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Abstract. We consider N -parameter reductions of the Benney moment equations.

These were shown in Gibbons and Tsarev (1996 Phys. Lett. A 211 19, 1999 Phys.

Lett. A 258 263 ) to correspond to N−parameter families of conformal maps and to

satisfy a particular system of PDE. A specific known example of this, the (N = 2)

elliptic reduction (L Yu and J Gibbons 2000 Inverse Problems 16 605 ) is described.

We then consider an analogous reduction for a genus 2 hyperelliptic curve (N = 3).

The mapping function is given by the inversion of a 2nd kind Abelian integral on the

Θ−divisor. This is found explicitly following a method given by Enolskii, Pronine and

Richter (2003 J. Nonlinear Science 13 157).
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1. Introduction

1.1. The Benney Moment Equations

In 1973, Benney considered an approximation for the two-dimensional equations of

motion of an incompressible perfect fluid under a gravitational force [3]. By assuming

that the average wave height was small compared to the wavelength he obtained the

following equations of motion:

ut + uux −
∫ y

0

ux(x, y
′, t)dy′uy + hx = 0, (1)

ht + uhx +

∫ h

0

ux(x, y
′, t)dy′uy = 0, (2)

where gravity is taken as unity, u(x, y, t) is the horizontal velocity and h(x, t) the height

of the free surface. He then showed that if moments are defined by:

An(x, t) =

∫ h

0

un dy,

they satisfy an infinite set of equations

∂An

∂t
+
∂An+1

∂x
+ nAn−1

∂A0

∂x
= 0 (n = 1, 2, . . .), (3)

now called the Benney moment equations. This set is an example of a system of

hydrodynamic type; these are defined as equations of the form

ut + V ux = 0

where u is a column vector of variables (u1, u2, . . . , uN) and V is an N by N matrix

depending on u [5]. In the case of Benney’s equations, however, N is infinite.

Identical moment equations can alternatively be derived from a Vlasov equation [8],

[16]

∂f

∂t2
+ p

∂f

∂x
− ∂A0

∂x

∂f

∂p
= 0. (4)

Here f = f(x, p, t) is a distribution function and the moments are defined instead by

An =

∫ ∞
−∞

pnf dp.

The equation of motion (4) has the Lie-Poisson structure :

∂f

∂t
+

{
f,
δH

δf

}
p,x

= 0, (5)

where {· , ·}p,x is the canonical Poisson bracket. Kupershmidt and Manin showed

directly that the moment equations are Hamiltonian [12], [13]. If we set H = 1
2
H2 =

1
2
(A2 + A2

0), A = (A0, A1, . . .), then

∂A

∂t
= B

∂H

∂A
(6)
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where the matrix operator B is given by

Bn,m = nAn+m−1
∂

∂x
+m

∂

∂x
· An+m−1.

This is consistent with (5) in the sense that if H is some function of the moments, the

moment equations resulting from (5) and (6) are identical.

Benney showed in [3] that system (3) has infinitely many conserved densities,

polynomial in the An. One of the most direct ways to calculate these is to use generating

functions [12].

Let λ(x, p, t), a formal series in p, be the generating function of the moments

λ(x, p, t) = p+
∞∑
n=0

An

pn+1
(7)

and let p(x, λ, t) be the inverse series

p(x, λ, t) = λ−
∞∑
m=0

Hm

λm+1
.

We note here that if An =
∫∞
−∞ p

nf dp is substituted into (7), then this can be

understood as the asymptotic series as p→∞ of the integral

λR = p+ P

∫ ∞
−∞

f(x, p′, t)
(p− p′) dp′ (8)

where P denotes the principal value.

Comparing the first derivatives of λ(x, p, t), we obtain the PDE

∂λ

∂t
+ p

∂λ

∂x
=
∂λ

∂p

(
∂p

∂t
+ p

∂p

∂x
+
∂A0

∂x

)
. (9)

If we now hold p constant, this gives

∂λ

∂t
+ p

∂λ

∂x
− ∂A0

∂x

∂λ

∂p
= 0 (10)

which is a Vlasov equation of the same form as (4). Thus (4) and (10) have the same

characteristics. Any function of λ and f must satisfy the same equation.

Alternatively, if we hold λ constant in (9), then we obtain the conservation equation

∂p

∂t
+

∂

∂x

(
1

2
p2 + A0

)
= 0. (11)

Substituting the formal series of p(x, λ, t) into (11), we see that each Hn is polynomial

in the An and is a conserved density. Any of the Hn could therefore be used as the

Hamiltonian in (5). From this we define the Benney hierarchy to be the family of

evolution equations

∂f

∂tn
+

{
f ,

1

n

δHn

δf

}
= 0.

We note that λ satisfies an equation analogous to this,

∂λ

∂tn
+

{
λ ,

1

n

δHn

δf

}
= 0,
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and that the Hamiltonians satisfy the relation(
1

n

δHn

δf

)
=

(
λn

n

)
+

where (·)+ denotes the polynomial part of the expansion. It was shown in [13] that these

Hamiltonians Poisson commute.

1.2. Reductions of the moment equations

Suppose that for some point p = p̂i, λ(p̂i) = λ̂i

∂λ

∂p

∣∣∣∣
p=p̂i

= 0,

then (9) reduces to:

∂λ̂i

∂t
+ p̂i

∂λ̂i

∂x
= 0

where ∂λ̂i
∂t

= ∂λ
∂t

∣∣
p=p̂i

and ∂λ̂i
∂x

= ∂λ
∂x

∣∣
p=p̂i

. We say that λ̂i is a Riemann invariant with

characteristic speed p̂i.

A hydrodynamic type system with N independent variables can not in general, for

N ≥ 3, be expressed in terms of Riemann invariants. If such a system does have N

Riemann invariants, it is called diagonalisable. Tsarev showed in [14] that if a diagonal

hydrodynamic-type system

∂λ̂i

∂t
+ vi(λ̂)

∂λ̂i

∂x
= 0 (i = 1, 2, . . . , N). (12)

is semi-Hamiltonian, that is if

∂j

(
∂ivk

vi − vk

)
= ∂i

(
∂jvk

vj − vk

)
, i 6= j 6= k,

for i, j, k distinct, where

∂k =
∂

∂λ̂k
,

then it can be solved by the hodograph transformation. Any Hamiltonian system of

hydrodynamic type is semi-Hamiltonian. Given a second equation of type (12)

∂λ̂i

∂τ
+ wi(λ̂)

∂λ̂i

∂x
= 0 (i = 1, 2, . . . , N), (13)

and requiring it to be consistent with (12), we find that the wi(λ̂) satisfy the over-

determined linear system

∂kwi

wi − wk

=
∂kvi

vi − vk
, i 6= k. (14)

These equations are consistent provided (12) is semi-Hamiltonian. If the condition (14)

holds, we say that (12) and (13) commute. In this case a set of equations for the

unknowns λ̂i(x, t) is given by :

wi(λ̂) = vi(λ̂) t+ x, (i = 1, 2, . . . , N)
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where t and x are the independent variables. Thus any reduction of this type can be

solved in principle.

