Higher genus hyperelliptic reductions of the Benney equations

Sadie Baldwin and John Gibbons

Imperial College 180 Queen's Gate London SW7 2BZ

E-mail: sadie.baldwin@imperial.ac.uk, j.gibbons@imperial.ac.uk

Abstract. It was shown by Gibbons and Tsarev (1996 *Phys. Lett.* **A 211** 19, 1999 *Phys. Lett.* **A 258** 263) that N-parameter reductions of the Benney equations correspond to N-parameter families of conformal maps. Here, we consider a specific set of these, the hyperelliptic reductions. The mapping function for this is calculated explicitly by inverting a second-kind Abelian integral on the stratum Θ_1 of the Jacobi variety of a genus $g(g \ge 3)$ hyperelliptic curve. This is done using a method based on the result of Jorgenson (1992 Israel Journal of Mathematics 77 273).

PACS numbers: 02.30.Ik, 02.30.Jr, 02.30.Zz

1. Introduction

1.1. Reductions of the Benney Moment Equations

The Benney equations [3] are an example of an infinite system of hydrodynamic type. These can be written as a Vlasov equation [7], [15]

$$\frac{\partial f}{\partial t_2} + p \frac{\partial f}{\partial x} - \frac{\partial A^0}{\partial x} \frac{\partial f}{\partial p} = 0.$$

Here f = f(x, p, t) is a distribution function and the moments are defined by

$$A^n = \int_{-\infty}^{\infty} p^n f \, \mathrm{d}p.$$

Benney showed that this system has infinitely many conserved densities, polynomial in the moments A^n .

Following [14] and [1], we will now consider reductions of the moment equations; that is the case where only a finite number, N, of the A^n are independent. Here, the moment equations can be reduced to a diagonal system of hydrodynamic type with N Riemann invariants, $\hat{\lambda}_i$ say, dependent on N characteristic speeds, \hat{p}_i . We will assume that the characteristic speeds are real and distinct.

It was shown by Tsarev and one of the authors that in such a case the reductions correspond to N-parameter families of conformal mappings of slit domains. For details

of the properties of these maps and the general construction of such a domain see [8] and [9]. We will now consider a specific set of these reductions which we will call the hyperelliptic reductions.

1.2. Hyperelliptic reductions

For this set of reductions the conformal mapping $\lambda(p): \Gamma_1 \to \Gamma_2$ is defined as follows. Let Γ_1 be the upper half p-plane with 3n real points marked on it, p_i (i = 1, ..., 2n) and the set of characteristic speeds \hat{p}_i (j = 1, ..., n). These satisfy

$$p_1 < \hat{p}_2 < p_3 < p_4 < \hat{p}_3 < p_5 < \dots < p_{2n-1} < \hat{p}_n < p_{2n}.$$

The domain Γ_2 is the upper half λ -plane with n vertical slits going from the fixed real points λ_i^0 to the variable points $\hat{\lambda}_i$ ($i=1,\ldots,n$). Here, $\hat{\lambda}_i$ is the Riemann invariant associated with the characteristic speed \hat{p}_i and it satisfies the relation

$$\operatorname{Re}\left(\hat{\lambda}_i\right) = \lambda_i^0.$$

We now impose the conditions

$$\lambda(p) = p + O\left(\frac{1}{p}\right) \quad \text{as} \quad p \to \infty$$
 (1)

and

$$\lambda(p_{2i-1}) = \lambda(p_{2i}) = \lambda_i^0 \quad (i = 1, \dots, n).$$
 (2)

It follows that $\lambda(p)$ is a function of n independent parameters which may be taken to be $\operatorname{Im}(\hat{\lambda}_i)$ $(i=1,\ldots,n)$, the varying heights of the slits \ddagger and that Γ_2 is a polygonal domain. The map $p \to \lambda(p)$ is thus of Schwarz-Christoffel type:

$$\lambda(p) = p + \int_{\infty}^{p} \left[\varphi(p') - 1 \right] \, \mathrm{d}p' \tag{3}$$

where $\varphi(p)$ is given by

$$\varphi(p) = \frac{\prod_{i=1}^{n} (p - \hat{p}_i)}{\sqrt{\prod_{i=1}^{2n} (p - p_i)}}.$$

Figure 1. (The *n* parameter reduction) The *p*-plane with *n* branch cuts.

‡ Note that since $\text{Im}(\lambda) \geq 0 \,\forall p$ and the distribution function $f = -\pi \text{Im}(\lambda)$, the distribution function is negative.

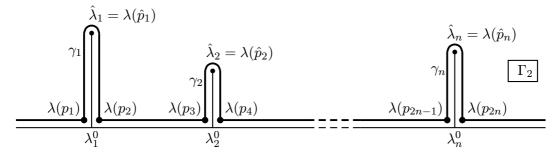


Figure 2. The λ -plane associated with figure 1.

One of the conditions in (1) and (2) may be replaced by the constraint that the residue of $\varphi(p)$, as $p \to \infty$ on either sheet, is zero. This provides a relation between the set of points p_i and the set of characteristic speeds \hat{p}_i . Rewriting

$$\varphi(p) = \frac{p^n - \alpha_{n-1} p^{n-1} - \alpha_{n-2} p^{n-2} - \dots - \alpha_1 p - \alpha_0}{\sqrt{\prod_{i=1}^{2n} (p - p_i)}},$$

we find that the expansion of $\varphi(p)$ near infinity is

$$1 + \frac{\left(\frac{1}{2} \sum_{i=1}^{2n} p_i - \alpha_{n-1}\right)}{p} + O\left(\frac{1}{p^2}\right).$$

The condition on the residue is therefore satisfied when

$$\alpha_{n-1} = \frac{1}{2} \sum_{i=1}^{2n} p_i$$

that is,

$$\sum_{i=1}^{n} \hat{p}_i = \frac{1}{2} \sum_{i=1}^{2n} p_i. \tag{4}$$

It follows that $\varphi(p) dp$ is a second kind Abelian differential on the Riemann surface

$$R_g = \left\{ (p, v) : v^2 = \prod_{i=1}^{2n} (p - p_i) \right\}.$$

where g = n - 1. That is, the differential 1-form $\varphi(p) dp$ is meromorphic on R_g with zero residue at each singular point.

This surface may be constructed from two copies of the complex p-plane joined along the closed intervals

$$[p_{2i-1}, p_{2i}]$$
 $(i = 1, 2, \dots, g+1).$

A homology basis $(\mathfrak{a}_1, \mathfrak{a}_2, \dots, \mathfrak{a}_g; \mathfrak{b}_1, \mathfrak{b}_2, \dots, \mathfrak{b}_g)$ for R_g is given in figure 3.

