Higher genus hyperelliptic reductions of the Benney equations

Sadie Baldwin and John Gibbons
Imperial College
180 Queen's Gate
London SW7 2BZ
E-mail: sadie.baldwin@imperial.ac.uk, j.gibbons@imperial.ac.uk

Abstract

It was shown by Gibbons and Tsarev (1996 Phys. Lett. A 211 19, 1999 Phys. Lett. A 258 263) that N-parameter reductions of the Benney equations correspond to N-parameter families of conformal maps. Here, we consider a specific set of these, the hyperelliptic reductions. The mapping function for this is calculated explicitly by inverting a second-kind Abelian integral on the stratum Θ_{1} of the Jacobi variety of a genus $g(g \geq 3)$ hyperelliptic curve. This is done using a method based on the result of Jorgenson (1992 Israel Journal of Mathematics 77 273).

PACS numbers: 02.30.Ik, 02.30.Jr, 02.30.Zz

1. Introduction

1.1. Reductions of the Benney Moment Equations

The Benney equations [3] are an example of an infinite system of hydrodynamic type. These can be written as a Vlasov equation [7], [15]

$$
\frac{\partial f}{\partial t_{2}}+p \frac{\partial f}{\partial x}-\frac{\partial A^{0}}{\partial x} \frac{\partial f}{\partial p}=0
$$

Here $f=f(x, p, t)$ is a distribution function and the moments are defined by

$$
A^{n}=\int_{-\infty}^{\infty} p^{n} f \mathrm{~d} p .
$$

Benney showed that this system has infinitely many conserved densities, polynomial in the moments A^{n}.

Following [14] and [1], we will now consider reductions of the moment equations; that is the case where only a finite number, N, of the A^{n} are independent. Here, the moment equations can be reduced to a diagonal system of hydrodynamic type with N Riemann invariants, $\hat{\lambda}_{i}$ say, dependent on N characteristic speeds, \hat{p}_{i}. We will assume that the characteristic speeds are real and distinct.

It was shown by Tsarev and one of the authors that in such a case the reductions correspond to N-parameter families of conformal mappings of slit domains. For details
of the properties of these maps and the general construction of such a domain see [8] and [9]. We will now consider a specific set of these reductions which we will call the hyperelliptic reductions.

1.2. Hyperelliptic reductions

For this set of reductions the conformal mapping $\lambda(p): \Gamma_{1} \rightarrow \Gamma_{2}$ is defined as follows. Let Γ_{1} be the upper half p-plane with $3 n$ real points marked on it, $p_{i}(i=1, \ldots, 2 n)$ and the set of characteristic speeds $\hat{p}_{j}(j=1, \ldots n)$. These satisfy

$$
p_{1}<\hat{p}_{2}<p_{3}<p_{4}<\hat{p}_{3}<p_{5}<\cdots<p_{2 n-1}<\hat{p}_{n}<p_{2 n}
$$

The domain Γ_{2} is the upper half λ-plane with n vertical slits going from the fixed real points λ_{i}^{0} to the variable points $\hat{\lambda}_{i}(i=1, \ldots, n)$. Here, $\hat{\lambda}_{i}$ is the Riemann invariant associated with the characteristic speed \hat{p}_{i} and it satisfies the relation

$$
\operatorname{Re}\left(\hat{\lambda}_{i}\right)=\lambda_{i}^{0}
$$

We now impose the conditions

$$
\begin{equation*}
\lambda(p)=p+\mathrm{O}\left(\frac{1}{p}\right) \quad \text { as } \quad p \rightarrow \infty \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda\left(p_{2 i-1}\right)=\lambda\left(p_{2 i}\right)=\lambda_{i}^{0} \quad(i=1, \ldots, n) . \tag{2}
\end{equation*}
$$

It follows that $\lambda(p)$ is a function of n independent parameters which may be taken to be $\operatorname{Im}\left(\hat{\lambda}_{i}\right)(i=1, \ldots, n)$, the varying heights of the slits \ddagger and that Γ_{2} is a polygonal domain. The map $p \rightarrow \lambda(p)$ is thus of Schwarz-Christoffel type:

$$
\begin{equation*}
\lambda(p)=p+\int_{\infty}^{p}\left[\varphi\left(p^{\prime}\right)-1\right] \mathrm{d} p^{\prime} \tag{3}
\end{equation*}
$$

where $\varphi(p)$ is given by

$$
\varphi(p)=\frac{\prod_{i=1}^{n}\left(p-\hat{p}_{i}\right)}{\sqrt{\prod_{i=1}^{2 n}\left(p-p_{i}\right)}} .
$$

Figure 1. (The n parameter reduction) The p-plane with n branch cuts.
\ddagger Note that since $\operatorname{Im}(\lambda) \geq 0 \forall p$ and the distribution function $f=-\pi \operatorname{Im}(\lambda)$, the distribution function is negative.

Figure 2. The λ-plane associated with figure 1.

One of the conditions in (1) and (2) may be replaced by the constraint that the residue of $\varphi(p)$, as $p \rightarrow \infty$ on either sheet, is zero. This provides a relation between the set of points p_{i} and the set of characteristic speeds \hat{p}_{j}. Rewriting

$$
\varphi(p)=\frac{p^{n}-\alpha_{n-1} p^{n-1}-\alpha_{n-2} p^{n-2}-\cdots-\alpha_{1} p-\alpha_{0}}{\sqrt{\prod_{i=1}^{2 n}\left(p-p_{i}\right)}},
$$

we find that the expansion of $\varphi(p)$ near infinity is

$$
1+\frac{\left(\frac{1}{2} \sum_{i=1}^{2 n} p_{i}-\alpha_{n-1}\right)}{p}+\mathrm{O}\left(\frac{1}{p^{2}}\right)
$$

The condition on the residue is therefore satisfied when

$$
\alpha_{n-1}=\frac{1}{2} \sum_{i=1}^{2 n} p_{i}
$$

that is,

$$
\begin{equation*}
\sum_{i=1}^{n} \hat{p}_{i}=\frac{1}{2} \sum_{i=1}^{2 n} p_{i} . \tag{4}
\end{equation*}
$$

It follows that $\varphi(p) \mathrm{d} p$ is a second kind Abelian differential on the Riemann surface

$$
R_{g}=\left\{(p, v): v^{2}=\prod_{i=1}^{2 n}\left(p-p_{i}\right)\right\} .
$$

where $g=n-1$. That is, the differential 1-form $\varphi(p) \mathrm{d} p$ is meromorphic on R_{g} with zero residue at each singular point.

This surface may be constructed from two copies of the complex p-plane joined along the closed intervals

$$
\left[p_{2 i-1}, p_{2 i}\right] \quad(i=1,2, \ldots, g+1) .
$$

A homology basis $\left(\mathfrak{a}_{1}, \mathfrak{a}_{2}, \ldots, \mathfrak{a}_{g} ; \mathfrak{b}_{1}, \mathfrak{b}_{2}, \ldots, \mathfrak{b}_{g}\right)$ for R_{g} is given in figure 3 .
The first three examples of these maps, $g=0,1,2$, have been worked out in detail. For $g=0$ the mapping may be calculated directly. The case of the $n=2$ elliptic reduction was evaluated in [14] by Yu and Gibbons. The $n=3$ genus 2 hyperelliptic reduction was studied in [1] by the authors. We now consider the case for $g \geq 3$. All such maps, once known explicitly, correspond to reductions of Benney's equations to systems

Figure 3. A homology basis on the genus g Riemann surface, R_{g}. The \mathfrak{b}-cycles are closed loops on the first sheet and the \mathfrak{a}-cycles are completed on the second sheet (broken line). These have intersection index given by $\mathfrak{a}_{i} \circ \mathfrak{a}_{j}=\mathfrak{b}_{i} \circ \mathfrak{b}_{j}=0$, $\mathfrak{a}_{i} \circ \mathfrak{b}_{j}=-\mathfrak{a}_{j} \circ \mathfrak{b}_{i}=\delta_{i j}$.
of hydrodynamic type with finitely many Riemann invariants. Tsarev's generalised hodograph transformation [13] leads to solutions of these, in terms of the solution of an over-determined system of linear equations. The construction of n-parameter families of such maps is thus an important step towards understanding the solutions of these equations.