This generalized hodograph construction cannot easily be applied directly to the

Benney equations, as these have infinitely many dependent variables. However we will

now consider families of distribution functions f , which are parameterised by finitely

many N Riemann invariants λ̂i(x, t). We are interested in the case [9], [10] where the

function λ(p, x, t) is such that only N of the moments are independent. Then there

are N characteristic speeds, assumed real and distinct, and N corresponding Riemann

invariants (p̂i, λ̂i), so Benney’s equations reduce to a diagonal system of hydrodynamic

type with finitely many dependent variables λ̂i,

∂λ̂i

∂t
+ p̂i(λ̂)

∂λ̂i

∂x
= 0 (i = 1, 2, . . . , N). (15)

Such a system is called a reduction of Benney’s equations.

Zakharov found one such reduction by dividing the fluid flow into K horizontal

layers each with y-independent horizontal velocity ui and depth hi [16]. The system (2)

is therefore reduced to the set of 2K equations

hit + (uihi)x = 0,

uit + uiuix +
N∑
i=1

hix = 0, (i = 1, 2, . . . , K),

with moments

An =
K∑
i=0

hi u
n
i .

This is clearly a system of hydrodynamic type dependent on 2K variables. Here, the

generating function λ is given by

λ = p+
K∑
i=1

hi

p− ui .

The construction of a more general family of solutions for equations of this type

was outlined in [9] and [10]. Instead of considering the principal value integral (7), we

now define a new function λ+(x, p, t) :

λ+(x, p, t) = p+

∫
Λ

f(x, p′, t)
p− p′ dp′ (16)

where Λ is an indented contour passing below the point p. This has the same asymptotics

as λ(x, p, t), provided all the moments An exist, and it can be analytically continued into

the upper half of the p-plane. If f satisfies a Hölder condition on the real p-axis [11],

that is if ∃µ, γ > 0 such that

|f(x, p, t)− f(x, q, t)| ≤ µ |p− q|γ ,
for q, Im(q) > 0, sufficiently close to p ∈ R, then the boundary value of λ+ satisfies

λ+ = λR − iπf
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on R.
An elementary example is the case where the map λ+ takes the upper half p-plane

to the upper half λ-plane with a vertical slit as follows.

p̂1

p1 p2

Figure 1. The p-plane.

λ1
0

λ̂1 = λ(p̂1)

λ(p1) λ(p2)

γ1 Γ+

Figure 2. The λ-plane.

This is a Schwarz-Christoffel map:

λ+(x, p, t) = p+

∫ p

∞

p′ − p̂1√
(p′ − p1)(p′ − p2)

dp′.

If the residue at infinity is set to be zero, then this imposes the condition p̂1 = 1
2
(p1 +p2)

and we get solution

λ+(x, p, t) = p̂1 +
√
p2 − (p1 + p2)p+ p1p2

= p̂1 +
√

(p− p̂1)2 + 2A0

(from the expansion as p → ∞). This gives a time independent solution of Benney’s

equations (5)

∂f

∂t
+

{
f ,

1

2
p2 + A0

}
p,x

= 0.

The two parameters p1 and p2 are not independent, as for consistency their sum must

be a constant. Hence only the end point of the slit in the λ-plane is variable. This is

the Riemann invariant.

The above construction may be generalized. Suppose the relation f = F (λR) holds

in some region of the (x, p)-plane at some time t. Then since both (4) and (10) have the

same characteristics, the relation will be preserved by the dynamics. In this case the

definition for λ+ (16) becomes a nonlinear singular integral equation:

λ+(x, p, t) = p+

∫
Λ

F (λR(x, p′, t))
p− p′ dp′. (17)
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The solutions to (17) can be described in terms of a conformal mapping of a slit domain.

We take the upper half λ-plane, Γ+, and draw a Jordan arc c in Γ+ starting from a point,

λ1
0, on the real axis. We then fix an arbitrary point on this arc, λ̂1, and make a slit γ1

running along the arc from λ1
0 to λ̂1.

λ1
0

×̂
λ1 γ1

c̃

Γ+

Figure 3. The slit γ1 on the Jordan arc c = γ1 ∪ c̃.

Note that the slit γ1 is given by the relation

Im(λ+) = −πF (Re (λ+))

and so F must be continuous with F ≤ 0. The function p (λ+, λ̂1) is then determined

uniquely by the following properties.

(i) p (λ+, λ̂1) has a branch point at λ̂1, that is

p ∼ p̂+ c(λ− λ̂1)
1
2 +O(λ− λ̂1).

(ii) p (λ+, λ̂1) is real on the real λ+-axis and on both sides of γ1.

(iii) p (λ+, λ̂1) is analytic in the cut half plane Γ+.

(iv) As |λ| → ∞, with Im(λ+) ≥ 0, p (λ+, λ̂1) has the expansion

p (λ+, λ̂1) ∼ λ+ +O

(
1

λ+

)
.

The evolution of p is then given by (11); expanding near λ̂1 gives:

∂λ̂1

∂t
+ p̂

∂λ̂1

∂x
= 0.

Thus λ̂1 is a Riemann invariant with characteristic speed p̂ = p (λ̂1).

It is possible to generalize this construction further to N non-intersecting slits.

Here, each of the slits γi is made along a fixed path starting on the real λ+-axis and

ending in a branch point λ̂i.

Again, λ̂i are the Riemann invariants of the system with associated characteristic

speeds p(λ̂i) and the slits γi are given by

Im(λ+) = −πFi(Re (λ+))

where Fi ≤ 0 are continuous functions.
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λ1
0

×̂
λ1 γ1

c̃1

λ1
0

×λ̂2

γ2

c̃2

λ2
0

×̂
λNγN

c̃N

λN0

Γ+

Figure 4. N slits on Γ+. The slit γi is on the Jordan arc ci = γi ∪ c̃i.