The first three examples of these maps, g = 0, 1, 2, have been worked out in detail. For g = 0 the mapping may be calculated directly. The case of the n = 2 elliptic reduction was evaluated in [14] by Yu and Gibbons. The n = 3 genus 2 hyperelliptic reduction was studied in [1] by the authors. We now consider the case for $g \ge 3$. All such maps, once known explicitly, correspond to reductions of Benney's equations to systems

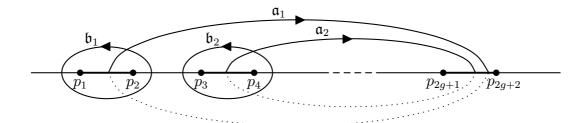


Figure 3. A homology basis on the genus g Riemann surface, R_g . The \mathfrak{b} -cycles are closed loops on the first sheet and the \mathfrak{a} -cycles are completed on the second sheet (broken line). These have intersection index given by $\mathfrak{a}_i \circ \mathfrak{a}_j = \mathfrak{b}_i \circ \mathfrak{b}_j = 0$, $\mathfrak{a}_i \circ \mathfrak{b}_j = -\mathfrak{a}_j \circ \mathfrak{b}_i = \delta_{ij}$.

of hydrodynamic type with finitely many Riemann invariants. Tsarev's generalised hodograph transformation [13] leads to solutions of these, in terms of the solution of an over-determined system of linear equations. The construction of n-parameter families of such maps is thus an important step towards understanding the solutions of these equations.

2. Transformation of the integral

Following [1], the integral we need to evaluate is (3):

$$\lambda(p) = p + \int_{\infty}^{p} \left[\frac{\prod_{i=1}^{g+1} (p' - \hat{p}_i)}{\sqrt{\prod_{i=1}^{2g+2} (p' - p_i)}} - 1 \right] dp'.$$

Setting $p = p_{2g+2} - 1/t$ in the integrand $(\varphi(p) - 1) dp$, we find

$$(\varphi(p) - 1) dp = \left(\frac{A_{g+1} t^{g+1} + A_g t^g + \dots + A_2 t^2 + A_1 t + (-1)^{g+1}}{\sqrt{\prod_{i=1}^{2g+2} [(p_{2g+2} - p_i)t - 1]}} - 1 \right) \frac{dt}{t^2}$$
 (5)

for some constants A_i (i = 1, 2, ..., g + 1). We note here that

$$A_1 = (-1)^g \sum_{i=1}^{g+1} (p_{2g+2} - \hat{p}_i).$$

This may be expressed in terms of just the p_i using identity (4):

$$A_1 = \frac{(-1)^g}{2} \sum_{i=1}^{2g+1} (p_{2g+2} - p_i).$$
 (6)

If we now remove the constant imaginary factor

$$k = \left(\frac{-4}{\prod_{i=1}^{2g+1} (p_{2g+2} - p_i)}\right)^{\frac{1}{2}}$$

from (5), then we obtain a standardized form for the irrational denominator,

$$\varphi(p) dp = k \left(\frac{A_{g+1} t^{g+1} + A_g t^g + \dots + A_2 t^2 + A_1 t + (-1)^{g+1}}{s} \right) \frac{dt}{t^2}$$

$$= k \left(A_{g+1} t^{g-1} + A_g t^{g-2} + \dots + A_2 + \frac{A_1}{t} + \frac{(-1)^{g+1}}{t^2} \right) \frac{dt}{s}$$
(7)

where

$$s^{2} = -k^{2} + \left[k^{2} \sum_{i=1}^{2g+1} (p_{2g+2} - p_{i}) \right] t + \dots + \mu_{2g} t^{2g} + 4 t^{2g+1}$$

$$= \mu_{0} + \mu_{1} t + \dots + \mu_{2g} t^{2g} + 4 t^{2g+1}. \tag{8}$$

The term

$$\varphi_1(p) dp = k \left(A_{g+1} t^{g-1} + A_g t^{g-2} + \dots + A_2 \right) \frac{dt}{s}$$

in (7) may be evaluated directly since the set

$$du_i = t^{i-1} \frac{dt}{s}$$
 $(i = 1, 2, \dots, g)$

forms a basis of holomorphic Abelian differentials. The last two terms in $\varphi(p)$ dp can be rewritten using (6) and the definitions of μ_0 and μ_1 in (8). We have

$$\varphi_{2}(p) dp = k \left[\frac{(-1)^{g+1}}{t^{2}} + \frac{A_{1}}{t} \right] \frac{dt}{s}
= (-1)^{g+1} k \left[\frac{1}{t^{2}} - \frac{1}{2} \left(\sum_{i=1}^{2g+1} (p_{2g+2} - p_{i}) \right) \frac{1}{t} \right] \frac{dt}{s}
= (-1)^{g+1} k \left[\frac{1}{t^{2}} + \frac{1}{2} \frac{\mu_{1}}{\mu_{0}} \frac{1}{t} \right] \frac{dt}{s}.$$
(9)

This is a second kind differential on R_g . As in the genus 2 case, we can evaluate $\varphi_2(p)$ dp using a restriction of the Jacobi inversion theorem to a one complex dimensional subspace of the Jacobi variety, the one-dimensional stratum of the theta divisor, Θ_1 .

3. The Θ divisor

Following Enolski [4], [5], let $R_g(s,t)$ be the hyperelliptic curve where s and t satisfy

$$s^{2} = 4 \prod_{i=1}^{2g+1} (t - t_{i}) = \sum_{i=0}^{2g} \mu_{i} t^{i} + 4t^{2g+1}.$$

We define a set of holomorphic and their associated set of second kind differentials on R_g to be, respectively,

$$du_i = t^{i-1} \frac{dt}{s}$$
 $(i = 1, 2, \dots, g)$ (10)

and

$$dr_i = \sum_{k=i}^{2g+1-i} (1+k-i) \,\mu_{1+i+k} \, \frac{t^k dt}{4s} \qquad (i=1,2,\dots,g).$$
 (11)

From the period integrals of these differentials we form the matrices $\omega, \omega', \eta, \eta'$:

$$2\omega = \left(\oint_{\mathfrak{a}_{i}} du_{j}\right) \qquad 2\omega' = \left(\oint_{\mathfrak{b}_{i}} du_{j}\right)$$

$$2\eta = \left(-\oint_{\mathfrak{a}_{i}} dr_{j}\right) \qquad 2\eta' = \left(-\oint_{\mathfrak{b}_{i}} dr_{j}\right) \qquad (i, j = 1, 2, \dots, g).$$

These matrices satisfy the generalized Legendre relation

$$\left(egin{array}{cc} \omega & \omega' \ \eta & \eta' \end{array}
ight) \left(egin{array}{cc} 0 & -I_g \ I_g & 0 \end{array}
ight) \left(egin{array}{cc} \omega & \omega' \ \eta & \eta' \end{array}
ight)^{
m T} = -rac{i\pi}{2} \left(egin{array}{cc} 0 & -I_g \ I_g & 0 \end{array}
ight),$$

where I_q is the $g \times g$ identity matrix.