2. Transformation of the integral

Following [1], the integral we need to evaluate is (3):

$$
\lambda(p)=p+\int_{\infty}^{p}\left[\frac{\prod_{i=1}^{g+1}\left(p^{\prime}-\hat{p}_{i}\right)}{\sqrt{\prod_{i=1}^{2 g+2}\left(p^{\prime}-p_{i}\right)}}-1\right] \mathrm{d} p^{\prime} .
$$

Setting $p=p_{2 g+2}-1 / t$ in the integrand $(\varphi(p)-1) \mathrm{d} p$, we find
$(\varphi(p)-1) \mathrm{d} p=\left(\frac{\mathrm{A}_{g+1} t^{g+1}+\mathrm{A}_{g} t^{g}+\cdots+\mathrm{A}_{2} t^{2}+\mathrm{A}_{1} t+(-1)^{g+1}}{\sqrt{\prod_{i=1}^{2 g+2}\left[\left(p_{2 g+2}-p_{i}\right) t-1\right]}}-1\right) \frac{\mathrm{d} t}{t^{2}}$
for some constants $\mathrm{A}_{i}(i=1,2, \ldots, g+1)$. We note here that

$$
\mathrm{A}_{1}=(-1)^{g} \sum_{i=1}^{g+1}\left(p_{2 g+2}-\hat{p}_{i}\right) .
$$

This may be expressed in terms of just the p_{i} using identity (4):

$$
\begin{equation*}
\mathrm{A}_{1}=\frac{(-1)^{g}}{2} \sum_{i=1}^{2 g+1}\left(p_{2 g+2}-p_{i}\right) \tag{6}
\end{equation*}
$$

If we now remove the constant imaginary factor

$$
k=\left(\frac{-4}{\prod_{i=1}^{2 g+1}\left(p_{2 g+2}-p_{i}\right)}\right)^{\frac{1}{2}}
$$

from (5), then we obtain a standardized form for the irrational denominator,

$$
\begin{align*}
\varphi(p) \mathrm{d} p & =k\left(\frac{\mathrm{~A}_{g+1} t^{g+1}+\mathrm{A}_{g} t^{g}+\cdots+\mathrm{A}_{2} t^{2}+\mathrm{A}_{1} t+(-1)^{g+1}}{s}\right) \frac{\mathrm{d} t}{t^{2}} \\
& =k\left(\mathrm{~A}_{g+1} t^{g-1}+\mathrm{A}_{g} t^{g-2} \cdots+\mathrm{A}_{2}+\frac{\mathrm{A}_{1}}{t}+\frac{(-1)^{g+1}}{t^{2}}\right) \frac{\mathrm{d} t}{s} \tag{7}
\end{align*}
$$

where

$$
\begin{align*}
s^{2} & =-k^{2}+\left[k^{2} \sum_{i=1}^{2 g+1}\left(p_{2 g+2}-p_{i}\right)\right] t+\cdots+\mu_{2 g} t^{2 g}+4 t^{2 g+1} \\
& =\mu_{0}+\mu_{1} t+\cdots+\mu_{2 g} t^{2 g}+4 t^{2 g+1} . \tag{8}
\end{align*}
$$

The term

$$
\varphi_{1}(p) \mathrm{d} p=k\left(A_{g+1} t^{g-1}+A_{g} t^{g-2}+\cdots+A_{2}\right) \frac{\mathrm{d} t}{s}
$$

in (7) may be evaluated directly since the set

$$
\mathrm{d} u_{i}=t^{i-1} \frac{\mathrm{~d} t}{s} \quad(i=1,2, \ldots, g)
$$

forms a basis of holomorphic Abelian differentials. The last two terms in $\varphi(p) \mathrm{d} p$ can be rewritten using (6) and the definitions of μ_{0} and μ_{1} in (8). We have

$$
\begin{align*}
\varphi_{2}(p) \mathrm{d} p & =k\left[\frac{(-1)^{g+1}}{t^{2}}+\frac{A_{1}}{t}\right] \frac{\mathrm{d} t}{s} \\
& =(-1)^{g+1} k\left[\frac{1}{t^{2}}-\frac{1}{2}\left(\sum_{i=1}^{2 g+1}\left(p_{2 g+2}-p_{i}\right)\right) \frac{1}{t}\right] \frac{\mathrm{d} t}{s} \\
& =(-1)^{g+1} k\left[\frac{1}{t^{2}}+\frac{1}{2} \frac{\mu_{1}}{\mu_{0}} \frac{1}{t}\right] \frac{\mathrm{d} t}{s} . \tag{9}
\end{align*}
$$

This is a second kind differential on R_{g}. As in the genus 2 case, we can evaluate $\varphi_{2}(p) \mathrm{d} p$ using a restriction of the Jacobi inversion theorem to a one complex dimensional subspace of the Jacobi variety, the one-dimensional stratum of the theta divisor, Θ_{1}.

3. The Θ divisor

Following Enolski [4], [5], let $R_{g}(s, t)$ be the hyperelliptic curve where s and t satisfy

$$
s^{2}=4 \prod_{i=1}^{2 g+1}\left(t-t_{i}\right)=\sum_{i=0}^{2 g} \mu_{i} t^{i}+4 t^{2 g+1}
$$

We define a set of holomorphic and their associated set of second kind differentials on R_{g} to be, respectively,

$$
\begin{equation*}
\mathrm{d} u_{i}=t^{i-1} \frac{\mathrm{~d} t}{s} \quad(i=1,2, \ldots, g) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{d} r_{i}=\sum_{k=i}^{2 g+1-i}(1+k-i) \mu_{1+i+k} \frac{t^{k} \mathrm{~d} t}{4 s} \quad(i=1,2, \ldots, g) \tag{11}
\end{equation*}
$$

From the period integrals of these differentials we form the matrices $\omega, \omega^{\prime}, \eta, \eta^{\prime}$:

$$
\begin{aligned}
2 \omega & =\left(\oint_{\mathfrak{a}_{i}} \mathrm{~d} u_{j}\right) & 2 \omega^{\prime} & =\left(\oint_{\mathfrak{b}_{i}} \mathrm{~d} u_{j}\right) \\
2 \eta & =\left(-\oint_{\mathfrak{a}_{i}} \mathrm{~d} r_{j}\right) & 2 \eta^{\prime}=\left(-\oint_{\mathfrak{b}_{i}} \mathrm{~d} r_{j}\right) & (i, j=1,2, \ldots, g) .
\end{aligned}
$$

These matrices satisfy the generalized Legendre relation

$$
\left(\begin{array}{cc}
\omega & \omega^{\prime} \\
\eta & \eta^{\prime}
\end{array}\right)\left(\begin{array}{cc}
0 & -I_{g} \\
I_{g} & 0
\end{array}\right)\left(\begin{array}{cc}
\omega & \omega^{\prime} \\
\eta & \eta^{\prime}
\end{array}\right)^{\mathrm{T}}=-\frac{i \pi}{2}\left(\begin{array}{cc}
0 & -I_{g} \\
I_{g} & 0
\end{array}\right),
$$

where I_{g} is the $g \times g$ identity matrix.
Letting $\Lambda=2 \omega \oplus 2 \omega^{\prime}$ be the lattice generated by the periods of the holomorphic differentials, the Jacobi variety, $\operatorname{Jac}\left(R_{g}\right)$, is the g-dimensional complex torus \mathbb{C}^{g} / Λ. The Jacobi variety can be subdivided into k-dimensional strata, Θ_{k}, defined by

$$
\Theta_{k}=\sum_{i=1}^{k} \int_{\left(t_{0}, s_{0}\right)}^{\left(t_{i}, s_{i}\right)} \mathrm{d} \mathbf{u}+2 \omega \boldsymbol{K}_{\left(t_{0}, s_{0}\right)} \quad(k=1,2, \ldots, g)
$$

where $\boldsymbol{K}_{\left(t_{0}, s_{0}\right)}$ is the vector of Riemann constants with base point $\left(t_{0}, s_{0}\right)$. These have the structure $\operatorname{Jac}\left(R_{g}\right)=\Theta_{g} \supset \Theta_{g-1} \supset \cdots \supset \Theta_{2} \supset \Theta_{1}$. Such stratifications have been studied by Ônishi [12] and others.

