.2 comes to the rescue. The derivative
Du/Dt within the right-hand side of (1.1) (with w = ω) obeys Euler’s equation
Du/Dt = −∇p, so we have

b = ω · ∇
(

Du

Dt

)
= −Pω, (3.2)

where P is the Hessian of the pressure defined in (1.4). The quartet of vectors
necessary to make Theorem 1 work is now in place:

(u,w,a, b) ≡ (u,ω, Sω,−Pω). (3.3)

Table 1 presents three quartets (u,w,a, b) for the Euler fluid equations.
Under the definitions in § 2 the scalar α and the 3-vector χ are defined as

α = ω̂ · Sω̂, χ = ω̂ × Sω̂, (3.4)

and αp and χp as
αp = ω̂ · P ω̂, χp = ω̂ × P ω̂. (3.5)
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Table 1. The entries below are three of the possibilities for finding a b-field
given the triplet (u, w, a). The third line is the result (3.3), while b is
unknown for the second line.

u w a b Material derivative

Euler x u −∇p (1.2)
Euler u −∇p ? (1.2)
Euler w Sw −Pw (1.2)

The quantity α in (3.4) is now identified as the same as in Constantin [55], who
expressed it as an explicit Biot–Savart formula.7 The vector a = Sω can be de-
composed into parts that are parallel and perpendicular to ω:

Sω = αω + χ× ω = [α, χ] ~ [0,ω]. (3.6)

By definition, the growth rate α of the scalar magnitude |ω| and the unit tangent
vector ω̂ obey

D|ω|
Dt

= α|ω|, Dω̂

Dt
= χ× ω̂, (3.7)

which show that α drives the growth or collapse of vorticity and χ determines the
rate of swing of ω̂ around Sω. Now we identify the quaternions

q = [α, χ], qp = [αp,χp]. (3.8)

The equivalent of the Riccati equation (2.10) is8

Dq

Dt
+ q ~ q + qp = 0, (3.9)

which, when written explicitly in terms of α and χ, becomes

Dα

Dt
+ α2 − χ2 + αp = 0,

Dχ

Dt
+ 2αχ + χp = 0. (3.10)

In Theorem 1 we need to use b = −Pω to calculate the path of the orthonormal
quaternion-frame (ω̂, χ̂, ω̂ × χ̂). Specifically, we must solve

Dω̂

Dt
= D × ω̂, (3.11)

D(ω̂ × χ̂)
Dt

= D × (ω̂ × χ̂), (3.12)

Dχ̂

Dt
= D × χ̂, (3.13)

7Everywhere in [55], [56], [66], [67] the unit vector of vorticity is designated as ξ, whereas here
we use bω.

8In principle (3.9) can be linearized to a zero-eigenvalue Schrödinger equation in quaternion
form with qp as the potential, although it is not clear how to proceed from that point.
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Figure 2. The equivalent of Fig. 1, but for the Euler equations with the
dotted line representing an Euler fluid particle (•) path moving from (x1, t1)

to (x2, t2). The solid curves represent vortex lines to which bω is a unit
tangent vector. The orientation of the quaternion-frame (bω, bχ, bω × bχ) is
shown at the two space-time points; note that this is not the Frenet-frame
corresponding to the particle path.

where the Darboux angular velocity vector D is defined as

D = χ +
cp

χ
ω̂, cp = −ω̂ · (χ̂× χp). (3.14)

The pressure Hessian contributes to the angular velocity D through the scalar coef-
ficient cp. To compute the fluid particle paths one would need data on the pressure
Hessian P as well as the vorticity ω and the strain matrix S. It is here where the
fundamental difference between the Euler equations and a passive problem is made
explicit. For the Euler equations the b-field containing P is not independent of
w ≡ ω but is connected subtly and non-locally through the elliptic equation for
the pressure (1.5), which we repeat here:

− TrP = Tr S2 − 1
2
ω2. (3.15)

Theorem 2 expresses the evolution of qp,

Dqp

Dt
= q ~ qp + λ1qp − λ2q− λ3I, (3.16)

in terms of the arbitrary scalars λi(x, t). How these can be determined or handled
in terms of the incompressibility condition is not clear.