Letting $\Lambda = 2\omega \oplus 2\omega'$ be the lattice generated by the periods of the holomorphic differentials, the Jacobi variety, $\operatorname{Jac}(R_g)$, is the g-dimensional complex torus \mathbb{C}^g/Λ . The Jacobi variety can be subdivided into k-dimensional strata, Θ_k , defined by

$$\Theta_k = \sum_{i=1}^k \int_{(t_0, s_0)}^{(t_i, s_i)} d\mathbf{u} + 2\omega \mathbf{K}_{(t_0, s_0)}$$
 $(k = 1, 2, \dots, g)$

where $K_{(t_0,s_0)}$ is the vector of Riemann constants with base point (t_0,s_0) . These have the structure $Jac(R_g) = \Theta_g \supset \Theta_{g-1} \supset \cdots \supset \Theta_2 \supset \Theta_1$. Such stratifications have been studied by Ônishi [12] and others.

The Abel map, $\mathfrak{A}: R_g \to \operatorname{Jac}(R_g)$, is given by $\mathbf{u}(z):$

$$u_i(z) = \int_{z_0}^{z} du_i,$$
 $(i = 1, 2, \dots, g)$

where the $u_i(z)$ are taken modulo Λ and the base point $z_0 = (t_0, s_0)$ is any fixed point in R_g . These create a one-dimensional image of the hyperelliptic curve in the Jacobi variety. For the inversion theorem we require an extension of this map to a set of points.

Definition 3.1 A divisor \mathcal{D} on the Riemann surface R_g is defined by the finite formal sum

$$\mathcal{D} = \sum_{i=1}^{M} n_i \, z_i$$

where $n_i \in \mathbb{Z}$ and $z_i = (s_i, t_i) \in R_g$.

We define the Abel mapping of \mathcal{D} into $Jac(R_a)$ by

$$\mathfrak{A}(\mathcal{D}) = \sum_{i=1}^M n_i \, \int_{z_0}^{z_i} \, \mathrm{d} oldsymbol{u} \, \mod \Lambda.$$

The lower limit of integration, here the point z_0 , is called the base point of the Abel map. From now we shall set this to be (∞, ∞) .

3.1. Hyperelliptic functions

Definition 3.2 The theta function is defined by the Fourier series

$$\theta((2\omega)^{-1}\boldsymbol{u}) = \sum_{\boldsymbol{m} \in \mathbb{Z}^g} \exp\big\{ i\pi \left[\boldsymbol{m}^{\mathrm{T}} \boldsymbol{\tau} \, \boldsymbol{m} + \boldsymbol{m}^{\mathrm{T}}(\omega^{-1}) \, \boldsymbol{u} \right] \big\},$$

where $\tau = \omega^{-1}\omega'$ is a symmetric matrix with positive definite imaginary part.

One important property of this function is that it is zero when $\boldsymbol{u} = 2\omega \boldsymbol{K}$, the vector of Riemann constants associated with the point (∞, ∞) . For further properties see [4].

From the θ -function we define the Kleinian σ -function of the curve R_g to be

$$\sigma(\boldsymbol{u}) = C \exp(\boldsymbol{u}^{\mathrm{T}} \chi \boldsymbol{u}) \theta((2\omega)^{-1} \boldsymbol{u} - \boldsymbol{K})$$

where

$$C = \sqrt{\frac{\pi^3}{\det 2\omega}} \left(\frac{1}{\prod_{1 \le i < j \le 2g+1} (t_i - t_j)} \right)^{\frac{1}{4}}$$

and $\chi = \eta (2\omega)^{-1}$ is a symmetric matrix.

In analogy to the Weierstrass \wp -function, the Kleinian \wp -function is defined as [4]

$$\wp_{ij} = -rac{\partial^2}{\partial u_i \partial u_j} \ln \left[\sigma(m{u})
ight] = \left(rac{\sigma_i \, \sigma_j - \sigma_{ij} \, \sigma}{\sigma^2}
ight) (m{u})$$

where

$$\sigma_i = \frac{\partial}{\partial u_i} \sigma(\mathbf{u}), \quad \sigma_{ij} = \frac{\partial^2}{\partial u_i \partial u_i} \sigma(\mathbf{u}).$$

Higher logarithmic derivatives of σ are expressed similarly. For example

$$\wp_{ijkl} = -\frac{\partial^4}{\partial u_i \partial u_j \partial u_k \partial u_l} \ln \left[\sigma(\boldsymbol{u}) \right].$$

3.2. Jacobi Inversion formula

Theorem 1 (Jacobi inversion theorem) [4] The Abel preimage of the point $\mathbf{u} \in \operatorname{Jac}(R_g)$ is given by the set $S = \{(t_1, s_1), (t_2, s_2), \dots, (t_g, s_g)\} \in (R_g)^g$, where t_k are the zeros of the polynomial

$$\mathcal{P}(t;\boldsymbol{u}) = t^g - t^{g-1}\wp_{g,g}(\boldsymbol{u}) - t^{g-2}\wp_{g,g-1}(\boldsymbol{u}) - \ldots - \wp_{g,1}(\boldsymbol{u})$$

and the s_k are given by

$$s_k = -\left. \frac{\partial \mathcal{P}(t; \boldsymbol{u})}{\partial u_g} \right|_{t=t_k}.$$

For the integral of the differential (9), we need the preimage of \boldsymbol{u} when the points $t_i \to \infty$ $(i=2,\ldots,g)$. That is, for the case when $S=\{(t_1,s_1)\}$ and so $\boldsymbol{u}\in\Theta_1$:

$$\mathfrak{A}(S) = \int_{\infty}^{t_1} d\boldsymbol{u}.$$

This relation has been calculated from the results of Jorgenson [11] by Enolski (see Appendix A). We obtain

$$t_1 = -\left. \frac{\sigma_1}{\sigma_2}(\boldsymbol{u}) \right|_{\boldsymbol{u} \in \Theta_1} \tag{12}$$

where the one-dimensional stratum Θ_1 may be defined as

$$\Theta_1 = \{ \boldsymbol{u} : \sigma(\boldsymbol{u}) = 0, \ \sigma_k(\boldsymbol{u}) = 0 \ (k = 3, ..., g) \}.$$

This useful result (12) was first given by Grant in [10].