The Abel map, $\mathfrak{A}: R_{g} \rightarrow \operatorname{Jac}\left(R_{g}\right)$, is given by $\mathbf{u}(z)$:

$$
u_{i}(z)=\int_{z_{0}}^{z} \mathrm{~d} u_{i}, \quad(i=1,2, \ldots, g)
$$

where the $u_{i}(z)$ are taken modulo Λ and the base point $z_{0}=\left(t_{0}, s_{0}\right)$ is any fixed point in R_{g}. These create a one-dimensional image of the hyperelliptic curve in the Jacobi variety. For the inversion theorem we require an extension of this map to a set of points.

Definition 3.1 A divisor \mathcal{D} on the Riemann surface R_{g} is defined by the finite formal sum

$$
\mathcal{D}=\sum_{i=1}^{M} n_{i} z_{i}
$$

where $n_{i} \in \mathbb{Z}$ and $z_{i}=\left(s_{i}, t_{i}\right) \in R_{g}$.
We define the Abel mapping of \mathcal{D} into $\operatorname{Jac}\left(R_{g}\right)$ by

$$
\mathfrak{A}(\mathcal{D})=\sum_{i=1}^{M} n_{i} \int_{z_{0}}^{z_{i}} \mathrm{~d} \boldsymbol{u} \quad \bmod \Lambda .
$$

The lower limit of integration, here the point z_{0}, is called the base point of the Abel map. From now we shall set this to be (∞, ∞).

3.1. Hyperelliptic functions

Definition 3.2 The theta function is defined by the Fourier series

$$
\theta\left((2 \omega)^{-1} \boldsymbol{u}\right)=\sum_{\boldsymbol{m} \in \mathbb{Z}^{g}} \exp \left\{i \pi\left[\boldsymbol{m}^{\mathrm{T}} \tau \boldsymbol{m}+\boldsymbol{m}^{\mathrm{T}}\left(\omega^{-1}\right) \boldsymbol{u}\right]\right\},
$$

where $\tau=\omega^{-1} \omega^{\prime}$ is a symmetric matrix with positive definite imaginary part.
One important property of this function is that it is zero when $\boldsymbol{u}=2 \omega \boldsymbol{K}$, the vector of Riemann constants associated with the point (∞, ∞). For further properties see [4].

From the θ-function we define the Kleinian σ-function of the curve R_{g} to be

$$
\sigma(\boldsymbol{u})=C \exp \left(\boldsymbol{u}^{\mathrm{T}} \chi \boldsymbol{u}\right) \theta\left((2 \omega)^{-1} \boldsymbol{u}-\boldsymbol{K}\right)
$$

where

$$
C=\sqrt{\frac{\pi^{3}}{\operatorname{det} 2 \omega}}\left(\frac{1}{\prod_{1 \leq i<j \leq 2 g+1}\left(t_{i}-t_{j}\right)}\right)^{\frac{1}{4}}
$$

and $\chi=\eta(2 \omega)^{-1}$ is a symmetric matrix.
In analogy to the Weierstrass \wp-function, the Kleinian \wp-function is defined as [4]

$$
\wp_{i j}=-\frac{\partial^{2}}{\partial u_{i} \partial u_{j}} \ln [\sigma(\boldsymbol{u})]=\left(\frac{\sigma_{i} \sigma_{j}-\sigma_{i j} \sigma}{\sigma^{2}}\right)(\boldsymbol{u})
$$

where

$$
\sigma_{i}=\frac{\partial}{\partial u_{i}} \sigma(\mathbf{u}), \quad \sigma_{i j}=\frac{\partial^{2}}{\partial u_{j} \partial u_{i}} \sigma(\mathbf{u}) .
$$

Higher logarithmic derivatives of σ are expressed similarly. For example

$$
\wp_{i j k l}=-\frac{\partial^{4}}{\partial u_{i} \partial u_{j} \partial u_{k} \partial u_{l}} \ln [\sigma(\boldsymbol{u})] .
$$

3.2. Jacobi Inversion formula

Theorem 1 (Jacobi inversion theorem) [4] The Abel preimage of the point $\boldsymbol{u} \in \operatorname{Jac}\left(R_{g}\right)$ is given by the set $S=\left\{\left(t_{1}, s_{1}\right),\left(t_{2}, s_{2}\right), \ldots,\left(t_{g}, s_{g}\right)\right\} \in\left(R_{g}\right)^{g}$, where t_{k} are the zeros of the polynomial

$$
\mathcal{P}(t ; \boldsymbol{u})=t^{g}-t^{g-1} \wp_{g, g}(\boldsymbol{u})-t^{g-2} \wp_{g, g-1}(\boldsymbol{u})-\ldots-\wp_{g, 1}(\boldsymbol{u})
$$

and the s_{k} are given by

$$
s_{k}=-\left.\frac{\partial \mathcal{P}(t ; \boldsymbol{u})}{\partial u_{g}}\right|_{t=t_{k}}
$$

For the integral of the differential (9), we need the preimage of \boldsymbol{u} when the points $t_{i} \rightarrow \infty(i=2, \ldots, g)$. That is, for the case when $S=\left\{\left(t_{1}, s_{1}\right)\right\}$ and so $\boldsymbol{u} \in \Theta_{1}$:

$$
\mathfrak{A}(S)=\int_{\infty}^{t_{1}} \mathrm{~d} \boldsymbol{u}
$$

This relation has been calculated from the results of Jorgenson [11] by Enolski (see Appendix A). We obtain

$$
\begin{equation*}
t_{1}=-\left.\frac{\sigma_{1}}{\sigma_{2}}(\boldsymbol{u})\right|_{\boldsymbol{u} \in \Theta_{1}} \tag{12}
\end{equation*}
$$

where the one-dimensional stratum Θ_{1} may be defined as

$$
\Theta_{1}=\left\{\boldsymbol{u}: \sigma(\boldsymbol{u})=0, \sigma_{k}(\boldsymbol{u})=0(k=3, \ldots, g)\right\} .
$$

This useful result (12) was first given by Grant in [10].

4. Evaluation of the integral

We now further transform the integrand $\left(\varphi_{1}(p)+\varphi_{2}(p)\right) \mathrm{d} p$ using the substitution $t=\left(-\sigma_{1} / \sigma_{2}\right)(\boldsymbol{u})(12)$ and the definitions of the holomorphic differentials, $\mathrm{d} u_{i}(i=$ $1,2, \ldots, g)(10)$.

Table 1. A list of branch points $\left(p_{i}\right)$ and poles $\left(\infty_{ \pm}\right)$of $\lambda(p)$ with the corresponding points in the t and \mathbf{u} variables.