4. The BKM theorem and the direction of vorticity

Three-dimensional Euler data becomes very rough very quickly; thus, under-
standing how vorticity grows and in what direction, are fundamental questions
that have yet to be definitively answered. Clearly, the vortex stretching term
ω · ∇u = Sω, and the alignment of ω with the eigenvectors ei of S, play a funda-
mental role in determining whether or not a singularity forms in finite time. Major
computational studies of this phenomenon can be found in Brachet et al. [68], [69];
Pumir and Siggia [70]; Kerr [71], [72]; Grauer et al. [73]; Boratav and Pelz [74];
Pelz [75]; and Hou and Li [76]. Studies of singularities in the complex time domain
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of the two-dimensional Euler equations can be found in Pauls, Matsumoto, Frisch,
and Bec [77], where an extensive literature is cited.

The BKM theorem [52] is the key result in studying the growth of Euler vorticity
and possible singular behaviour. The domain D ⊂ R3 in Theorem 3 is taken to be
a three-dimensional periodic domain for present purposes, which guarantees local
existence (in time) of classical solutions (Kato [78]), although it is applicable on
more general domains than this. One version is (Hs denotes the standard Sobolev
space).

Theorem 3 (Beale, Kato, Majda [52]). On the domain D = [0, L]3per there exists
a global solution of the Euler equations, u ∈ C

(
[0,∞];Hs

)
∩ C1

(
[0,∞];Hs−1

)
for

s > 3, if for every T > 0 ∫ T

0

‖ω‖L∞(D) dτ < ∞. (4.1)

The result can be stated the opposite way, which is that no singularity can form
at T without

∫ T

0
‖ω‖L∞(D) dτ = ∞. Theorem 3 has direct computational conse-

quences. In a hypothetical computational experiment if one finds vorticity growth
‖ω‖L∞(D) ∼ (T − t)−γ for some γ > 0, then the theorem says that γ must satisfy
γ > 1 for the observed singular behaviour to be real and not an artefact of the nu-
merical computations. The reason is that if γ is found to lie in the range 0 < γ < 1,
then ‖ω‖L∞(D) blows up whereas its time integral does not, thus violating the theo-
rem. Of the many numerical calculations performed with the Euler equations, that
by Kerr [71], [72], using anti-parallel vortex tubes as initial data, was the first to
see γ pass the threshold with a critical value of γ = 1; it was followed by Grauer et
al. [73], Boratav and Pelz [74], and Pelz [75]. Recent numerical calculations by Hou
and Li [76], however, have contradicted the existence of a singularity: see [79] for
a response and a discussion of the issues. To fully settle this question will require
more refined computations in tandem with analysis to understand the role played
by the direction of vorticity growth. As indicated in § 1, the work of Constantin,
Fefferman, and Majda [56] (see also Constantin [55]) was the first to make a precise
mathematical formulation of how smooth the direction-of-vortex lines have to be in
order to lead to, or prevent, a singularity. § 4.1 is devoted to a short review of this
work. Further papers by Cordoba and Fefferman [80], Deng, Hou, and Yu [57], [58],
and Chae [66], [67] are variations on this theme. This approach, pioneered in [56],
lays the mathematical foundation for the next generation of computational exper-
iments, after the manner of Kerr [71], [72], [79] and Hou and Li [76], to check
whether a singularity develops. § 4.2 is devoted to a description of the results in the
papers by Deng, Hou, and Yu [57], [58], who have established different criteria on
vortex lines. § 4.3 is devoted to an alternative direction-of-vorticity theorem proved
in [59], based on the quaternion formulation of this paper.

References and a more global perspective on the Euler equations can be found in
the book by Majda and Bertozzi [15]. Shnirelman [81] has constructed very weak
solutions (not of Leray type) which have some realistic features but whose kinetic
energy monotonically decreases in time and which are everywhere discontinuous and
unbounded; for their dynamics in the more exotic function spaces see the papers
by Tadmor [82] and Chae [83]–[85].
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4.1. The work of Constantin, Fefferman, and Majda. The obvious question
regarding the BKM criterion is whether the L∞-norm can be weakened to Lp for
some 1 6 p 6 ∞. This question was addressed by Constantin [55], who placed
further assumptions on the local nature of the vorticity and velocity fields. Let us
consider the velocity field

U1(t) := sup
x

∣∣u(x, t)
∣∣ (4.2)

and the L1
loc-norm of ω defined by

‖ω‖1,loc = L−3 sup
x

∫
|y|6L

∣∣ω(x + y)
∣∣ d3y, (4.3)

where L is some outer length scale in the Euler flow which could be taken to be
unity. Now assume that the unit vector of vorticity is Lipschitz:

∣∣ω̂(x, t)− ω̂(y, t)
∣∣ 6

|x− y|
ρ0(t)

, (4.4)

for |x − y| 6 L and for some length ρ0(t). Then the following result is stated in
Constantin [55] and re-stated and proved in Constantin, Fefferman, and Majda [56].