2. Elliptic reduction

A specific example of a reduction of the Benney moment equations, the elliptic reduction,

was considered by Yu and Gibbons in [15].

p1

p̂1

p2 p3

p̂2

p4

Γ1

Figure 5. The p-plane for the elliptic reduction.

λ0
1 λ0

2

λ̂1 = λ(p̂1)

λ̂2 = λ(p̂2)

λ(p1) λ(p2) λ(p3) λ(p4)

γ1

γ2

Γ2

Figure 6. The λ-plane for the elliptic reduction.

The upper half p-plane is mapped into a polygonal domain in the upper half λ-plane.

Consequently, λ(p) : Γ1 → Γ2 is again of Schwarz-Christoffel type:

λ(p) = p+

∫ p

−∞
[ϕ(p′)− 1] dp′; (18)

where ϕ(p) is given by:

ϕ(p) =

∏2
i=1(p− p̂i)√∏4
i=1(p− pi)

=
p2 − αp− β√∏4

i=1(p− pi)
.
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The two regions in figures 5 and 6 are defined as follows. Γ1 is the upper half complex

p-plane with six points marked on the real axis, p1 < p̂1 < p2 < p3 < p̂2 < p4, and Γ2

is the upper half λ-plane with two vertical slits γi running from a fixed point λ0
i on the

real axis to λ̂0
i , which is variable. By imposing the conditions

λ(p1) = λ(p2) = λ0
1, (19)

λ(p3) = λ(p4) = λ0
2,

where λ0
1 and λ0

2 are prescribed real constants, we obtain the required mapping (figure 6).

We note here that, if we define b to be a closed loop encircling the interval [p1, p2] in

the positive sense (see figure 7), then a consequence of (19) is∫
b

ϕ(p) dp = 0. (20)

Another of the four conditions in (19) was then replaced by setting the residue of

λ(p) at infinity to be zero, that is:

α =
1

2

4∑
i=1

pi,

and thus ϕ(p) dp is a second kind Abelian differential on the elliptic Riemann surface

R1 =

{
(v, p) ∈ C 2 : v2 =

4∏
i=1

(p− pi)
}
.

That is, ϕ(p) dp is a meromorphic 1-form on R1 with zero residue at each singular point.

We see that the function λ(p) depends on 2 parameters, Im(λ̂1) and Im(λ̂2) say.

J Ib
a

p1 p2 p3 p4

Γ1

Figure 7. The cycles on the Riemann surface R1. The b-cycle is a closed loop on the

first sheet and the a-cycle is completed on the second sheet (broken line).

The integral (18) was evaluated by first substituting

p = p4 − 1

℘(χ)− ℘(χ0)

into ϕ(p) and then expanding the integrand near its singularities. Here, ℘ is the

Weierstrass elliptic function with half-periods ω1, ω2 given by

ω1 =
1

2

∫
b

1√∏4
i=1 (p− pi)

dp, ω2 =
1

2

∫
a

1√∏4
i=1 (p− pi)

dp,
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where a and b are as in figure 7, and

℘(χ0) = −
3∑
i=1

1

3(p4 − pi) .

The explicit value of the map λ(p) was shown to be:

λ(p) = − 1

℘′(χ0)

[
ζ(χ+ χ0) + ζ(χ− χ0) + 2

ζ(ω1)

ω1

χ

]
+ λ0

2. (21)

3. Genus 2 hyperelliptic reduction

Conceptually, the simplest extension of the elliptic reduction is to consider the case

where λ(p) : Γ1 → Γ2 is as given in figures 8 and 9.

p1

p̂1

p2 p3

p̂2

p4 p5

p̂3

p6

Γ1

Figure 8. The p-plane for the genus 2 hyperelliptic reduction.

λ0
1 λ0

2 λ0
3

λ̂1 = λ(p̂1)

λ̂2 = λ(p̂2)

λ̂3 = λ(p̂3)

λ(p1) λ(p2) λ(p3) λ(p4) λ(p5) λ(p6)

γ1

γ2

γ3

Γ2

Figure 9. The λ-plane associated with figure 8.

Here λ(p) is again in Schwartz-Christoffel form:

λ(p) = p+

∫ p

−∞
[ϕ(p′)− 1] dp′, (22)

where ϕ is given by:

ϕ(p) =

∏3
i=1 (p− p̂i)√∏6
i=1 (p− pi)

.

This mapping takes the region Γ1, the upper half complex p-plane with nine points

marked on the real axis

p1 < p̂1 < p2 < p3 < p̂2 < p4 < p5 < p̂3 < p6,
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to Γ2, the upper half complex λ-plane with three vertical slits going from the fixed points

λ0
i to the variable points λ̂i, (i = 1, 2, 3).

The conditions imposed in the elliptic case are now extended as follows. We require

that λ(p) = p+O(1
p
) as p→∞ and that

λ(p2n−1) = λ(p2n) = λ0
n (n = 1, 2, 3) (23)

where λ0
n are prescribed real constants. This means that λ(p) is a function of 3

independent parameters which may be taken to be Im(λ̂i) (i = 1, 2, 3). We can replace

one of these conditions with the constraint that the residue of λ(p), as p→∞ on either

sheet, is zero. Rewriting

ϕ(p) =
p3 − α p2 − β p− γ√∏6

i=1(p− pi)
,

we find that the expansion of ϕ(p) near infinity is

1 +

(
1
2

∑6
i=1 pi − α

)
p

+O

(
1

p2

)
.

The condition on the residue is thus satisfied when

α =
1

2

6∑
i=1

pi,

that is
3∑
i=1

p̂i =
1

2

6∑
i=1

pi. (24)

It follows that ϕ(p) dp is a second kind Abelian differential on the Riemann surface

R2 defined by

v2 =
6∏
i=1

(p− pi).

This surface can be constructed from 2 copies of the complex p-plane joined along the

closed intervals [p1, p2] , [p3, p4] and [p5, p6] . The homology basis (a1, a2; b1, b2) for the

Riemann surface is given in figure 10.

Note that the cycle ai only intersects bi and that the intersections have cycle index

ai ◦ bj = δij .