(p)	p_{1}	p_{2}	\ldots	$p_{2 g+1}$	$p_{2 g+2}$	$\infty_{ \pm}$
(t)	t_{1}	t_{2}	\ldots	$t_{2 g+1}$	∞	$0_{ \pm}$
(\mathbf{u})	\mathbf{u}_{1}	\mathbf{u}_{2}	\ldots	$\mathbf{u}_{2 g+1}$	$\mathbf{0}$	$\pm \mathbf{u}_{0}$

Lemma 1 Let $t=\left(-\sigma_{1} / \sigma_{2}\right)(\boldsymbol{u})$ where $\boldsymbol{u} \in \Theta_{1}$ and define $\mathrm{d} u_{i}=t^{i-1} \mathrm{~d} t / s$, a set of holomorphic differentials on R_{g}. Then

$$
\varphi(p) \mathrm{d} p=k\left(\boldsymbol{A}^{\mathrm{T}} \cdot \mathrm{~d} \boldsymbol{u}\right)+(-1)^{g+1} k\left(\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}(\boldsymbol{u})-\frac{1}{2} \frac{\mu_{1}}{\mu_{0}} \frac{\sigma_{2}}{\sigma_{1}}(\boldsymbol{u})\right) \frac{\mathrm{d} t}{s}
$$

where $\boldsymbol{A}^{\mathrm{T}}=\left(A_{2}, A_{3}, \ldots, A_{g+1}\right)$.
The term

$$
\varphi_{2}(\boldsymbol{u}) \mathrm{d} u_{1}=\left(\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}(\boldsymbol{u})-\frac{1}{2} \frac{\mu_{1}}{\mu_{0}} \frac{\sigma_{2}}{\sigma_{1}}(\boldsymbol{u})\right) \mathrm{d} u_{1}
$$

is a second kind differential with a pole of order 2 at $\boldsymbol{u}= \pm \boldsymbol{u}_{0}$ (see Table 1). This can be verified as follows.

Since \boldsymbol{u}_{0} is a regular point on the hyperelliptic curve R_{g}, we can evaluate the expansion of φ_{2} near \boldsymbol{u}_{0} in terms of the local parameter t. Setting $v_{k}=\boldsymbol{e}_{k}{ }^{T} \cdot\left(\boldsymbol{u}-\boldsymbol{u}_{0}\right)$ where $\left(\boldsymbol{e}_{k}\right)_{j}=\delta_{k j}$, we have

$$
\begin{aligned}
v_{k} & =\int_{\infty}^{t} \mathrm{~d} u_{k}-\int_{\infty}^{0} \mathrm{~d} u_{k} \\
& =\int_{0}^{t} \frac{t^{k-1}}{\sqrt{4 t^{2 g+1}+\mu_{2 g} t^{2 g}+\ldots+\mu_{1} t+\mu_{0}}} \mathrm{~d} t .
\end{aligned}
$$

This gives

$$
v_{k}=\left(\frac{1}{k} \frac{1}{\sqrt{\mu_{0}}}\right) t^{k}-\left(\frac{1}{2(k+1)} \frac{\mu_{1}}{\mu_{0}^{\frac{3}{2}}}\right) t^{k+1}+\mathrm{O}\left(t^{k+2}\right) \quad(k=1,2, \ldots, g)
$$

and so for $k>1$

$$
\begin{equation*}
v_{k}=\left(\frac{1}{k} \mu_{0}{ }^{(k-1) / 2}\right) v_{1}{ }^{k}+\mathrm{O}\left(v_{1}{ }^{k+1}\right) . \tag{13}
\end{equation*}
$$

The Taylor series of φ_{2} near \boldsymbol{u}_{0} can thus be expressed in terms of the single parameter $v_{1}=\boldsymbol{e}_{1}{ }^{\mathrm{T}} \cdot\left(\boldsymbol{u}-\boldsymbol{u}_{0}\right)$. We have

$$
\frac{\sigma_{2}}{\sigma_{1}}\left(\boldsymbol{u}_{0}-\left(\boldsymbol{u}_{0}-\boldsymbol{u}\right)\right)=\frac{\left(\sigma_{2}\right)+\left(\sigma_{12}\right) v_{1}+\cdots}{\left(\sigma_{11}\right) v_{1}+\ldots}=\left(\frac{\sigma_{2}}{\sigma_{11}}\right) v_{1}^{-1}+\mathrm{O}(1)
$$

and

$$
\begin{aligned}
\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}\left(\boldsymbol{u}_{0}-\left(\boldsymbol{u}_{0}-\boldsymbol{u}\right)\right) & =\frac{\sigma_{2}^{2}+\left(2 \sigma_{2} \sigma_{12}\right) v_{1}+\ldots}{\sigma_{11}{ }^{2} v_{1}^{2}+\left(\sigma_{11} \sigma_{111}\right) v_{1}^{3}+\left(2 \sigma_{11} \sigma_{12}\right) v_{1} v_{2}+\ldots} \\
& =\left(\frac{\sigma_{2}{ }^{2}}{\sigma_{11}{ }^{2}}\right) v_{1}^{-2}+\left(2 \frac{\sigma_{2} \sigma_{12}}{\sigma_{11}{ }^{2}}-\frac{\sigma_{2}{ }^{2} \sigma_{111}}{\sigma_{11}{ }^{3}}-\sqrt{\mu_{0}} \frac{\sigma_{2}^{2} \sigma_{12}}{\sigma_{11}{ }^{3}}\right) v_{1}^{-1}+\mathrm{O}(1)
\end{aligned}
$$

(using (13)).
These expansions may be simplified by using the substitutions for $\sigma_{11}\left(\boldsymbol{u}_{0}\right)$ and $\sigma_{111}\left(\boldsymbol{u}_{0}\right)$ calculated in Appendix B. This gives

$$
\begin{equation*}
\left(\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}-\frac{1}{2} \frac{\mu_{1}}{\mu_{0}} \frac{\sigma_{2}}{\sigma_{1}}\right)\left(\boldsymbol{u}_{0}-\left(\boldsymbol{u}_{0}-\boldsymbol{u}\right)\right)=\left(\frac{1}{\mu_{0}}\right) v_{1}^{-2}+\mathrm{O}(1) \quad(\forall g \geq 3) \tag{14}
\end{equation*}
$$

In analogy to the genus 2 case, we now consider the function

$$
\Psi(\boldsymbol{u})=-\frac{1}{\mu_{0}} \frac{\sigma_{11}}{\sigma_{1}}(\boldsymbol{u})
$$

for $\boldsymbol{u} \in \Theta_{1}$. Since $\mathrm{d} u_{i}=\left(-\sigma_{1} / \sigma_{2}\right)^{(i-1)} \mathrm{d} u_{1}$, the derivative of Ψ with respect to u_{1} along $\Theta_{1}=\left\{\boldsymbol{u}: \sigma=0, \sigma_{k}=0(k=3, \ldots, g)\right\}$ is

$$
\begin{align*}
\psi & =\frac{\mathrm{d}}{\mathrm{~d} u_{1}}\left[-\frac{1}{\mu_{0}} \frac{\sigma_{11}}{\sigma_{1}}\right] \\
& =-\frac{1}{\mu_{0}}\left[\sum_{i=1}^{g}(-1)^{i-1}\left(\frac{\sigma_{1}}{\sigma_{2}}\right)^{i-1}\left(\frac{\sigma_{11 i}}{\sigma_{1}}-\frac{\sigma_{11} \sigma_{1 i}}{\sigma_{1}^{2}}\right)\right] . \tag{15}
\end{align*}
$$