4. Evaluation of the integral

We now further transform the integrand $(\varphi_1(p) + \varphi_2(p)) dp$ using the substitution $t = (-\sigma_1/\sigma_2)(\boldsymbol{u})$ (12) and the definitions of the holomorphic differentials, du_i (i = 1, 2, ..., g) (10).

Table 1. A list of branch points (p_i) and poles (∞_{\pm}) of $\lambda(p)$ with the corresponding points in the t and \mathbf{u} variables.

(p)	p_1	p_2	 p_{2g+1}	p_{2g+2}	∞_{\pm}
			$t_{2g+1} \\ \mathbf{u}_{2g+1}$	$egin{array}{c} \infty \ 0 \end{array}$	$0_{\pm} \\ \pm \mathbf{u}_0$

Lemma 1 Let $t = (-\sigma_1/\sigma_2)(\boldsymbol{u})$ where $\boldsymbol{u} \in \Theta_1$ and define $du_i = t^{i-1}dt/s$, a set of holomorphic differentials on R_q . Then

$$\varphi(p) dp = k \left(\mathbf{A}^{\mathrm{T}} \cdot d\mathbf{u} \right) + (-1)^{g+1} k \left(\frac{\sigma_2^2}{\sigma_1^2} (\mathbf{u}) - \frac{1}{2} \frac{\mu_1}{\mu_0} \frac{\sigma_2}{\sigma_1} (\mathbf{u}) \right) \frac{dt}{s}$$

where $\mathbf{A}^{\mathrm{T}} = (A_2, A_3, \dots, A_{g+1})$.

The term

$$\varphi_2(\boldsymbol{u}) du_1 = \left(\frac{\sigma_2^2}{\sigma_1^2}(\boldsymbol{u}) - \frac{1}{2}\frac{\mu_1}{\mu_0}\frac{\sigma_2}{\sigma_1}(\boldsymbol{u})\right) du_1$$

is a second kind differential with a pole of order 2 at $u = \pm u_0$ (see Table 1). This can be verified as follows.

Since u_0 is a regular point on the hyperelliptic curve R_g , we can evaluate the expansion of φ_2 near u_0 in terms of the local parameter t. Setting $v_k = e_k^T \cdot (u - u_0)$ where $(e_k)_j = \delta_{kj}$, we have

$$v_k = \int_{-\infty}^{t} du_k - \int_{-\infty}^{0} du_k$$

=
$$\int_{0}^{t} \frac{t^{k-1}}{\sqrt{4t^{2g+1} + \mu_{2g}t^{2g} + \dots + \mu_{1}t + \mu_{0}}} dt.$$

This gives

$$v_k = \left(\frac{1}{k} \frac{1}{\sqrt{\mu_0}}\right) t^k - \left(\frac{1}{2(k+1)} \frac{\mu_1}{\mu_0^{\frac{3}{2}}}\right) t^{k+1} + \mathcal{O}(t^{k+2}) \qquad (k = 1, 2, \dots, g)$$

and so for k > 1

$$v_k = \left(\frac{1}{k}\mu_0^{(k-1)/2}\right)v_1^k + O\left(v_1^{k+1}\right). \tag{13}$$

The Taylor series of φ_2 near \boldsymbol{u}_0 can thus be expressed in terms of the single parameter $v_1 = \boldsymbol{e}_1^{\mathrm{T}} \cdot (\boldsymbol{u} - \boldsymbol{u}_0)$. We have

$$\frac{\sigma_{2}}{\sigma_{1}}(\boldsymbol{u}_{0} - (\boldsymbol{u}_{0} - \boldsymbol{u})) = \frac{(\sigma_{2}) + (\sigma_{12}) v_{1} + \cdots}{(\sigma_{11}) v_{1} + \cdots} = \left(\frac{\sigma_{2}}{\sigma_{11}}\right) v_{1}^{-1} + O(1)$$
and
$$\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}(\boldsymbol{u}_{0} - (\boldsymbol{u}_{0} - \boldsymbol{u})) = \frac{\sigma_{2}^{2} + (2 \sigma_{2} \sigma_{12}) v_{1} + \cdots}{\sigma_{11}^{2} v_{1}^{2} + (\sigma_{11} \sigma_{111}) v_{1}^{3} + (2 \sigma_{11} \sigma_{12}) v_{1} v_{2} + \cdots}$$

$$= \left(\frac{\sigma_{2}^{2}}{\sigma_{11}^{2}}\right) v_{1}^{-2} + \left(2\frac{\sigma_{2} \sigma_{12}}{\sigma_{11}^{2}} - \frac{\sigma_{2}^{2} \sigma_{111}}{\sigma_{11}^{3}} - \sqrt{\mu_{0}} \frac{\sigma_{2}^{2} \sigma_{12}}{\sigma_{11}^{3}}\right) v_{1}^{-1} + O(1)$$
(using (13)).

These expansions may be simplified by using the substitutions for $\sigma_{11}(\boldsymbol{u}_0)$ and $\sigma_{111}(\boldsymbol{u}_0)$ calculated in Appendix B. This gives

$$\left(\frac{\sigma_2^2}{\sigma_1^2} - \frac{1}{2} \frac{\mu_1}{\mu_0} \frac{\sigma_2}{\sigma_1}\right) (\boldsymbol{u}_0 - (\boldsymbol{u}_0 - \boldsymbol{u})) = \left(\frac{1}{\mu_0}\right) v_1^{-2} + O(1) \qquad (\forall g \ge 3). (14)$$

In analogy to the genus 2 case, we now consider the function

$$\Psi(\boldsymbol{u}) = -\frac{1}{\mu_0} \frac{\sigma_{11}}{\sigma_1}(\boldsymbol{u})$$

for $\mathbf{u} \in \Theta_1$. Since $du_i = (-\sigma_1/\sigma_2)^{(i-1)} du_1$, the derivative of Ψ with respect to u_1 along $\Theta_1 = {\mathbf{u} : \sigma = 0, \ \sigma_k = 0 \ (k = 3, ..., g)}$ is

$$\psi = \frac{\mathrm{d}}{\mathrm{d}u_1} \left[-\frac{1}{\mu_0} \frac{\sigma_{11}}{\sigma_1} \right]
= -\frac{1}{\mu_0} \left[\sum_{i=1}^g (-1)^{i-1} \left(\frac{\sigma_1}{\sigma_2} \right)^{i-1} \left(\frac{\sigma_{11i}}{\sigma_1} - \frac{\sigma_{11} \sigma_{1i}}{\sigma_1^2} \right) \right].$$
(15)

This function is only singular when $\sigma_1(\mathbf{u}) = 0$, that is when $\mathbf{u} = \pm \mathbf{u}_0$.