4. Transformation of the integral

The integral we need to evaluate, (22) is

λ(p) = p+

∫ p

−∞

 ∏3
i=1 (p′ − p̂i)√∏6
i=1 (p′ − pi)

− 1

 dp′
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J J

I
I

p1 p2 p3 p4 p5 p6

b1 b2

a1

a2

Figure 10. A homology basis on the genus 2 Riemann surface, R2. The b-cycles are

closed loops on the first sheet and the a-cycles are completed on the second sheet

(broken line).

By substituting p = p6 − 1
t

into the integrand (ϕ(p)− 1) dp, we find

(ϕ(p)− 1) dp =

 ∏3
i=1 [(p6 − p̂i) t− 1]√∏6
i=1 [(p6 − pi) t− 1]

− 1

 dt

t2
,

=

 (at3 + bt2 + c t− 1)√∏6
i=1 [(p6 − pi) t− 1]

− 1

 dt

t2

for some constants a, b, c. If we now take out the constant factor

k =

(
−4∏5

i=1 (p6 − pi)

) 1
2

from this integrand, then we obtain a standardized form for the irrational denominator:

ϕ(p) dp = k
at3 + bt2 + ct− 1

s

dt

t2
(25)

where

s2 = (4t5 + µ4t
4 + µ3t

3 + µ2t
2 + µ1t+ µ0). (26)

We note here that the constant µ0 is equal to k2. Thus

ϕ(p) dp = k

(
at3 + bt2 + ct− 1

s

)
dt

t2
,

= k

(
at+ b+

c

t
− 1

t2

)
dt

s
.

Here dt/s and (t dt) /s are a basis of holomorphic Abelian differentials. To evaluate this

integral we require a specialized form of the Jacobi inversion theorem. We will begin,

though, by outlining the setting for the theorem.
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5. Abelian integrals

Let R(s, t), be a hyperelliptic curve where s and t satisfy

s 2 = 4
5∏
i=1

(t− ti) =
5∑
i=0

µi t
i,

and µ5 = 4. Following [4], we define a set of holomorphic differentials dui, and the

associated set of second kind differentials dri. In this genus 2 case these are

du1 =
1

s
dt, du2 =

t

s
dt (27)

and

dr1 =
µ3t+ 2µ4t

2 + 12t3

4s
dt, dr2 =

t2

s
dt

respectively. From the construction of the canonical homology basis (figure 10) and the

fact that the pi are real, it follows that the periods of these two sets of differentials are

real around the b-cycles and imaginary around the a-cycles. We define the four 2 × 2

matrices ω, ω′, η, η′ by

2ωij =

∮
bj

dui, 2ω′ij =

∮
aj

dui,

2ηij = −
∮
bj

dri, 2η′ij = −
∮
aj

dri, (i, j = 1, 2).

As a direct consequence of the Riemann bilinear identity (see [2]), these matrices satisfy

the generalized Legendre relation(
ω ω′

η η′

)(
0 −12

12 0

)(
ω ω′

η η′

)T

= − iπ
2

(
0 −12

12 0

)
,

where 12 is the 2× 2 identity matrix. These period matrices, which, apart from a scalar

factor, preserve the matrix(
0 −12

12 0

)
,

are given by elements of the Symplectic group Sp(4) multiplied by the factor (−iπ/2)
1
2 .

Letting Γ = 2ω ⊗ 2ω′ be the lattice generated by the periods of the holomorphic

differentials, we define the Jacobi variety, Jac(R), to be the 2 dimensional complex torus

C 2/Γ [2]. The Abel map, A : R→ Jac(R), is given by u(z) :

ui(z) =

∫ z

z0

dui, (i = 1, 2) (28)

where the ui(z) are taken modulo Γ and the base point z0 is any fixed point in R. These

create a 1 dimensional image of the hyperelliptic curve in the Jacobi variety.

For the inversion theorem we require an extension of this map to a set of points.
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Definition 5.1 A divisor D on the Riemann surface R is defined by the finite formal

sum

D =
M∑
i

ni zi

where ni ∈ Z and zi = (si, ti) ∈ R.
We define the Abel mapping of D into Jac(R) by

A(D) =
M∑
i

ni

∫ zi

z0

du mod Γ; (29)

in genus 2 this is:

A(D) =

(
M∑
i

ni

∫ zi

z0

du1,

M∑
i

ni

∫ zi

z0

du2

)
. (30)

The lower limit of integration here the point z0, is called the base point of the Abel

map.

5.1. Hyperelliptic functions (genus 2)

Definition 5.2 The theta function in genus 2 is defined by the Fourier series

θ((2ω)−1u;ω, ω′) =
∑

m∈Z2

exp iπ
[
mTω−1 ω′m + 2mT(2ω)−1u

]
.

This series converges because B = ω−1ω′ has positive definite imaginary part.

Let v be the normalized Abel map, v = (2ω)−1u; then the theta function has the

following properties:

• Even

θ(v;ω, ω′) = θ(−v;ω, ω′),

• Periodic in the real directions (ω)

∀n ∈ Z2, θ(v + n;ω, ω′) = θ(v;ω, ω′)

• Quasi-periodic in the complex directions (ω′)
∀n ∈ Z2, θ(v + (ω−1 ω′) n;ω, ω′) = exp(−iπnT(ω−1 ω′) n− 2iπvTn) θ(v;ω, ω′).

The zero set of the theta function is of particular importance to the inversion

theorem.

Let Kz0 be the vector of Riemann constants, with base point z0, given by

(Kz0)1 =
1 + B11

2
−
∫
a2

dv2(z)

∫ z

z0

dv1,

(Kz0)2 =
1 + B22

2
−
∫
a1

dv1(z)

∫ z

z0

dv2.

For different base points we get

(2ω) Kz = (2ω) Kz0 +

∫ z

z0

du.
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It is known that for u = (2ω)Kz the theta function θ((2ω)−1u;ω, ω′) vanishes. The set

of zeros of θ is therefore

Θ =

{
u ∈ Jac(R) : u =

∫ z

z0

du + 2ωKz0 , z ∈ R

}
.

This set is called the theta divisor; it forms a one dimensional image of R in the two

dimensional Jacobi variety, Jac(R).

Definition 5.3 The fundamental abelian σ-function (genus 2) is defined as

σ(u;ω, ω′) =
1

4
√

D(v)
C exp

(
1

2
uTη ω−1u

)
θ((2ω)−1 u;ω, ω′),

where

C =

(
π2

det(ω)

) 1
2

and D(v) is the discriminant of the curve

6∏
i=1

(p− pi).