This function is only singular when $\sigma_{1}(\boldsymbol{u})=0$, that is when $\boldsymbol{u}= \pm \boldsymbol{u}_{0}$.
We calculate the Taylor series of ψ near the singular point \boldsymbol{u}_{0} as follows. Since just the first three terms in the sum contain negative powers of σ_{1} we will rewrite $\psi(\boldsymbol{u})$ as

$$
\psi=-\frac{1}{\mu_{0}}\left[\left(-\sigma_{11}{ }^{2}\right) \frac{1}{\sigma_{1}{ }^{2}}+\left(\sigma_{111}+\frac{\sigma_{11} \sigma_{12}}{\sigma_{2}}\right) \frac{1}{\sigma_{1}}+\mathrm{O}(1)\right]
$$

for \boldsymbol{u} near \boldsymbol{u}_{0}. If we now take the limit $\boldsymbol{u} \rightarrow \boldsymbol{u}_{0} \Leftrightarrow p \rightarrow \infty$, we obtain

$$
\begin{aligned}
\lim _{u \rightarrow u_{0}}\left[\frac{1}{\mu_{0}} \frac{\sigma_{11}^{2}}{\sigma_{1}^{2}}\right] & =\lim _{v_{i} \rightarrow 0}\left[\frac{\left(\sigma_{11}^{2}\right)+\left(2 \sigma_{11} \sigma_{111}\right) v_{1}+\cdots}{\left(\mu_{0} \sigma_{11}^{2}\right) v_{1}^{2}+\left(\mu_{0} \sigma_{11} \sigma_{111}\right) v_{1}^{3}+\left(2 \mu_{0} \sigma_{11} \sigma_{12}\right) v_{1} v_{2}+\cdots}\right] \\
& =\lim _{v_{1} \rightarrow 0}\left[\left(\frac{1}{\mu_{0}}\right) v_{1}^{-2}+\left(\frac{1}{\mu_{0}} \frac{\sigma_{111}}{\sigma_{11}}-\frac{1}{\sqrt{\mu_{0}}} \frac{\sigma_{12}}{\sigma_{11}}\right) v_{1}^{-1}+\mathrm{O}(1)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{u \rightarrow u_{0}}\left[-\frac{1}{\mu_{0}}\left(\frac{\sigma_{111}}{\sigma_{1}}+\frac{\sigma_{11} \sigma_{12}}{\sigma_{2} \sigma_{1}}\right)\right] & =\lim _{v_{i} \rightarrow 0}\left[\frac{-\left(\sigma_{111} \sigma_{2}+\sigma_{11} \sigma_{12}\right)+\cdots}{\left(\mu_{0} \sigma_{2} \sigma_{11}\right) v_{1}+\cdots}\right] \\
& =\lim _{v_{1} \rightarrow 0}\left[\left(-\frac{1}{\mu_{0}} \frac{\sigma_{111}}{\sigma_{11}}-\frac{1}{\mu_{0}} \frac{\sigma_{12}}{\sigma_{2}}\right) v_{1}^{-1}+\mathrm{O}(1)\right] .
\end{aligned}
$$

Combining these gives

$$
\begin{align*}
\lim _{u \rightarrow u_{0}} \psi(\boldsymbol{u}) & =\lim _{v_{1} \rightarrow 0}\left[\left(\frac{1}{\mu_{0}}\right) v_{1}^{-2}+\left(-\frac{1}{\sqrt{\mu_{0}}} \frac{\sigma_{12}}{\sigma_{11}}\left(\boldsymbol{u}_{0}\right)-\frac{1}{\mu_{0}} \frac{\sigma_{12}}{\sigma_{2}}\left(\boldsymbol{u}_{0}\right)\right) v_{1}^{-1}+\mathrm{O}(1)\right] \\
& =\left(\frac{1}{\mu_{0}}\right) v_{1}^{-2}+\mathrm{O}(1) \quad(\forall g \geq 3) \tag{16}
\end{align*}
$$

(using substitution (B.1)).
From the expansion of φ_{2} (14) and $\psi(16)$ near their singular points, it follows that $\left(\varphi_{2}(\boldsymbol{u})-\psi(\boldsymbol{u})\right)$ is a holomorphic function on R_{g}. We thus have that

$$
\begin{equation*}
(-1)^{g+1} \varphi_{2}(\boldsymbol{u}) \mathrm{d} u_{1}+\boldsymbol{A}^{\mathrm{T}} \cdot \mathrm{~d} \boldsymbol{u}=(-1)^{g+1} \psi(\boldsymbol{u}) \mathrm{d} u_{1}+\boldsymbol{B}^{\mathrm{T}} \cdot \mathrm{~d} \boldsymbol{u} \tag{17}
\end{equation*}
$$

for some g-vector of constants $\boldsymbol{B}=\left(B_{2}, B_{3}, \ldots, B_{g+1}\right)^{\mathrm{T}}$.

5. Evaluation of the vector B.

Following [2], let f be a function on the Riemann surface R_{g}. The divisor of $f,(f)$, is defined as

$$
(f)=\sum n_{i} Z_{i}-\sum m_{i} P_{i} \quad n_{i}, m_{i} \in \mathbb{Z}^{+}
$$

where Z_{i} is a zero of f of degree n_{i} and P_{i} is a pole of f of order m_{i}. The degree of the divisor of f is

$$
\operatorname{deg}(f)=\sum n_{i}-\sum m_{i} .
$$

For any function f and Abelian differential $\mathrm{d} v$ the following hold:

$$
\begin{align*}
& \operatorname{deg}(f)=0 \tag{18}\\
& \operatorname{deg}(\mathrm{~d} v)=2 g-2 .
\end{align*}
$$

We will now consider the Abelian differential

$$
(-1)^{g+1}\left[\varphi_{2}(\boldsymbol{u})-\psi(\boldsymbol{u})\right] \mathrm{d} u_{1} .
$$

By construction, $\mathrm{d} u_{1}$ is a first kind Abelian differential. It therefore has no poles on R_{g} and zeros of total degree $(2 g-2)$. From section 4 , we know that the hyperelliptic function $\left(\varphi_{2}-\psi\right)$ has no poles and so, by (18), it cannot have any zeros. Hence, for some constant C_{0}, we have

$$
C_{0} \mathrm{~d} u_{1}=(-1)^{g+1}\left[\varphi_{2}(\boldsymbol{u})-\psi(\boldsymbol{u})\right] \mathrm{d} u_{1} .
$$

Rewriting this using identity (17) gives

$$
\begin{aligned}
& C_{0} \mathrm{~d} u_{1}
\end{aligned}=(\boldsymbol{B}-\boldsymbol{A})^{\mathrm{T}} \cdot \mathrm{~d} \boldsymbol{u} .
$$

Matching coefficients of t, we see

$$
C_{0}=B_{2}-A_{2}
$$

and so

$$
B_{i}=A_{i} \quad(i=3, \ldots, g+1)
$$

The value of B_{2} may be found by evaluating $\left(\varphi_{2}(\boldsymbol{u})-\psi(\boldsymbol{u})\right)$ at a specific point. If, for example, we take $\boldsymbol{u}=\boldsymbol{u}_{0}$, then we obtain
$C_{0}=\lim _{\boldsymbol{u} \rightarrow \boldsymbol{u}_{0}}\left[\varphi_{2}(\boldsymbol{u})-\psi(\boldsymbol{u})\right]=\left(\frac{1}{\sqrt{\mu_{0}}} \frac{\sigma_{22}}{\sigma_{2}}\left(\boldsymbol{u}_{0}\right)+\frac{2}{\mu_{0}} \frac{\sigma_{112}}{\sigma_{2}}\left(\boldsymbol{u}_{0}\right)-\frac{2}{\mu_{0}} \frac{\sigma_{12}{ }^{2}}{\sigma_{2}{ }^{2}}\left(\boldsymbol{u}_{0}\right)\right)+\mathrm{O}\left(v_{1}\right)$
(using substitutions (B.1), (B.2) and (B.3) from Appendix B). From this we have

$$
B_{2}=A_{2}+(-1)^{g+1}\left(\frac{1}{\sqrt{\mu_{0}}} \frac{\sigma_{22}}{\sigma_{2}}\left(\boldsymbol{u}_{0}\right)+\frac{2}{\mu_{0}} \frac{\sigma_{112}}{\sigma_{2}}\left(\boldsymbol{u}_{0}\right)-\frac{2}{\mu_{0}} \frac{\sigma_{12}{ }^{2}}{\sigma_{2}{ }^{2}}\left(\boldsymbol{u}_{0}\right)\right) .
$$

It would be possible to rewrite $\sigma_{112}\left(\boldsymbol{u}_{0}\right)$ in terms of lower order σ-derivatives using the following procedure. For each $g \geq 1$ there exists a set of PDE of the form

$$
\begin{equation*}
\wp_{i j k l}-f\left(\mu_{0}, \ldots, \mu_{2 g+1} ; \wp_{m n}\right)=0, \tag{19}
\end{equation*}
$$

where $1 \leq i \leq j \leq k \leq l \leq g$ and $1 \leq m \leq n \leq g$ (see [4]). If we expand (19) for \boldsymbol{u} near \boldsymbol{u}_{0}, then we get Taylor series equal to zero. The relations between the σ-derivatives at the point $\boldsymbol{u}_{0} \in \Theta_{1}$ are then found by setting $\sigma\left(\boldsymbol{u}_{0}\right)=\sigma_{1}\left(\boldsymbol{u}_{0}\right)=\sigma_{k}\left(\boldsymbol{u}_{0}\right)=0 \quad(k=$ $3, \ldots, g$) and equating each coefficient with zero. This process, however, cannot easily be generalized for all $g \geq 3$.