We calculate the Taylor series of ψ near the singular point \mathbf{u}_0 as follows. Since just the first three terms in the sum contain negative powers of σ_1 we will rewrite $\psi(\mathbf{u})$ as

$$\psi = -\frac{1}{\mu_0} \left[\left(-\sigma_{11}^2 \right) \frac{1}{\sigma_1^2} + \left(\sigma_{111} + \frac{\sigma_{11} \sigma_{12}}{\sigma_2} \right) \frac{1}{\sigma_1} + \mathcal{O}(1) \right] \qquad (\forall g \ge 3)$$

for \boldsymbol{u} near \boldsymbol{u}_0 . If we now take the limit $\boldsymbol{u} \to \boldsymbol{u}_0 \Leftrightarrow p \to \infty$, we obtain

$$\lim_{\boldsymbol{u} \to \boldsymbol{u}_0} \left[\frac{1}{\mu_0} \frac{\sigma_{11}^2}{\sigma_1^2} \right] = \lim_{v_i \to 0} \left[\frac{(\sigma_{11}^2) + (2\sigma_{11}\sigma_{111}) v_1 + \cdots}{(\mu_0 \sigma_{11}^2) v_1^2 + (\mu_0 \sigma_{11}\sigma_{111}) v_1^3 + (2\mu_0 \sigma_{11}\sigma_{12}) v_1 v_2 + \cdots} \right]
= \lim_{v_1 \to 0} \left[\left(\frac{1}{\mu_0} \right) v_1^{-2} + \left(\frac{1}{\mu_0} \frac{\sigma_{111}}{\sigma_{11}} - \frac{1}{\sqrt{\mu_0}} \frac{\sigma_{12}}{\sigma_{11}} \right) v_1^{-1} + O(1) \right]$$

and

$$\lim_{\boldsymbol{u} \to \boldsymbol{u}_0} \left[-\frac{1}{\mu_0} \left(\frac{\sigma_{111}}{\sigma_1} + \frac{\sigma_{11} \, \sigma_{12}}{\sigma_2 \, \sigma_1} \right) \right] = \lim_{v_i \to 0} \left[\frac{-(\sigma_{111} \, \sigma_2 + \sigma_{11} \, \sigma_{12}) + \cdots}{(\mu_0 \, \sigma_2 \, \sigma_{11}) v_1 + \cdots} \right]$$

$$= \lim_{v_1 \to 0} \left[\left(-\frac{1}{\mu_0} \frac{\sigma_{111}}{\sigma_{11}} - \frac{1}{\mu_0} \frac{\sigma_{12}}{\sigma_2} \right) \, v_1^{-1} + \mathrm{O}(1) \right].$$

Combining these gives

$$\lim_{\boldsymbol{u} \to \boldsymbol{u}_0} \psi(\boldsymbol{u}) = \lim_{v_1 \to 0} \left[\left(\frac{1}{\mu_0} \right) v_1^{-2} + \left(-\frac{1}{\sqrt{\mu_0}} \frac{\sigma_{12}}{\sigma_{11}} (\boldsymbol{u}_0) - \frac{1}{\mu_0} \frac{\sigma_{12}}{\sigma_2} (\boldsymbol{u}_0) \right) v_1^{-1} + O(1) \right]$$

$$= \left(\frac{1}{\mu_0} \right) v_1^{-2} + O(1) \qquad (\forall g \ge 3)$$
(16)

(using substitution (B.1)).

From the expansion of φ_2 (14) and ψ (16) near their singular points, it follows that $(\varphi_2(\boldsymbol{u}) - \psi(\boldsymbol{u}))$ is a holomorphic function on R_g . We thus have that

$$(-1)^{g+1} \varphi_2(\boldsymbol{u}) du_1 + \boldsymbol{A}^{\mathrm{T}} \cdot d\boldsymbol{u} = (-1)^{g+1} \psi(\boldsymbol{u}) du_1 + \boldsymbol{B}^{\mathrm{T}} \cdot d\boldsymbol{u}$$
(17)

for some g-vector of constants $\boldsymbol{B} = \left(B_2, B_3, \dots, B_{g+1}\right)^{\mathrm{T}}$.

5. Evaluation of the vector B.

Following [2], let f be a function on the Riemann surface R_g . The divisor of f, (f), is defined as

$$(f) = \sum n_i Z_i - \sum m_i P_i \qquad n_i, m_i \in \mathbb{Z}^+$$

where Z_i is a zero of f of degree n_i and P_i is a pole of f of order m_i . The degree of the divisor of f is

$$deg(f) = \sum n_i - \sum m_i$$
.

For any function f and Abelian differential dv the following hold:

$$deg(f) = 0;$$

$$deg(dv) = 2g - 2.$$
(18)

We will now consider the Abelian differential

$$(-1)^{g+1} \left[\varphi_2(\boldsymbol{u}) - \psi(\boldsymbol{u}) \right] du_1.$$

By construction, du_1 is a first kind Abelian differential. It therefore has no poles on R_g and zeros of total degree (2g-2). From section 4, we know that the hyperelliptic function $(\varphi_2 - \psi)$ has no poles and so, by (18), it cannot have any zeros. Hence, for some constant C_0 , we have

$$C_0 du_1 = (-1)^{g+1} [\varphi_2(\mathbf{u}) - \psi(\mathbf{u})] du_1.$$

Rewriting this using identity (17) gives

$$C_0 du_1 = (\mathbf{B} - \mathbf{A})^{\mathrm{T}} \cdot d\mathbf{u}$$

 $\Rightarrow C_0 \frac{dt}{s} = [(B_2 - A_2) + (B_3 - A_3)t + \dots + (B_{g+1} - A_{g+1})t^{g-1}] \frac{dt}{s}.$