For a detailed study of the properties of this function see [4]. It is important to

note that:

• it is an entire function on Jac(R);

• it satisfies the quasi-periodicity properties

σ(u + 2ω n + 2ω′ n′;ω, ω′) = exp
[
2(ηn + η′n′)T(u + ω n + ω′ n′)

]
× exp

[−iπnTn′
]
σ(u;ω, ω′)

and the modular property

σ(u; ω̃, ω̃′) = σ(u;ω, ω′),

where

ω̃ = ω d+ ω′ c, ω̃′ = ω b+ ω′ a,

η̃ = η d+ η′ c, η̃′ = η b+ η′ a

and (
aT bT

cT dT

)
∈ Sp (4,Z);

‡
• σ(u;ω, ω′) is zero when u ∈ Θ.

‡ The σ-function is thus independent of the choice of a and b cycles provided these satisfy ai ◦bj = δij .
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In the following sections we will be concerned with a single Riemann surface, with

fixed period matrices ω, ω′, so we will simplify the notation of σ(u;ω, ω′) to σ(u).

However, when we consider the space and time variation in the original problem, it is

important to bear in mind that we are then considering a 2-parameter family of such

surfaces with variable period matrices.

As a natural extension of the genus 1 case, we define the logarithmic derivatives of

σ(u) by

ζ i (u) =
∂

∂ui
[log σ(u)] =

σi

σ
(u), (i = 1, 2)

and

℘ ij (u) = − ∂2

∂ui∂uj
[log σ(u)] = −σij

σ
(u) +

σi σj

σ2
(u), (i, j = 1, 2)

where

σi =
∂ σ

∂ui
, σij =

∂2 σ

∂uj ∂ui
, · · · .

The higher order logarithmic derivatives are expressed similarly, for example

℘ ijk (u) = − ∂3

∂ui∂uj∂uk
[log σ(u)] , (i, j, k = 1, 2).

It is well-known that Weierstrass’ ℘-function satisfies the ODE

℘′ 2(x) = 4℘ 3(x)− g2℘(x)− g3.

Similarly, the derivatives of the Kleinian ℘-function are related. For genus 2, the

corresponding partial differential equations were established by Baker [1] (quoted in [4]);

these are

℘2222 = 6℘2
22 +

1

2
µ3 + µ4℘22 + 4℘12,

℘2221 = 6℘22℘12 + µ4℘12 − 2℘11,

℘2211 = 2℘22℘11 + 4℘2
12 +

1

2
µ3℘12,

℘2111 = 6℘12℘11 + µ2℘12 − 1

2
µ1℘22 − µ0,

℘1111 = 6℘2
11 − 3µ0℘22 + µ1℘12 + µ2℘11 − 1

2
µ0µ4 +

1

8
µ1µ3.

Further, the Baker addition formula for genus 2 is given by

σ(u + v) σ(u− v)

σ(u)2 σ(v)2
= ℘22(u)℘12(v)− ℘12(u)℘22(v) + ℘11(v)− ℘11(u)

for u, v /∈ Θ. [4]

5.2. Jacobi’s inversion theorem

We can now use the above setting to state the inversion theorem [4].
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Theorem 5.1 Let V2 be a hyperelliptic curve of genus 2 defined by

y2 =
6∑
i=0

ρi x
i

with branch points pi as in figure 8. Let

ui =

∫ xa

p2

xi−1

y
dx+

∫ xb

p4

xi−1

y
dx,

where (ya, xa) 6= (−yb, xb).
The Abel preimage of the point u ∈ Jac(V2) is then given by the set {(ya, xa), (yb, xb)} ∈
(V2)2, where {xa, xb} are the zeros of the polynomial

P(x; u) = x2 − ℘ 22(u) x− ℘ 12(u)

and {ya, yb} are given by

yk = − ∂P(x; u)

∂ug

∣∣∣∣
x=xk

.

We note that the Jacobi inversion theorem can not be applied to our problem

direcly, as we are concerned with a second kind differential, and a divisor of degree 1,

not 2. However, by restricting the values of u to the theta divisor, which is an image of

the curve

s2 = 4
5∏
i=1

(t− ti), (31)

we can use the method given in [6] to invert integrals like

u(z1) =

∫ z1

∞
du, u(z1) ∈ Θ. (32)

Note that the Jacobi inversion formula can not be used here since if u is a zero of

the θ-function, then it is also a zero of the σ-function, so that the quadratic equation

P(t; u) = t2 − ℘ 22 (u) t− ℘ 12 (u) = 0

is singular and its roots are undefined. This problem is overcome by noting that if ta
and tb are the two solutions of P(t; u) = 0 , then

ta = lim
tb→∞

tatb

ta + tb
.

We can thus define the inverse of (32) by

z1 = ta = lim
tb→∞

tatb

ta + tb
= lim

σ→0

(
−℘12(u)

℘22(u)

)
= lim

σ→0

(
σ σ12 − σ1 σ2

σ2
2 − σ σ22

)
= −σ1

σ2

(u)

where u ∈ Θ since

lim
tb→∞

u = lim
tb→∞

(∫ ta

∞
du +

∫ tb

∞
du

)
=

∫ ta

∞
du.
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6. Evaluation of the integral

The integrand (27) can now be transformed using the substitution (33). In this case we

define

du1 =
1

s
dt, (33)

du2 =
t

s
dt, (34)

where s is as given in (26), and let

ui(t) =

∫ t

∞
dui (i = 1, 2).

Lemma 6.1 Let t = − (σ1/σ2) (u) and let du1, du2 be defined by (33) and (34)

respectively. Then for u ∈ Θ the integrand ϕ(p) dp given by (25) may be rewritten

ϕ(p) dp = k

[
AT � du− c

(
σ2

σ1

(u) du1

)
−
(
σ2

2

σ1
2
(u) du1

)]
(35)

where AT = (b, a).

In section 3 we specified that as p → ∞, on either sheet of the Riemann surface,

the residue of the function ϕ(p) must be zero. It therefore follows that

ψ(u) =
σ2

2

σ1
2
(u) + c

σ2

σ1

(u) (36)

must have two double poles with zero residue as σ1 → 0 on the divisor. We will now

verify this by calculating the associated Taylor series.

Let ±u0, where u0 = (u0,1, u0,2), denote the poles of ψ(u). The corresponding

points in the t and p variables are given in Table 1.