Theorem 4 (Constantin [55], Constantin, Fefferman, Majda [56]). Assume that
the initial vorticity ω0 is smooth and compactly supported and assume that a solu-
tion of the Euler equations satisfies∫ T

0

∥∥ω(·, s)
∥∥

1,loc

(
L

ρ0(s)

)3

ds < ∞,

∫ T

0

U(s)
ρ0(s)

ds < ∞. (4.5)

Then

sup
06t6T

∥∥ω(·, t)
∥∥
∞∥∥ω(·, t)

∥∥
1,loc

< ∞. (4.6)

Clearly, if U1 = ‖u‖∞ < ∞ and
∥∥ω(·, t)

∥∥
1,loc < ∞ on [0, T ] and ρ0 is bounded

away from zero, then the BKM theorem says that no singularities can arise. The
Lipschitz condition (4.4) can be re-expressed to account for anti-parallel vortex
tubes [55].

Constantin, Fefferman, and Majda [56] then considered in more detail how to
define the term ‘smoothly directed’ for trajectories. Consider the three-dimensional
Euler equations with smooth localized initial data; assume the solution is smooth
on 0 6 t < T . The velocity field defines particle trajectories X(x0, t) that satisfy

DX

Dt
= u(X, t), X(x0, 0) = x0. (4.7)

The image W t of a set W 0 is given by W t = X(t,W 0). Then the set W 0 is said
to be smoothly directed if there exist a length ρ > 0 and a ball of radius 0 < r < 1

2ρ
such that the following three conditions are satisfied.

1. For every x0 ∈ W ∗
0, where W ∗

0 =
{
x0 ∈ W ∗

0;
∣∣ω0(x0)

∣∣ 6= 0
}
, and all t ∈ [0, T )

the function ω̂(·, t) has a Lipschitz extension to the ball B4ρ of radius 4ρ centred
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at X(x0, t), and

M = lim
t→T

sup
x0∈W ∗

0

∫ t

0

∥∥∇ω̂(·, s)
∥∥2

L∞(B4ρ)
ds < ∞. (4.8)

This assumption ensures that the direction of vorticity is well-behaved in a neigh-
bourhood of a set of trajectories.

2. The condition

sup
B3r(W t)

∣∣ω(x, t)
∣∣ 6 m sup

Br(W t)

∣∣ω(x, t)
∣∣ (4.9)

holds for all t ∈ [0, T ) with m = const > 0. This simply means that the cho-
sen neighbourhood captures large and growing vorticity, but not so much that it
overlaps with another similar region.

3. The velocity field in the ball of radius 4ρ satisfies

sup
B4r(W t)

∣∣u(x, t)
∣∣ 6 U(t) := sup

x

∣∣u(x, t)
∣∣ < ∞ (4.10)

for all t ∈ [0, T ).

Theorem 5 (Constantin, Fefferman, Majda [56]). Assume that W 0 is smoothly
directed as in 1–3 above. Then there exist a time τ > 0 and a constant Γ such that

sup
Br(W t)

∣∣ω(x, t)
∣∣ 6 Γ sup

Bρ(W t)

∣∣ω(x, t0)
∣∣ (4.11)

holds for any 0 6 t0 < T and 0 6 t− t0 6 τ .

Condition 2 may have implications for how the natural length ρ scales with
time as the flow develops [72], but more work needs to be done to understand its
implications. Cordoba and Fefferman [80] have weakened condition 3 in the case of
vortex tubes to ∫ T

0

U(s) ds =
∫ T

0

∥∥u(·, s)
∥∥
∞ ds < ∞. (4.12)

4.2. The work of Deng, Hou, and Yu. Deng, Hou, and Yu [57] have re-worked
probably the most important of the ‘smoothly directed criteria’, namely (4.8), from
local control over

∫ t

0

∥∥∇ω̂(·, t)
∥∥2

L∞
dt in 0 6 t 6 T to a condition on the arc-length s

between two points s1 and s2. The first of their two results is as follows.