Matching coefficients of t, we see

$$C_0 = B_2 - A_2$$

and so

$$B_i = A_i$$
 $(i = 3, \dots, q + 1).$

The value of B_2 may be found by evaluating $(\varphi_2(\boldsymbol{u}) - \psi(\boldsymbol{u}))$ at a specific point. If, for example, we take $\boldsymbol{u} = \boldsymbol{u}_0$, then we obtain

$$C_0 = \lim_{\boldsymbol{u} \to \boldsymbol{u}_0} \left[\varphi_2(\boldsymbol{u}) - \psi(\boldsymbol{u}) \right] = \left(\frac{1}{\sqrt{\mu_0}} \frac{\sigma_{22}}{\sigma_2}(\boldsymbol{u}_0) + \frac{2}{\mu_0} \frac{\sigma_{112}}{\sigma_2}(\boldsymbol{u}_0) - \frac{2}{\mu_0} \frac{\sigma_{12}^2}{\sigma_2^2}(\boldsymbol{u}_0) \right) + O(v_1)$$

(using substitutions (B.1), (B.2) and (B.3) from Appendix B). From this we have

$$B_2 = A_2 + (-1)^{g+1} \left(\frac{1}{\sqrt{\mu_0}} \frac{\sigma_{22}}{\sigma_2}(\boldsymbol{u}_0) + \frac{2}{\mu_0} \frac{\sigma_{112}}{\sigma_2}(\boldsymbol{u}_0) - \frac{2}{\mu_0} \frac{\sigma_{12}^2}{\sigma_2^2}(\boldsymbol{u}_0) \right).$$

It would be possible to rewrite $\sigma_{112}(\boldsymbol{u}_0)$ in terms of lower order σ -derivatives using the following procedure. For each $g \geq 1$ there exists a set of PDE of the form

$$\wp_{ijkl} - f(\mu_0, \dots, \mu_{2g+1}; \wp_{mn}) = 0, \tag{19}$$

where $1 \leq i \leq j \leq k \leq l \leq g$ and $1 \leq m \leq n \leq g$ (see [4]). If we expand (19) for \boldsymbol{u} near \boldsymbol{u}_0 , then we get Taylor series equal to zero. The relations between the σ -derivatives at the point $\boldsymbol{u}_0 \in \Theta_1$ are then found by setting $\sigma(\boldsymbol{u}_0) = \sigma_1(\boldsymbol{u}_0) = \sigma_k(\boldsymbol{u}_0) = 0$ ($k = 3, \ldots, g$) and equating each coefficient with zero. This process, however, cannot easily be generalized for all $g \geq 3$.

6. Result

Setting

$$k = \pm \sqrt{\mu_0} = \pm \left(\frac{-4}{\prod_{i=1}^{2g+1} (p_{2g+2} - p_i)}\right)^{\frac{1}{2}},$$

$$\widetilde{B}_2 = (-1)^{g+1} \left(\frac{1}{\sqrt{\mu_0}} \frac{\sigma_{22}}{\sigma_2}(\boldsymbol{u}_0) + \frac{2}{\mu_0} \frac{\sigma_{112}}{\sigma_2}(\boldsymbol{u}_0) - \frac{2}{\mu_0} \frac{\sigma_{12}^2}{\sigma_2^2}(\boldsymbol{u}_0)\right)$$

and substituting

$$p = p_{2g+2} - \frac{1}{t} = p_{2g+2} + \frac{\sigma_2}{\sigma_1}(\boldsymbol{u})$$

into (3) we have

$$\lambda(p) = p + \int_{\infty}^{p} \left[\varphi(p') - 1 \right] dp'$$

$$= \left(p_{2g+2} + \frac{\sigma_2}{\sigma_1}(\boldsymbol{u}) \right) + \int_{0}^{\frac{1}{(p_{2g+2} - p)}} \left[k \, \boldsymbol{A}^{\mathrm{T}} \cdot d\boldsymbol{u} + k \, \widetilde{B}_2 \, du_1 + (-1)^{g+1} k \left(\frac{\mathrm{d}}{\mathrm{d}u_1} \Psi(\boldsymbol{u}) \right) du_1 - \frac{\mathrm{d}t}{t^2} \right]$$

$$= \left(p_{2g+2} + \frac{\sigma_2}{\sigma_1}(\boldsymbol{u}) \right) + \left[k \, \left(\boldsymbol{A} + \widetilde{B}_2 \, \boldsymbol{e}_1 \right)^{\mathrm{T}} \cdot \boldsymbol{u} + (-1)^{g} \frac{k}{\mu_0} \frac{\sigma_{11}}{\sigma_1} - \frac{\sigma_2}{\sigma_1}(\boldsymbol{u}) \right] + \widetilde{C}.$$

The value of the constant \widetilde{C} can be found by considering the limit of $(\lambda(p) - p)$ as $p \to \infty_+ \Leftrightarrow \boldsymbol{u} \to +\boldsymbol{u}_0$. Since

$$\lim_{p \to \infty} [\lambda(p) - p] = 0,$$

we have that

$$\widetilde{C} = -k \left(\boldsymbol{A} + \widetilde{B}_2 \, \boldsymbol{e}_1 \right)^{\mathrm{T}} \cdot \boldsymbol{u}_0 + \lim_{\boldsymbol{u} \to \boldsymbol{u}_0} \left[(-1)^{g+1} \frac{k}{\mu_0} \frac{\sigma_{11}}{\sigma_1} (\boldsymbol{u}) + \frac{\sigma_2}{\sigma_1} (\boldsymbol{u}) \right].$$

Expanding the terms in this limit we obtain

$$\lim_{\boldsymbol{u} \to \boldsymbol{u}_0} \left[(-1)^{g+1} \frac{k}{\mu_0} \frac{\sigma_{11}}{\sigma_1} \right] = (-1)^{g+1} \left(\frac{k}{\mu_0} \right) \lim_{v_i \to 0} \left[\frac{(\sigma_{11}) + (\sigma_{111}) v_1 + \cdots}{(\sigma_{11}) v_1 + (\frac{1}{2}\sigma_{111}) v_1^2 + (\sigma_{12}) v_2 + \cdots} \right]
= (-1)^{g+1} \left(\frac{k}{\mu_0} \right) \lim_{v_1 \to 0} \left[v_1^{-1} + \left(\frac{1}{2} \frac{\sigma_{111}}{\sigma_{11}} - \frac{\sqrt{\mu_0}}{2} \frac{\sigma_{12}}{\sigma_{11}} \right) + \mathcal{O}(v_1) \right]
= (-1)^{g+1} \left(\frac{k}{\mu_0} \right) \lim_{v_1 \to 0} \left[v_1^{-1} + \left(2 \frac{\sigma_{12}}{\sigma_2} + \frac{1}{4} \frac{\mu_1}{\sqrt{\mu_0}} \right) + \mathcal{O}(v_1) \right]$$