6. Result

Setting

$$
\begin{aligned}
& k= \pm \sqrt{\mu_{0}}= \pm\left(\frac{-4}{\prod_{i=1}^{2 g+1}\left(p_{2 g+2}-p_{i}\right)}\right)^{\frac{1}{2}}, \\
& \widetilde{B}_{2}=(-1)^{g+1}\left(\frac{1}{\sqrt{\mu_{0}}} \frac{\sigma_{22}}{\sigma_{2}}\left(\boldsymbol{u}_{0}\right)+\frac{2}{\mu_{0}} \frac{\sigma_{112}}{\sigma_{2}}\left(\boldsymbol{u}_{0}\right)-\frac{2}{\mu_{0}} \frac{\sigma_{12}^{2}}{\sigma_{2}^{2}}\left(\boldsymbol{u}_{0}\right)\right)
\end{aligned}
$$

and substituting

$$
p=p_{2 g+2}-\frac{1}{t}=p_{2 g+2}+\frac{\sigma_{2}}{\sigma_{1}}(\boldsymbol{u})
$$

into (3) we have

$$
\begin{aligned}
\lambda(p) & =p+\int_{\infty}^{p}\left[\varphi\left(p^{\prime}\right)-1\right] \mathrm{d} p^{\prime} \\
& =\left(p_{2 g+2}+\frac{\sigma_{2}}{\sigma_{1}}(\boldsymbol{u})\right)+\int_{0}^{\frac{1}{{ }^{\left(p_{2 g+2}-p\right)}}}\left[k \boldsymbol{A}^{\mathrm{T}} \cdot \mathrm{~d} \boldsymbol{u}+k \widetilde{B}_{2} \mathrm{~d} u_{1}+(-1)^{g+1} k\left(\frac{\mathrm{~d}}{\mathrm{~d} u_{1}} \Psi(\boldsymbol{u})\right) \mathrm{d} u_{1}-\frac{\mathrm{d} t}{t^{2}}\right] \\
& =\left(p_{2 g+2}+\frac{\sigma_{2}}{\sigma_{1}}(\boldsymbol{u})\right)+\left[k\left(\boldsymbol{A}+\widetilde{B}_{2} \boldsymbol{e}_{1}\right)^{\mathrm{T}} \cdot \boldsymbol{u}+(-1)^{g} \frac{k}{\mu_{0}} \frac{\sigma_{11}}{\sigma_{1}}-\frac{\sigma_{2}}{\sigma_{1}}(\boldsymbol{u})\right]+\widetilde{C} .
\end{aligned}
$$

The value of the constant \widetilde{C} can be found by considering the limit of $(\lambda(p)-p)$ as $p \rightarrow \infty_{+} \Leftrightarrow \boldsymbol{u} \rightarrow+\boldsymbol{u}_{0}$. Since

$$
\lim _{p \rightarrow \infty}[\lambda(p)-p]=0
$$

we have that

$$
\widetilde{C}=-k\left(\boldsymbol{A}+\widetilde{B}_{2} \boldsymbol{e}_{1}\right)^{\mathrm{T}} \cdot \boldsymbol{u}_{0}+\lim _{u \rightarrow \boldsymbol{u}_{0}}\left[(-1)^{g+1} \frac{k}{\mu_{0}} \frac{\sigma_{11}}{\sigma_{1}}(\boldsymbol{u})+\frac{\sigma_{2}}{\sigma_{1}}(\boldsymbol{u})\right] .
$$

Expanding the terms in this limit we obtain

$$
\begin{aligned}
\lim _{u \rightarrow \boldsymbol{u}_{0}}\left[(-1)^{g+1} \frac{k}{\mu_{0}} \frac{\sigma_{11}}{\sigma_{1}}\right] & =(-1)^{g+1}\left(\frac{k}{\mu_{0}}\right) \lim _{v_{i} \rightarrow 0}\left[\frac{\left(\sigma_{11}\right)+\left(\sigma_{111}\right) v_{1}+\cdots}{\left(\sigma_{11}\right) v_{1}+\left(\frac{1}{2} \sigma_{111}\right) v_{1}^{2}+\left(\sigma_{12}\right) v_{2}+\cdots}\right] \\
& =(-1)^{g+1}\left(\frac{k}{\mu_{0}}\right) \lim _{v_{1} \rightarrow 0}\left[v_{1}^{-1}+\left(\frac{1}{2} \frac{\sigma_{111}}{\sigma_{11}}-\frac{\sqrt{\mu_{0}}}{2} \frac{\sigma_{12}}{\sigma_{11}}\right)+\mathrm{O}\left(v_{1}\right)\right] \\
& =(-1)^{g+1}\left(\frac{k}{\mu_{0}}\right) \lim _{v_{1} \rightarrow 0}\left[v_{1}^{-1}+\left(2 \frac{\sigma_{12}}{\sigma_{2}}+\frac{1}{4} \frac{\mu_{1}}{\sqrt{\mu_{0}}}\right)+\mathrm{O}\left(v_{1}\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{u \rightarrow u_{0}}\left[\frac{\sigma_{2}}{\sigma_{1}}\right] & =\lim _{v_{i} \rightarrow 0}\left[\frac{\left(\sigma_{2}\right)+\left(\sigma_{12}\right) v_{1}+\cdots}{\left(\sigma_{11}\right) v_{1}+\left(\frac{1}{2} \sigma_{111}\right) v_{1}^{2}+\left(\sigma_{12}\right) v_{2}+\cdots}\right] \\
& =\lim _{v_{1} \rightarrow 0}\left[\left(\frac{\sigma_{2}}{\sigma_{11}}\right) v_{1}^{-1}+\left(\frac{\sigma_{12}}{\sigma_{11}}-\frac{1}{2} \frac{\sigma_{2} \sigma_{111}}{\sigma_{11}^{2}}-\frac{\sqrt{\mu_{0}}}{2} \frac{\sigma_{2} \sigma_{12}}{\sigma_{11}{ }^{2}}\right)+\mathrm{O}\left(v_{1}\right)\right] \\
& =\lim _{v_{1} \rightarrow 0}\left[\left(-\frac{1}{\sqrt{\mu_{0}}}\right) v_{1}^{-1}+\left(\frac{1}{4} \frac{\mu_{1}}{\mu_{0}}\right)+\mathrm{O}\left(v_{1}\right)\right] .
\end{aligned}
$$

Since \widetilde{C} is constant we set $k=(-1)^{g+1} \sqrt{\mu_{0}}$ and hence

$$
\widetilde{C}=(-1)^{g} \sqrt{\mu_{0}}\left(\boldsymbol{A}+\widetilde{B}_{2} \boldsymbol{e}_{1}\right)^{\mathrm{T}} \cdot \boldsymbol{u}_{0}+\frac{2}{\sqrt{\mu_{0}}} \frac{\sigma_{12}}{\sigma_{2}}\left(\boldsymbol{u}_{0}\right)+\frac{1}{2} \frac{\mu_{1}}{\mu_{0}} .
$$