Theorem 6 (Deng, Hou, Yu [57]). Let x(t) be a family of points with
∣∣ω(

x(t), t
)∣∣ &

Ω(t) := ‖ω‖∞ . Assume that for all t ∈ [0, T ] there is another point y(t) on the
same vortex line as x(t) such that the unit vector of vorticity ω̂(x, t) along the line
between x(t) and y(t) is well-defined. If it is further assumed that∣∣∣∣∫ s2

s1

div ω̂(s, t) ds

∣∣∣∣ 6 C(T ) (4.13)

together with ∫ T

0

∣∣ω(
x(t), t

)∣∣ dt < ∞, (4.14)
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then there will be no blow-up up to time T . Moreover,

e−C 6

∣∣ω(
x(t), t

)∣∣∣∣ω(
y(t), t

)∣∣ 6 eC . (4.15)

The inequality (4.13) is based on the simple fact that

0 = div ω = |ω|div ω̂ + ω̂ · ∇|ω| = |ω|div ω̂ +
d|ω|
ds

, (4.16)

where ω̂ · ∇ =
d

ds
is the arc-length derivative.

The second and more important of the results of Deng, Hou, and Yu [58] is
based on considering a family of vortex line segments Lt along which the maximum
vorticity is comparable with the maximum vorticity Ω(t). Denote by L(t) the arc
length of Lt, by n̂ the unit normal vector, and by κ the curvature of the vortex
line. Furthermore, they define

Ubω(t) ≡ max
x,y∈Lt

∣∣(u · ω̂)(x, t)− (u · ω̂)(y, t)
∣∣, (4.17)

Un(t) ≡ max
Lt

|u · n̂|, (4.18)

and
M(t) ≡ max

(
‖∇ · ω̂‖L∞(Lt), ‖κ‖L∞(Lt)

)
. (4.19)

Theorem 7 (Deng, Hou, Yu [57], [58]). Let A,B ∈ (0, 1) with B < 1− A, and let
C0 be a positive constant. If

1) Ubω(t) + Un(t) . (T − t)−A ,
2) M(t)L(t) 6 C0 , and
3) L(t) & (T − t)B ,

then there will be no blow-up up to time T .

In a further related paper Deng, Hou, and Yu [58] have changed the inequality
A + B < 1 to equality A + B = 1 subject to a further weak condition. They also
derived some improved geometric scaling conditions which can be applied to the
scenario when the velocity blows up at the same time as the vorticity and the rate
of blow-up of velocity is proportional to the square root of the vorticity. This is
the worst possible blow-up scenario for the velocity field due to Kelvin’s circulation
theorem.

4.3. The non-constancy of αp and χp: quaternions and the direction of
vorticity. The key relation in the quaternionic formulation of the Euler equations
is the Riccati equation (3.9) for q =

[
α(x, t),χ(x, t)

]
. In terms of α and χ this gives

four equations

Dα

Dt
= χ2 − α2 − αp,

Dχ

Dt
= −2αχ− χp. (4.20)

Although apparently a simple set of differential equations driven by qp = [αp,χp], it
is clear that qp is not independent of the solution, because of the pressure constraint
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−TrP = ui,kuk,i. In consequence it is tempting to think of qp as behaving in a
constant fashion. This may be true for large regions of an Euler flow but it is
certainly not true in the most intense vortical regions where vortex lines have their
greatest curvature; in these regions the signs of αp and of the components of χp

may change dramatically [64]. It is because of these potentially violent changes that
qp could be considered as a candidate for a further conditional direction-of-vorticity
theorem along the lines of those in §§ 4.1 and 4.2. Other work where constraints
on P appear is the paper by Chae [67].

The work in [56]–[58] shows that ∇ω̂ needs to be controlled in some fashion
in local areas where vortex lines have high curvature. In terms of the number of
derivatives the Hessian P is on the same level, and it is in terms of P and the
variables αp and χp associated with it that we look for control of Euler solutions.
From their definitions, it is easily shown that α2 + χ2 = |Sω̂|2 and thus on vortex
lines α = α

(
X(t,x0), t

)
the system (4.20) becomes

d

dt
|Sω̂|2 = −α|Sω̂|2 + ααp + χ · χp. (4.21)

Thus, on integration

∣∣Sω̂
(
X(τ), t

)∣∣2 = −2
∫ T

0

e
R τ
0 α(·,t′) dt′−

R t
0 α(·,t′) dt′(ααp + χ · χp)X(·, τ) dτ. (4.22)

There are now two alternatives. The first is to apply the Cauchy–Schwarz in-
equality and use the fact that α2

p + χ2
p = |P ω̂|2:

∣∣Sω̂
(
X(t,x0), t

)∣∣ 6 2
∫ T

0

e
R τ
0 α(·,t′) dt′−

R t
0 α(·,t′) dt′

∣∣P ω̂(·, τ)
∣∣ dτ. (4.23)

This is similar to Chae’s result (Theorem 5.1 in [67]), which is based on control of
the time integral of ‖Sω̂ · P ω̂‖∞, which is derivable from (3.2).