Table 1. A list of branch points (pi) and poles (∞±) of λ(p) with the corresponding

points in the t and u variables.

(p) p1 p2 p3 p4 p5 p6 ∞±
(t) t1 t2 t3 t4 t5 ∞ 0±
(u) u1 u2 u3 u4 u5 0 ±u0

If we expand the two terms in ψ(u) about u0, then we have

σ2
2

σ1
2
(u) =

σ2
2

σ1
2
(u0 + (u− u0))

=
σ2

2 + 2 σ2 σ12 (u1 − u0,1) + 2 σ2 σ22 (u2 − u0,2) + · · ·
σ2

11 (u1 − u0,1)2 + 2σ11 σ12 (u1 − u0,1) (u2 − u0,2) + · · ·
and

σ2

σ1

(u) =
σ2

σ1

(u0 + (u− u0))

=
σ2 + σ12 (u1 − u0,1) + σ22 (u2 − u0,2) + · · ·
σ11 (u1 − u0,1) + σ12 (u2 − u0,2) + · · ·
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where each of the σ-function derivatives on the RHS is evaluated at u0. Expanding these

further we obtain a Taylor series in (u1 − u0,1) and (u2 − u0,2). This may be simplified to

a series in one variable as follows. From the definition of ui (28) and the fact t = −σ1

σ2
(u),

we have

(ui − u0,i) =

∫ t

0

dui (i = 1, 2).

Now, as u0 is a regular point on the hyperelliptic curve, we can expand these integrals

in terms of the local parameter t. We thus find that §

(u1 − u0,1) =
1√
µ0

t− 1

4

µ1

µ0
3/2
t2 +O

(
t3
)
,

(u2 − u0,2) =
1

2

1√
µ0

t2 − 1

6

µ1

µ0
3/2
t3 +O

(
t4
)

and so we can write (u2 − u0,2) in terms of (u1 − u0,1) as follows

(u2 − u0,2) =
1

2

√
µ0(u1 − u0,1)2 +

1

12
µ1(u1 − u0,1)3

+O
(
(u1 − u0,1)4

)
.

Substituting (37) and (37) into the Taylor expansion of ψ(u) we have

ψ(u) = ψ(u0 + (u− u0))

=

(
σ2

2

σ11
2

)
1

(u1 − u0,1) 2

+

(
2
σ2 σ12

σ11
2

+ c
σ2

σ11

−√µ0
σ2

2 σ12

σ11
3
− σ2

2σ111

σ11
3

)
1

(u1 − u0,1)
+O(1).

This expression may be simplified further using the relations between the

derivatives of the σ-function on the divisor and at the point u0. These can be

calculated by comparing the coefficients in the expansions of the five partial differential

equations (31) - (31) and the identity

σ(u) = 0 for u ∈ Θ.

This method and the full set of relations holding on Θ for the third order derivatives

are given in Appendix A and Appendix B.

The case of σ11(u0), however, is slightly different. For a general point on the divisor

the expression for σ11(u) is as given in (A.1), but here a direct substition of u = u0

leads to a sign ambiguity. This is resolved by evaluating σ11(u0) from the Taylor series

of σ(u) about u0. Expanding along the divisor, we have

0 = σ(u)

= σ (u0 + (u− u0))

§ In practice, these series were evaluated to high order using Maple (version 6).
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= σ2 (u2 − u0,2) +
1

2
σ11 (u1 − u0,1)2 + · · ·

(since both σ and σ1 are zero)

=

(
1

2
σ2
√
µ0 +

1

2
σ11

)
(u1 − u0,1)2 +O((u1 − u0,1)3)

(from (37)).

We therefore have

σ11(u0) = −√µ0 σ2(u0). (37)

We can now use (B.1) and (37) to evaluate ψ(u) :

ψ(u) = ψ(u0 + (u− u0))

=

(
1

µ0

)
1

(u1 − u0,1) 2

+

(
−c 1√

µ0

− 1

2

µ1

µ
(3/2)
0

)
1

(u1 − u0,1)
+O(1) ;

so for the residue to be zero we require that

c = −1

2

µ1

µ0

. (38)

From equation (25) and identity (24) we have

c =
3∑
i=1

(p6 − p̂i) = 3p6 −
3∑
i=1

p̂i

= 3p6 − 1

2

6∑
i=1

pi =
1

2

5∑
i=1

(p6 − pi)

and from the definitions of µ0 and µ1 in equation (25) we have that

−1

2

µ1

µ0

= −1

2

(
4

5 p6 − p5 − p4 − p3 − p2 − p1∏5
i=1 (p6 − pi)

)(
−1

4

5∏
i=1

(p6 − pi)
)

=
1

2

5∑
i=1

(p6 − pi).

Thus ψ(u) is of the correct form.

We now consider the function

Φ(u) = − 1

µ0

σ11

σ1

(u).

Its derivative along the divisor with respect to u1 is

d

du1

Φ(u) =
∂

∂u1

Φ(u)−
(
σ1

σ2

(u)

)
∂

∂u2

Φ(u)

= − 1

µ0

[
σ111

σ1

− σ11
2

σ1
2
−
(
σ1

σ2

)(
σ112

σ1

− σ11 σ12

σ1
2

)]
=

1

µ0

[
σ111

σ1

− σ11
2

σ1
2
− σ112

σ2

+
σ11 σ12

σ1 σ2

]
.
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Substituting identities (A.1), (A.1) and (A.1) into this gives

d

du1

Φ(u) =
σ2

2

σ1
2
− 1

2

µ1

µ0

σ2

σ1

= ψ(u).

The function Φ(u) may be written in terms of ζ1-functions using the following

addition formulae.