This gives the following result.
Theorem 2 Let

$$
\begin{aligned}
\lambda(p) & =p+\int_{\infty}^{p} \frac{\prod_{i=1}^{g+1}\left(p^{\prime}-\hat{p}_{i}\right)}{\sqrt{\prod_{i=1}^{2 g+2}\left(p^{\prime}-p_{i}\right)}} \mathrm{d} p^{\prime}, \\
k & =(-1)^{g+1}\left(\frac{-4}{\prod_{i=1}^{2 g+1}\left(p_{2 g+2}-p_{i}\right)}\right)^{\frac{1}{2}}, \\
\widetilde{B}_{2} & =(-1)^{g+1}\left(\frac{1}{\sqrt{\mu_{0}}} \frac{\sigma_{22}}{\sigma_{2}}\left(\boldsymbol{u}_{0}\right)+\frac{2}{\mu_{0}} \frac{\sigma_{112}}{\sigma_{2}}\left(\boldsymbol{u}_{0}\right)-\frac{2}{\mu_{0}} \frac{\sigma_{12}^{2}}{\sigma_{2}^{2}}\left(\boldsymbol{u}_{0}\right)\right)
\end{aligned}
$$

and $\boldsymbol{A}^{\mathrm{T}}=\left(\mathrm{A}_{2}, \mathrm{~A}_{3}, \ldots, \mathrm{~A}_{g+1}\right)$ where the A_{i} are defined as

$$
\sum_{i=0}^{g+1} \mathrm{~A}_{i} t^{i}=\prod_{i=1}^{g+1}\left[\left(p_{2 g+2}-\hat{p}_{i}\right) t-1\right]
$$

Then, if we set

$$
p=p_{2 g+2}+\frac{\sigma_{2}}{\sigma_{1}}(\boldsymbol{u})
$$

with $\boldsymbol{u}, \boldsymbol{u}_{0} \in \Theta_{1}$ and $\sigma_{1}\left(\boldsymbol{u}_{0}\right)=0$, we have

$$
\begin{align*}
\lambda(p)= & (-1)^{g+1} \sqrt{\mu_{0}}\left(\boldsymbol{A}+\widetilde{B}_{2} \boldsymbol{e}_{1}\right)^{\mathrm{T}} \cdot\left(\boldsymbol{u}-\boldsymbol{u}_{0}\right)-\frac{1}{\sqrt{\mu_{0}}} \frac{\sigma_{11}}{\sigma_{1}}(\boldsymbol{u}) \\
& +p_{2 g+2}+\frac{2}{\sqrt{\mu_{0}}} \frac{\sigma_{12}}{\sigma_{2}}\left(\boldsymbol{u}_{0}\right)+\frac{1}{2} \frac{\mu_{1}}{\mu_{0}} \tag{20}
\end{align*}
$$

on sheet R_{g}^{+}of the Riemann surface

$$
R_{g}=\left\{(v, p) \in \mathbb{C}^{g}: v^{2}=\prod_{i=1}^{2 g+2}\left(p-p_{i}\right)\right\}
$$

associated with the relation $p \rightarrow \infty_{+} \Leftrightarrow \boldsymbol{u} \rightarrow+\boldsymbol{u}_{0}$.
We note that in the $g=2$ case the analogous solution to (20) could be rewritten using the relation

$$
\frac{\sigma_{11}}{\sigma_{1}}(\boldsymbol{u})=\frac{\sigma_{1}}{\sigma}\left(\boldsymbol{u}+\boldsymbol{u}_{0}\right)+\frac{\sigma_{1}}{\sigma}\left(\boldsymbol{u}-\boldsymbol{u}_{0}\right)=\zeta_{1}\left(\boldsymbol{u}+\boldsymbol{u}_{0}\right)+\zeta_{1}\left(\boldsymbol{u}-\boldsymbol{u}_{0}\right)
$$

for $\boldsymbol{u} \in \Theta_{1}$. In the case of higher genus reductions this is not possible since $\left(\boldsymbol{u} \pm \boldsymbol{u}_{0}\right) \in \Theta_{2}$ and ζ_{1} is singular everywhere on Θ_{2}.

The formula (20) seems a little more complicated than the analogous results in genus 1 and 2 ; the reason for this is the difficulty of expanding the terms involving \boldsymbol{u}_{0} in the general case. However, we consider it remarkable that essentially the same formula is valid for any genus.

Acknowledgments

We would like to thank V Z Enolski for bringing [11] to our attention and for the result given in Appendix A.

Appendix A. Reduction of the Inversion theorem to Θ_{1}.

Following Enolski and Previato [6], we begin by rewriting the main result of [11] in terms of first derivatives of the σ-function.

Theorem 3 Let \boldsymbol{K}_{P} be the vector of Riemann constants associated with the point $P,\left\{P_{1}, P_{2}, \ldots, P_{g-1}\right\}$ be a set of points on R_{g} and let $\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots, a_{g}\right)^{\mathrm{T}}, \boldsymbol{b}=$ $\left(b_{1}, b_{2}, \ldots, b_{g}\right)^{\mathrm{T}} \in \mathbb{C}^{g}$ be any nonzero vectors. Then the following identity holds

$$
\frac{\sum_{j=1}^{g} \sigma_{j}(\boldsymbol{u}) a_{j}}{\sum_{j=1}^{g} \sigma_{j}(\boldsymbol{u}) b_{j}}=\frac{\operatorname{det}\left[\boldsymbol{a}\left|\mathrm{d} \boldsymbol{u}\left(P_{1}\right)\right| \cdots \mid \mathrm{d} \boldsymbol{u}\left(P_{g-1}\right)\right]}{\operatorname{det}\left[\boldsymbol{b}\left|\mathrm{d} \boldsymbol{u}\left(P_{1}\right)\right| \cdots \mid \mathrm{d} \boldsymbol{u}\left(P_{g-1}\right)\right]}
$$

where the point \boldsymbol{u} is given by

$$
\boldsymbol{u}=\sum_{k=1}^{g-1} \int_{P}^{P_{k}} \mathrm{~d} \boldsymbol{u}+2 \omega \boldsymbol{K}_{P} .
$$

Here, we take the $\mathrm{d} u_{i}$ to be the holomorphic differentials defined above:

$$
\mathrm{d} u_{i}=\frac{t^{i-1}}{s} \mathrm{~d} t \quad(i=1, \ldots, g)
$$

Corollary 3.1 Let the points $P_{1}, P_{2}, \ldots, P_{g-1}$ coalesce to a point P. Then we obtain by L'Hôpital's rule

$$
\begin{equation*}
\frac{\sum_{j=1}^{g} \sigma_{j}\left(2 \omega \boldsymbol{K}_{P}\right) a_{j}}{\sum_{j=1}^{g} \sigma_{j}\left(2 \omega \boldsymbol{K}_{P}\right) b_{j}}=\frac{\operatorname{det}\left[\boldsymbol{a}|\mathrm{d} \boldsymbol{u}(P)| \mathrm{d} \boldsymbol{u}(P)^{(1)}|\cdots| \mathrm{d} \boldsymbol{u}(P)^{(g-2)}\right]}{\operatorname{det}\left[\boldsymbol{b}|\mathrm{d} \boldsymbol{u}(P)| \mathrm{d} \boldsymbol{u}(P)^{(1)}|\cdots| \mathrm{d} \boldsymbol{u}(P)^{(g-2)}\right]} \tag{A.1}
\end{equation*}
$$

where $\mathrm{d} \boldsymbol{u}(P)^{(k)}$ denotes the column of $k^{\text {th }}$ derivatives of the holomorphic differentials $\mathrm{d} \boldsymbol{u}(P)$.