The second raises an interesting case respecting the direction of vorticity using χp

and can be viewed as an alternative way of looking at the direction of vorticity
after [56]–[58]. The vector χp = ω̂×P ω̂ contains ω̂ and not ω and is thus concerned
with the direction of ω rather than its magnitude. Firstly we use the fact that |ω|
cannot blow-up for α < 0, because D|ω|/Dt = α|ω|; thus, our concern is with
α > 0. In the case when the angle between ω̂ and P ω̂ is not zero,

∣∣Sω̂
(
X(t,x0), t

)∣∣ 6 2
∫ T

0

∣∣χp(·, τ)
∣∣ dτ. (4.24)

If the right-hand side is bounded, then the solution of the Euler equation can-
not blow up, excepting the possibility that |P ω̂| blows up simultaneously as the
angle between ω̂ and P ω̂ approaches zero while keeping χp finite; under these
circumstances

∫ t

0
|χp| dτ < ∞, whereas

∫ t

0
|αp| dτ → ∞, and thus blow-up is still

theoretically possible in that case. The result does not imply that blow-up occurs
when collinearity does, but rather simply implies that under the condition (4.24)
it is the only situation when that can happen. Ohkitani [36] and Ohkitani and
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Kishiba [40] have noted the collinearity mentioned above; they observed in Eu-
ler computations that at maximum points of enstrophy ω tends to align with the
eigenvector corresponding to the most negative eigenvalue of P . Expressed over the
whole periodic volume we have the following theorem.

Theorem 8 (Gibbon, Holm, Kerr, Roulstone [59]). On the domain D = [0, L]3per

there exists a global solution u ∈ C
(
[0,∞];Hs

)
∩ C1

(
[0,∞];Hs−1

)
of the Euler

equations for s > 3 if for every T > 0∫ T

0

‖χp‖L∞(D) dτ < ∞, (4.25)

excepting the case where ω̂ becomes collinear with an eigenvector of P at time T .

5. A final example: the equations of incompressible ideal MHD

The Lagrangian formulation of § 2 can be applied to many situations, such as the
stretching of fluid line-elements, incompressible motion of Euler fluids, and ideal
MHD (Majda and Bertozzi [15]). We choose ideal MHD in Elsasser variable form
as a final example; another approach to this can be found in [86]. The equations
for the fluid and the magnetic field B are

Du

Dt
= B · ∇B −∇p, (5.1)

DB

Dt
= B · ∇u (5.2)

together with div u = 0 and div B = 0. The pressure p in (5.1) is pf + 1
2B2 where

pf is the fluid pressure. Elsasser variables are defined by the combination [30]

v± = u±B. (5.3)

The existence of two velocities v± means that there are two material derivatives

D±

Dt
=

∂

∂t
+ v± · ∇. (5.4)

In terms of these, (5.1) and (5.2) can be rewritten as

D±v∓

Dt
= −∇p, (5.5)

with the magnetic field B satisfying (div v± = 0)

D±B

Dt
= B · ∇v±. (5.6)

Thus, we have a pair of triads (v±,B,a±) with a± = B · ∇v± based on Moffatt’s
identification of the B-field as the important stretching element [30]. From [65], [59]
we also have

D±a∓

Dt
= −PB, (5.7)
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where b± = −PB. With two quartets (v±,B,a±, b), the results of § 2 follow, with
two Lagrangian derivatives and the two Riccati equations

D∓q±a
Dt

+ q±a ~ q∓a = qb. (5.8)

In consequence, MHD-quaternion-frame dynamics needs to be interpreted in terms
of two sets of orthonormal frames (B̂, χ̂±, B̂ × χ̂±) acted on by their opposite
Lagrangian time derivatives:

D∓B̂

Dt
= D∓ × B̂, (5.9)

D∓

Dt
(B̂ × χ̂±) = D∓ × (B̂ × χ̂±), (5.10)

D∓χ̂±

Dt
= D∓ × χ̂±, (5.11)

where the pair of Elsasser–Darboux vectors D∓ is defined as

D∓ = χ∓ −
c∓B
χ∓

B̂, c∓B = B̂ ·
[
χ̂± × (χpB + α±χ∓)

]
. (5.12)

6. Conclusion

The well-established use of quaternions by the aero/astronautics and computer
animation communities in the spirit intended by Hamilton gives us confidence that
they are applicable to the ‘flight’ of Lagrangian particles in both passive tracer
particle flows and, in particular, three-dimensional Euler flows. An equivalent for-
mulation for the compressible Euler equations [46], [47] may give a clue to the
nature of the incompressible limit. This theme will be discussed in a forthcoming
paper by the author and H. Esraghi. The case of the barotropic compressible Euler
equations and other examples are given in the summary in Table 2.