Theorem 6.1 [6] Let u ,v ∈ Θ, then the following addition formula holds

ζ1(u + v) + ζ1(u− v) =

2
σ2(v) σ1(u) σ12(u)

σ2(u) (σ2(u) σ1(v)− σ1(u) σ2(v))
− σ2(v) σ11(u)

σ2(u) σ1(v)− σ1(u) σ2(v)

− σ2(v) σ1(u)2σ22(u)

σ2(u)2 (σ2(u) σ1(v)− σ1(u) σ2(v))
+ 2

σ12(u)

σ2(u)
− σ22(u) σ1(u)

σ2(u)2

Proof 6.1 The partial derivative with respect to u1 of the logarithm of the Baker

addition formula (31) is

LHS =
∂

∂u1

[
ln

(
σ(u + v) σ(u− v)

σ(u)2 σ(v)2

)]
=

σ1(u + v)

σ(u + v)
+
σ1(u− v)

σ(u− v)
− 2

σ1(u)

σ(u)

= ζ1(u + v) + ζ1(u− v)− 2 ζ1(u) ;

RHS =
∂

∂u1

ln [℘22(u)℘12(v)− ℘12(u)℘22(v) + ℘11(v)− ℘11(u)]

=
℘122(u)℘12(v)− ℘112(u)℘22(v)− ℘111(u)

℘22(u)℘12(v)− ℘12(u)℘22(v) + ℘11(v)− ℘11(u)
.

If we now add 2 ζ1(u) to both sides of this equation, we have

ζ1(u + v) + ζ1(u− v) =
℘122(u)℘12(v)− ℘112(u)℘22(v)− ℘111(u)

℘22(u)℘12(v)− ℘12(u)℘22(v) + ℘11(v)− ℘11(u)
+ 2 ζ1(u).

Expanding the RHS of (39) in terms of u ∈ Θ, and substituting in the relations for the

σ derivatives, gives a series in ξ with first term of order 1. ‖ If we then repeat this for

v ∈ Θ and let ξ → 0, we obtain the required result.

Corollary 6.1 Let u,u0 ∈ Θ and let σ1(u0) = 0, then

(a) ζ1(u + u0) + ζ1(u− u0) =
σ11

σ1

(u),

(b) ζ1(u + u0)− ζ1(u− u0) =
√
µ0
σ2

σ1

(u) + 2
σ12

σ2

(u0).

Proof 6.2 (a) Set v = u0 in addition theorem 6.1 and use the identity σ1(u0) = 0.

(b) Similarly, set u = u0 in theorem 6.1.

‖ The Taylor series were calculated using Maple (version 6).
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Thus, for u ∈ Θ we have

Φ(u) = − 1

µ0

σ11

σ1

(u) = − 1

µ0

[ζ1(u + u0) + ζ1(u− u0)] .

The differential ϕ(p) dp given in lemma 6.1 is therefore expressible as the derivative of

known functions:

ϕ(p) dp = k

[
AT � du−

(
d

du1

Φ(u)

)
du1

]
where

k = ±√µ0 = ±
(

−4∏5
i=1 (p6 − pi)

) 1
2

.

Hence, substituting

p = p6 +
σ2

σ1

(u)

into (22) we have

λ(p) = p+

∫ p

∞
[ϕ(p′)− 1] dp

=

(
p6 +

σ2

σ1

(u)

)
+

∫ 1
p6−p

0

[
kAT � du− k

(
d

du1

Φ(u)

)
du1 − dt

t2

]
=

(
p6 +

σ2

σ1

(u)

)
+

{
kAT � u +

1

k
[ζ1(u + u0) + ζ1(u− u0)]− σ2

σ1

(u)

}
+ C̃.

The constant C̃ can be found by evaluating both sides at any convenient point. For

example, if we set p = p6 ⇔ u = 0, then

C̃ = λ(p6)− p6 = λ0
3 − p6.

Alternatively, setting p→∞+ ⇔ u→ +u0, we find

λ(p)− p = kAT � u +
1

k
[ζ1(u + u0) + ζ1(u− u0)]− σ2

σ1

(u) + C̃ → 0.

Hence

C̃ = −k (AT � u0)− 1

k
ζ1(2u0)− lim

u→u0

[
1

k
ζ1(u− u0)− σ2

σ1

(u)

]
.

Expanding this near u0 we have

−1

k
ζ1(u− u0) +

σ2

σ1

(u0 + (u− u0)) = lim
u1→u0,1

[(
−1

k
(u1 − u0,1)−1 +O((u1 − u0,1))

)
+

(
− 1√

µ0

(u1 − u0,1)−1 +

(
1

4

µ1

µ0

)
+O((u1 − u0,1))

)]
=

1

4

µ1

µ0

(setting k = −√µ0).
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It follows that

C̃ =
√
µ0 AT � u0 +

1√
µ0

ζ1(2 u0) +
1

4

µ1

µ0

=
√
µ0 AT � u0

(using identity (C.1) in appendix Appendix C).

Hence, analogously to (21), we obtain the following result.

Theorem 6.2 Let

λ(p) = p+

∫ p

∞

∏3
i=1 (p′ − p̂i)√∏6
i=1 (p′ − pi)

dp′,

k = −
(

−4∏5
i=1 (p6 − pi)

) 1
2

and

AT =

(
3∑
i=1

3∏
j>i

(p6 − p̂i)(p6 − p̂j) ,
3∏
i=1

(p6 − p̂i)
)
.

Then if we set

p = p6 +
σ2

σ1

(u)

with u, u0 ∈ Θ and σ1(u0) = 0, we have

λ(p) = p6 +
1

k
[ζ1(u + u0) + ζ1(u− u0)] + kAT � (u− u0)

= p+
1

k
[ζ1(u + u0) + ζ1(u− u0)]− σ2

σ1

(u) + kAT � (u− u0)

on sheet R+
2 of the Riemann surface

R2 =

{
(v, p) ∈ C 2 : v2 =

6∏
i=1

(p− pi)
}

associated with the relation p→∞+ ⇔ u→ u0.

7. Summary

In the genus 2 case the conformal map from Γ1 to Γ2, p→ λ(p), is described as follows.

We fix three real parameters λ0
n (n = 1, 2, 3) and require that the three variables λ̂n

satisfy

Re(λ̂n) = λ0
n.

The mapping λ(p) is then given by the Schwarz-Christoffel integral

λ(p) = p+

∫ p

∞

 ∏3
i=1 (p′ − p̂i)√∏6
i=1 (p′ − pi)

− 1

 dp′.
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Here the nine parameters pi (i = 1, 2, . . . , 6), p̂j (j = 1, 2, 3) are fixed by the nine

relations ∫ p2n−1

∞
[ϕ(p)− 1] dp+ p2n−1 = λ0

n (n = 1, 2, 3),∫ p2n

p2n−1

ϕ(p) dp = 0 (n = 1, 2, 3)

and ∫ p̂n

p2n−1

ϕ(p) dp = i Im(λ̂n) (n = 1, 2, 3).