and

$$\lim_{u \to u_0} \left[\frac{\sigma_2}{\sigma_1} \right] = \lim_{v_i \to 0} \left[\frac{(\sigma_2) + (\sigma_{12}) v_1 + \cdots}{(\sigma_{11}) v_1 + (\frac{1}{2}\sigma_{111}) v_1^2 + (\sigma_{12}) v_2 + \cdots} \right]
= \lim_{v_1 \to 0} \left[\left(\frac{\sigma_2}{\sigma_{11}} \right) v_1^{-1} + \left(\frac{\sigma_{12}}{\sigma_{11}} - \frac{1}{2} \frac{\sigma_2 \sigma_{111}}{\sigma_{11}^2} - \frac{\sqrt{\mu_0}}{2} \frac{\sigma_2 \sigma_{12}}{\sigma_{11}^2} \right) + \mathcal{O}(v_1) \right]
= \lim_{v_1 \to 0} \left[\left(-\frac{1}{\sqrt{\mu_0}} \right) v_1^{-1} + \left(\frac{1}{4} \frac{\mu_1}{\mu_0} \right) + \mathcal{O}(v_1) \right].$$

Since \widetilde{C} is constant we set $k = (-1)^{g+1} \sqrt{\mu_0}$ and hence

$$\widetilde{C} = (-1)^g \sqrt{\mu_0} \left(\boldsymbol{A} + \widetilde{B}_2 \, \boldsymbol{e}_1
ight)^{\mathrm{T}} \cdot \boldsymbol{u}_0 + rac{2}{\sqrt{\mu_0}} rac{\sigma_{12}}{\sigma_2} (\boldsymbol{u}_0) + rac{1}{2} rac{\mu_1}{\mu_0}.$$

This gives the following result.

Theorem 2 Let

$$\lambda(p) = p + \int_{\infty}^{p} \frac{\prod_{i=1}^{g+1} (p' - \hat{p}_i)}{\sqrt{\prod_{i=1}^{2g+2} (p' - p_i)}} dp',$$

$$k = (-1)^{g+1} \left(\frac{-4}{\prod_{i=1}^{2g+1} (p_{2g+2} - p_i)} \right)^{\frac{1}{2}},$$

$$\tilde{B}_2 = (-1)^{g+1} \left(\frac{1}{\sqrt{\mu_0}} \frac{\sigma_{22}}{\sigma_2} (\boldsymbol{u}_0) + \frac{2}{\mu_0} \frac{\sigma_{112}}{\sigma_2} (\boldsymbol{u}_0) - \frac{2}{\mu_0} \frac{\sigma_{12}^2}{\sigma_2^2} (\boldsymbol{u}_0) \right)$$

and $\mathbf{A}^T = (A_2, A_3, \dots, A_{g+1})$ where the A_i are defined as

$$\sum_{i=0}^{g+1} \mathbf{A}_i t^i = \prod_{i=1}^{g+1} [(p_{2g+2} - \hat{p}_i) t - 1].$$

Then, if we set

$$p = p_{2g+2} + \frac{\sigma_2}{\sigma_1}(\boldsymbol{u})$$

with \mathbf{u} , $\mathbf{u}_0 \in \Theta_1$ and $\sigma_1(\mathbf{u}_0) = 0$, we have

$$\lambda(p) = (-1)^{g+1} \sqrt{\mu_0} \left(\boldsymbol{A} + \widetilde{B}_2 \, \boldsymbol{e}_1 \right)^{\mathrm{T}} \cdot (\boldsymbol{u} - \boldsymbol{u}_0) - \frac{1}{\sqrt{\mu_0}} \frac{\sigma_{11}}{\sigma_1} (\boldsymbol{u})$$

$$+ p_{2g+2} + \frac{2}{\sqrt{\mu_0}} \frac{\sigma_{12}}{\sigma_2} (\boldsymbol{u}_0) + \frac{1}{2} \frac{\mu_1}{\mu_0}$$

$$(20)$$

on sheet R_q^+ of the Riemann surface

$$R_g = \left\{ (v, p) \in \mathbb{C}^g : v^2 = \prod_{i=1}^{2g+2} (p - p_i) \right\}$$

associated with the relation $p \to \infty_+ \Leftrightarrow \boldsymbol{u} \to +\boldsymbol{u}_0$.

We note that in the g=2 case the analogous solution to (20) could be rewritten using the relation

$$\frac{\sigma_{11}}{\sigma_1}(\boldsymbol{u}) = \frac{\sigma_1}{\sigma}(\boldsymbol{u} + \boldsymbol{u}_0) + \frac{\sigma_1}{\sigma}(\boldsymbol{u} - \boldsymbol{u}_0) = \zeta_1(\boldsymbol{u} + \boldsymbol{u}_0) + \zeta_1(\boldsymbol{u} - \boldsymbol{u}_0)$$

for $u \in \Theta_1$. In the case of higher genus reductions this is not possible since $(u \pm u_0) \in \Theta_2$ and ζ_1 is singular everywhere on Θ_2 .

The formula (20) seems a little more complicated than the analogous results in genus 1 and 2; the reason for this is the difficulty of expanding the terms involving u_0 in the general case. However, we consider it remarkable that essentially the same formula is valid for any genus.

Acknowledgments

We would like to thank V Z Enolski for bringing [11] to our attention and for the result given in Appendix A.

Appendix A. Reduction of the Inversion theorem to Θ_1 .

Following Enolski and Previato [6], we begin by rewriting the main result of [11] in terms of first derivatives of the σ -function.

Theorem 3 Let K_P be the vector of Riemann constants associated with the point P, $\{P_1, P_2, \ldots, P_{g-1}\}$ be a set of points on R_g and let $\mathbf{a} = (a_1, a_2, \ldots, a_g)^T$, $\mathbf{b} = (b_1, b_2, \ldots, b_g)^T \in \mathbb{C}^g$ be any nonzero vectors. Then the following identity holds

$$\frac{\sum_{j=1}^{g} \sigma_{j}(\boldsymbol{u}) a_{j}}{\sum_{j=1}^{g} \sigma_{j}(\boldsymbol{u}) b_{j}} = \frac{\det \left[\boldsymbol{a} | d\boldsymbol{u}(P_{1})| \cdots | d\boldsymbol{u}(P_{g-1})\right]}{\det \left[\boldsymbol{b} | d\boldsymbol{u}(P_{1})| \cdots | d\boldsymbol{u}(P_{g-1})\right]}$$

where the point \mathbf{u} is given by

$$\boldsymbol{u} = \sum_{k=1}^{g-1} \int_{P}^{P_k} \mathrm{d}\boldsymbol{u} + 2\,\omega \boldsymbol{K}_{P}.$$