Table 2. The entries display various examples of the use of Ertel’s theorem
in closing the quartet of vectors (u, w, a, b). For ideal MHD, D±/Dt is
defined in (5.4).

System u w a b
Material
derivative

incompressible
Euler u x u −∇p D/Dt

incompressible
Euler u ω Sω −Pω D/Dt

barotropic
Euler u ω/ρ ω/ρ ·∇u −(ωj/ρ)∂j(ρ∂jp) D/Dt

MHD v± B B ·∇v∓ −PB D±/Dt

Mixing u δ` δ` ·∇u −Pδ` D/Dt
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Whenever quaternions appear in a natural manner, it is usually a signal that the
system has inherent geometric properties. For the Euler equations, it is significant
that this entails the growth rate α and the swing rate χ of the vorticity vector, the
latter being very sensitive to the direction of vorticity with respect to eigenvectors
of S. To elaborate further, consider a Burgers’ vortex which represents a vortex
tube [18]. An eigenvector of S lies in the direction of the tube-axis parallel to ω,
in which case χ = ω̂ × Sω̂ = 0. However, if a tube comes into close proximity to
another, then they will bend and maybe tangle. As soon as the tube-curvature be-
comes non-zero along a certain line-length, then χ 6= 0 along that length. Likewise,
this will also be true for vortex sheets that bend or roll-up when in close proximity
to another sheet. The 3-vector χ is therefore sensitively and locally dependent on
the vortical topology. In fact, at each point its evolution is most elegantly expressed
through its associated quaternion q, which must satisfy (see (3.9))

Dq

Dt
+ q ~ q + qp = 0. (6.1)

To fully appreciate the power of the method, we note that the pressure field must
necessarily appear explicitly in the form of its Hessian through qp, although this runs
counter to conventional practice in fluid dynamics, where the pressure is usually
removed using Leray’s projector. The pressure Hessian appears in the material
derivative of the vortex stretching term, through the use of Ertel’s theorem, as the
price to be paid for cancelling the non-linearity O(|ω| |∇u|2). In fact, the effect
of the pressure Hessian on the vorticity stretching term is subtle and non-local.
Therefore, while it is tempting to discount the pressure because it disappears overtly
in the equation for the vorticity, covertly it may arguably be one of the most
important terms in inviscid fluid dynamics.

There are, of course, stationary solutions of (6.1), one of which is χ = χp = 0
with α = α0 and αp = −α2

0. The Burgers’ vortex is a solution of this type; see
[64], [65]. Having laid much stress in § 4.3 on the non-constancy of αp and χp

in intense, potentially singular regions, let us nevertheless try to determine the
simplest generic behaviour of α and χ from (4.20) when αp and χp are constant;
for example, a near-Burgers’ vortex. To do this, let us consider the four equations
which come out of (6.1), as in (4.20), and think of them as ordinary differential
equations on particle paths X(t, x0):

α̇ = χ2 − α2 − αp, χ̇ = −2αχ− Cp. (6.2)

In regions of the (α, χ)-phase plane where αp = const and Cp = χ̂ · χp = const,
there are two critical points

(α, χ) = (±α0, χ0), 2α2
0 = αp + [α2

p + C2
p ]1/2. (6.3)

Thus, there are two fixed points; one with α > 0 (stretching), which is a stable
spiral, and one with α < 0 (compression); both have a small and equal value of χ0.
The point with α0 < 0 is an unstable spiral, while α0 > 0 is stable. Perhaps it
is a surprise that it is the stretching case that is the attracting point, although it
should also be noted that these equations without the Hessian terms have arisen in
Navier–Stokes turbulence modelling [87].
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Finally, the existence of the relation (6.1), and its more general Lagrangian equiv-
alent (3.9), is the key step in proving Theorem 1, from which the frame dynamics
is derived. Moreover, for the three-dimensional Euler equations, (6.1) is also the
key step in the proof of Theorem 8.
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the University of York. For their kind hospitality I would also like to thank the or-
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