Expanding the RHS of (A.1) we find that the numerator is the determinant of the matrix

$$
C\left[\begin{array}{ccccccc}
a_{1} & 1 & 0 & 0 & \cdots & 0 & 0 \\
a_{2} & t & 0 & 0 & \cdots & 0 & 0 \\
a_{3} & t^{2} & 0 & 0 & \cdots & 0 & 1 \\
\vdots & \vdots & \vdots & & \vdots & & \vdots \\
a_{g-1} & t^{g-2} & 0 & 1 & \cdots & 0 & 0 \\
a_{g} & t^{g-1} & 1 & 0 & \cdots & 0 & 0
\end{array}\right]
$$

for some constant C. The matrix in the denominator of the RHS is of the same form, but with b_{i} instead of $a_{i}(i=1, \ldots, g)$. It follows that (A.1) can be written as

$$
\begin{equation*}
\frac{\sum_{j=1}^{g} \sigma_{j}\left(2 \omega \boldsymbol{K}_{P}\right) a_{j}}{\sum_{j=1}^{g} \sigma_{j}\left(2 \omega \boldsymbol{K}_{P}\right) b_{j}}=\frac{a_{1} t-a_{2}}{b_{1} t-b_{2}} \tag{A.2}
\end{equation*}
$$

To evaluate t in terms of the σ_{j} we can therefore set $\boldsymbol{a}=(1,0, \ldots, 0)^{\mathrm{T}}$ and $\boldsymbol{b}=$ $(0,1,0, \ldots, 0)^{\mathrm{T}}$. This gives

$$
\frac{\sigma_{1}}{\sigma_{2}}(\boldsymbol{u})=-t
$$

for $\boldsymbol{u} \in \Theta_{1}$. Further, since only a_{1}, a_{2} and b_{1}, b_{2} appear in the RHS of (A.2), we obtain the following definition for Θ_{1} :

$$
\Theta_{1}=\left\{\boldsymbol{u}: \sigma(\boldsymbol{u})=0, \sigma_{k}(\boldsymbol{u})=0 \quad(k=3, \ldots, g)\right\}
$$

Appendix B. Differential relations holding at $\boldsymbol{u}=\boldsymbol{u}_{0}$.

For any \boldsymbol{u} in Θ_{1} we have $\sigma(\boldsymbol{u})=0$. Expanding this identity near \boldsymbol{u}_{0} we obtain a Taylor series in $v_{k}=\boldsymbol{e}_{k}^{\mathrm{T}} \cdot\left(\boldsymbol{u}-\boldsymbol{u}_{0}\right)$ equal to zero:

$$
\begin{aligned}
0 & =\sigma\left(\boldsymbol{u}_{0}-\left(\boldsymbol{u}_{0}-\boldsymbol{u}\right)\right) \\
& =\left[\frac{1}{2} \sigma_{11}\left(\boldsymbol{u}_{0}\right)\right] v_{1}^{2}+\left[\sigma_{2}\left(\boldsymbol{u}_{0}\right)\right] v_{2}+\left[\sigma_{12}\left(\boldsymbol{u}_{0}\right)\right] v_{1} v_{2}+\left[\frac{1}{6} \sigma_{111}\left(\boldsymbol{u}_{0}\right)\right] v_{1}^{3}+\cdots
\end{aligned}
$$

(since $\sigma\left(\boldsymbol{u}_{0}\right)=\sigma_{1}\left(\boldsymbol{u}_{0}\right)=\sigma_{3}\left(\boldsymbol{u}_{0}\right)=0$). If we now substitute relations (13)

$$
v_{k}=\left(\frac{1}{k} \mu_{0}^{(k-1) / 2}\right) v_{1}^{k}+\mathrm{O}\left(v_{1}^{k+1}\right) \quad(k=2,3, \ldots, g)
$$

into this expansion, then for $g \geq 3$ we have
$0=\left[\frac{1}{2} \sigma_{11}\left(\boldsymbol{u}_{0}\right)+\frac{1}{2} \sqrt{\mu_{0}} \sigma_{2}\left(\boldsymbol{u}_{0}\right)\right] v_{1}^{2}+\left[\frac{1}{6} \sigma_{111}\left(\boldsymbol{u}_{0}\right)+\frac{1}{12} \mu_{1} \sigma_{2}\left(\boldsymbol{u}_{0}\right)+\frac{1}{2} \sqrt{\mu_{0}} \sigma_{12}\left(\boldsymbol{u}_{0}\right)\right] v_{1}^{3}+\mathrm{O}\left(v_{1}^{4}\right)$.
Setting each coefficient to zero, we find

$$
\begin{equation*}
\sigma_{11}\left(\boldsymbol{u}_{0}\right)=-\sqrt{\mu_{0}} \sigma_{2}\left(\boldsymbol{u}_{0}\right) \tag{B.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{111}\left(\boldsymbol{u}_{0}\right)=-\frac{1}{2} \mu_{1} \sigma_{2}\left(\boldsymbol{u}_{0}\right)-3 \sqrt{\mu_{0}} \sigma_{12}\left(\boldsymbol{u}_{0}\right) \tag{B.2}
\end{equation*}
$$

for $\boldsymbol{u}_{0} \in \Theta_{1}$ with $\sigma_{1}\left(\boldsymbol{u}_{0}\right)=0$ and for $\forall g \geq 3$.
If we repeat the above procedure for the identity $\sigma_{3}(\boldsymbol{u})=0\left(\forall \boldsymbol{u} \in \Theta_{1}\right)$, then we obtain the following expansion

$$
\begin{aligned}
0 & =\sigma_{3}\left(\boldsymbol{u}_{0}-\left(\boldsymbol{u}_{0}-\boldsymbol{u}\right)\right) \\
& =\left[\sigma_{13}\left(\boldsymbol{u}_{0}\right)\right] v_{1}+\left[\sigma_{23}\left(\boldsymbol{u}_{0}\right)\right] v_{2}+\left[\frac{1}{2} \sigma_{113}\left(\boldsymbol{u}_{0}\right)\right] v_{1}^{2}+\cdots \\
& =\left[\sigma_{13}\left(\boldsymbol{u}_{0}\right)\right] v_{1}+\mathrm{O}\left(v_{1}^{2}\right)
\end{aligned}
$$

This gives the identity

$$
\begin{equation*}
\sigma_{13}\left(\boldsymbol{u}_{0}\right)=0 \quad \text { for } g \geq 3 \tag{B.3}
\end{equation*}
$$

[1] S Baldwin and J Gibbons 2003 Hyperelliptic reduction of the Benney moment equations J. Phys. A: Math. Gen. 368393
[2] E D Belokolos, A I Bobenko, V Z Enolski, A R Its and V B Matveev 1994 Algebro-Geometrical Approach to Nonlinear Integrable Equations (Berlin: Springer)
[3] D J Benney 1973 Some properties of long nonlinear waves Stud. Appl. Math 5245
[4] V M Buchstaber, V Z Enolski and D V Leykin 1997 Kleinian functions, hyperelliptic Jacobians and applications Reviews in Mathematics and Mathematical Physics 10:2 1
[5] V Z Enolski and J Gibbons, Addition theorems on the strata of the theta divisor of genus three hyperelliptic curves, (in preparation)
[6] V Enolski and E Previato, On the stratification of the Θ-divisor (in preparation)
[7] J Gibbons 1981 Collisionless Boltzmann equations and integrable moment equations Physica D 3 503
[8] J Gibbons and S P Tsarev 1996 Reductions of the Benney equations Phys. Lett. A 21119
[9] J Gibbons and S P Tsarev 1999 Conformal maps and reductions of the Benney equations Phys. Lett. A 258263
[10] D Grant 1991 A generalization of a formula of Eisenstein Proc. London Math. Soc. 62121
[11] J Jorgenson 1992 On directional derivatives of the theta function along its divisor Israel Journal of Mathematics 77273
[12] Y Ônishi 1998 Complex multiplication formulae for hyperelliptic curves of genus three Tokyo J. Math. 2381
[13] S P Tsarev 1985 On Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type Sov. Math. Dokl 31488
[14] L Yu and J Gibbons 2000 The initial value problem for reductions of Lax equations Inverse Problems 16605
[15] V E Zakharov 1981 On the Benney equations Physica D 3 193;
V E Zakharov 1980 Funct. Anal. Appl. 1489