The explicit form of λ(p), depending on the 3 parameters Im(λ̂n), is given by

λ(p) = p+
1

k
[ζ1(u + u0) + ζ1(u− u0)]− σ2

σ1

(u) + kAT � (u− u0)

with

p = p6 +
σ2

σ1

(u)

and σ(u) = 0. This is a highly implicit and transcendental expression.

Its asymptotics are given as follows

λ(p) = p+
A0

p
+O(

1

p2
)

where

A0 = −1

8

µ1
2

µ0
2

+
1

2

µ2

µ0

+
3∑
i=1

3∏
j>i

(p6 − p̂i)(p6 − p̂j).

Similar expressions may be found in principle for higher moments An.

If λ(p) is required to satisfy Benney’s equation (10) and to be of this form, then

the λ̂n satisfy

∂λ̂n

∂t
+ p̂n

∂λ̂n

∂x
= 0 (n = 1, 2, 3).

Further, the p̂n and A0 must satisfy the Gibbons-Tsarev equations [7], [9]:

∂p̂j

∂λ̂i
=

(
∂A0

∂λ̂i

)
1

p̂i − p̂j ,

∂2A0

∂λ̂i∂λ̂j
= 2

(
∂A0

∂λ̂i

∂A0

∂λ̂j

)
1

(p̂i − p̂j)2
.

It would be interesting to find a more explicit form of this solution.

Appendix A. Differential relations holding on the divisor

The differential relations for derivatives of σ(u), u ∈ Θ, are evaluated as follows.

For a general point ũ ∈ Θ we have

(ui − ũi) =

∫ t

∞
dui (i = 1, 2).
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Setting t = ξ−2 and expanding the RHS in terms of this local parameter, ξ, we obtain

the series

(u1 − ũ1) = − 1

3
ξ3 +

µ4

40
ξ5 +O(ξ7)

and

(u2 − ũ2) = − ξ +
µ4

24
ξ3 +O(ξ5).

If we now, for example, take the first equation (31)

℘2222 − 6℘2
22 −

1

2
µ3 − µ4℘22 − 4℘12 = 0,

and expand the numerator in terms of (u− ũ), then we get a Taylor series in (u1 − ũ1)

and (u2− ũ2), equal to zero. Substituting in (A.1) and (A.1) gives an expansion in terms

of the single parameter ξ. The relations between the σ derivatives are then found by

equating the coefficient of each power of ξ with zero. Returning to equation (31), the

coefficient of ξ0 is

8 σ2 σ222 − 6 σ22
2 − 8 σ2 σ1 − 2µ4 σ2

2.

Setting this to zero we find

σ222 =
3

4

σ22
2

σ2

+ σ1 +
1

4
µ4σ2

for any point on the divisor.

The following relations, calculated in the same way, are valid for u ∈ Θ :

σ111 = − 3

4

σ22
2 σ1

3

σ2
4
− 3

2

σ22 σ1 σ11

σ2
2

+
3

4
µ4
σ1

3

σ2
2
− 3

σ1
4

σ2
3
− 3

4
µ3
σ1

2

σ2

− 3
σ1 σ12

2

σ2
2

+ 3
σ12 σ22 σ1

2

σ2
3

+ 3
σ12 σ11

σ2

+ µ2 σ1 − 1

2
µ1 σ2

(from (31)) ;

σ112 =
1

4

σ22
2 σ1

2

σ2
3

+
1

2

σ22 σ11

σ2

− 1

4
µ4
σ1

2

σ2

+
σ1

3

σ2
2

+
1

4
µ3 σ1

+
σ12

2

σ2

− σ22 σ1 σ12

σ2
2

(from (31)) ;

σ122 = − 1

4

σ22
2 σ1

σ2
2
− σ1

2

σ2

+
1

4
σ1 µ4 +

σ12 σ22

σ2

(also from (31)). An expression for the second order derivative σ11 can also be obtained

in this way. From the fifth PDE (31) we have

0 = σ2
11 +

(
2
σ22 σ1

2

σ2
2
− 4

σ1 σ12

σ2

)
σ11 +

(
σ1

4 σ22
2

σ2
4

+ 4
σ1

5

σ2
3

+ µ3
σ1

3

σ2

+4
σ1

2 σ12
2

σ2
2
− 4

σ12 σ22σ1
3

σ2
3

− µ4
σ1

4

σ2
2
− µ2 σ1

2 + µ1 σ2 σ1 − µ0 σ2
2

)



Hyperelliptic Reduction of the Benney Moment Equations 26

and so

σ11 = 2
σ1 σ12

σ2

− σ22 σ1
2

σ2
2

± 1

σ2
2

(−4 σ1
5 σ2 − µ3 σ1

3 σ2
3 − µ1 σ1 σ2

5

+µ4σ1
4 σ2

2 + µ0 σ2
6 + µ2 σ1

2 σ2
4
) 1

2 .

Appendix B. Differential relations holding at u = u0.

At specific points u0, defined by σ1(u0) = 0, the first four identities in

appendix Appendix A reduce to

σ111(u0) = 3
σ12 σ11

σ2

(u0)− 1

2
µ1 σ2(u0),

σ112(u0) =
1

2

σ22 σ11

σ2

(u0) +
σ12

2

σ2

(u0),

σ122(u0) =
σ12 σ22

σ2

(u0)

and

σ222(u0) =
3

4

σ22
2

σ2

(u0) +
1

4
µ4σ2(u0).

Appendix C. Evaluation of ζ1(2 u0).

The value of the constant ζ1(2 u0) may be calculated from the results of corollary 6.1.

From this we have

2 ζ1(u + u0) =
σ11

σ1

(u) +
√
µ0
σ2

σ1

(u) + 2
σ12

σ2

(u0).

Expanding the righthand side near u = u0 we get that

RHS =

(
1

2

µ1√
µ0

+ 4
σ12

σ2

(u0)

)
+O((u1 − u0,1))

and so at the point u0(
1

2

µ1√
µ0

+ 4
σ12

σ2

(u0)

)
= 2 ζ1(2 u0)

=
σ11

σ1

(u0) +
√
µ0
σ2

σ1

(u0) + 2
σ12

σ2

(u0)

= 2
σ12

σ2

(u0)

(since from (37) σ11(u0) = −√µ0 σ2(u0)). Thus

ζ1(2 u0) =
σ12

σ2

(u0) = −1

4

µ1√
µ0

. (C.1)
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