Here, we take the du_i to be the holomorphic differentials defined above:

$$du_i = \frac{t^{i-1}}{s} dt \quad (i = 1, ..., g).$$

Corollary 3.1 Let the points $P_1, P_2, \ldots, P_{g-1}$ coalesce to a point P. Then we obtain by $L'H\hat{o}pital's$ rule

$$\frac{\sum_{j=1}^{g} \sigma_{j} \left(2\omega \, \boldsymbol{K}_{P}\right) a_{j}}{\sum_{j=1}^{g} \sigma_{j} \left(2\omega \, \boldsymbol{K}_{P}\right) b_{j}} = \frac{\det \left[\boldsymbol{a} | \, \mathrm{d}\boldsymbol{u}(P) | \, \mathrm{d}\boldsymbol{u}(P)^{(1)} | \cdots | \, \mathrm{d}\boldsymbol{u}(P)^{(g-2)} \right]}{\det \left[\boldsymbol{b} | \, \mathrm{d}\boldsymbol{u}(P) | \, \mathrm{d}\boldsymbol{u}(P)^{(1)} | \cdots | \, \mathrm{d}\boldsymbol{u}(P)^{(g-2)} \right]}$$
(A.1)

where $d\mathbf{u}(P)^{(k)}$ denotes the column of k^{th} derivatives of the holomorphic differentials $d\mathbf{u}(P)$.

Expanding the RHS of (A.1) we find that the numerator is the determinant of the matrix

$$C \begin{bmatrix} a_1 & 1 & 0 & 0 & \cdots & 0 & 0 \\ a_2 & t & 0 & 0 & \cdots & 0 & 0 \\ a_3 & t^2 & 0 & 0 & \cdots & 0 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{g-1} & t^{g-2} & 0 & 1 & \cdots & 0 & 0 \\ a_g & t^{g-1} & 1 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

for some constant C. The matrix in the denominator of the RHS is of the same form, but with b_i instead of a_i (i = 1, ..., g). It follows that (A.1) can be written as

$$\frac{\sum_{j=1}^{g} \sigma_{j} (2\omega \mathbf{K}_{P}) a_{j}}{\sum_{j=1}^{g} \sigma_{j} (2\omega \mathbf{K}_{P}) b_{j}} = \frac{a_{1}t - a_{2}}{b_{1}t - b_{2}}.$$
(A.2)

To evaluate t in terms of the σ_j we can therefore set $\boldsymbol{a} = (1, 0, \dots, 0)^T$ and $\boldsymbol{b} = (0, 1, 0, \dots, 0)^T$. This gives

$$\frac{\sigma_1}{\sigma_2}(\boldsymbol{u}) = -t$$

for $u \in \Theta_1$. Further, since only a_1, a_2 and b_1, b_2 appear in the RHS of (A.2), we obtain the following definition for Θ_1 :

$$\Theta_1 = \{ \boldsymbol{u} : \sigma(\boldsymbol{u}) = 0, \, \sigma_k(\boldsymbol{u}) = 0 \quad (k = 3, \dots, g) \}.$$

Appendix B. Differential relations holding at $u = u_0$.

For any \boldsymbol{u} in Θ_1 we have $\sigma(\boldsymbol{u}) = 0$. Expanding this identity near \boldsymbol{u}_0 we obtain a Taylor series in $v_k = \boldsymbol{e}_k^{\mathrm{T}} \cdot (\boldsymbol{u} - \boldsymbol{u}_0)$ equal to zero:

$$0 = \sigma(\boldsymbol{u}_0 - (\boldsymbol{u}_0 - \boldsymbol{u}))$$

$$= \left[\frac{1}{2}\sigma_{11}(\boldsymbol{u}_0)\right] v_1^2 + \left[\sigma_2(\boldsymbol{u}_0)\right] v_2 + \left[\sigma_{12}(\boldsymbol{u}_0)\right] v_1 v_2 + \left[\frac{1}{6}\sigma_{111}(\boldsymbol{u}_0)\right] v_1^3 + \cdots$$
(since $\sigma(\boldsymbol{u}_0) = \sigma_1(\boldsymbol{u}_0) = \sigma_3(\boldsymbol{u}_0) = 0$). If we now substitute relations (13)

$$v_k = \left(\frac{1}{k}\mu_0^{(k-1)/2}\right)v_1^k + O\left(v_1^{k+1}\right) \qquad (k = 2, 3, \dots, g)$$

into this expansion, then for $g \geq 3$ we have

$$0 = \left[\frac{1}{2}\sigma_{11}(\boldsymbol{u}_0) + \frac{1}{2}\sqrt{\mu_0}\sigma_2(\boldsymbol{u}_0)\right]v_1^2 + \left[\frac{1}{6}\sigma_{111}(\boldsymbol{u}_0) + \frac{1}{12}\mu_1\sigma_2(\boldsymbol{u}_0) + \frac{1}{2}\sqrt{\mu_0}\sigma_{12}(\boldsymbol{u}_0)\right]v_1^3 + O(v_1^4).$$

Setting each coefficient to zero, we find

$$\sigma_{11}(\boldsymbol{u}_0) = -\sqrt{\mu_0} \,\sigma_2(\boldsymbol{u}_0) \tag{B.1}$$

and

$$\sigma_{111}(\boldsymbol{u}_0) = -\frac{1}{2} \,\mu_1 \,\sigma_2(\boldsymbol{u}_0) - 3 \,\sqrt{\mu_0} \,\sigma_{12}(\boldsymbol{u}_0) \tag{B.2}$$

for $\mathbf{u}_0 \in \Theta_1$ with $\sigma_1(\mathbf{u}_0) = 0$ and for $\forall g \geq 3$.

If we repeat the above procedure for the identity $\sigma_3(\mathbf{u}) = 0 \ (\forall \mathbf{u} \in \Theta_1)$, then we obtain the following expansion

$$0 = \sigma_3(\boldsymbol{u}_0 - (\boldsymbol{u}_0 - \boldsymbol{u}))$$

$$= [\sigma_{13}(\boldsymbol{u}_0)] \ v_1 + [\sigma_{23}(\boldsymbol{u}_0)] \ v_2 + \left[\frac{1}{2}\sigma_{113}(\boldsymbol{u}_0)\right] \ v_1^2 + \cdots$$

$$= [\sigma_{13}(\boldsymbol{u}_0)] \ v_1 + O(v_1^2).$$

This gives the identity

$$\sigma_{13}(\boldsymbol{u}_0) = 0 \qquad \text{for } g \ge 3. \tag{B.3}$$

- [1] S Baldwin and J Gibbons 2003 Hyperelliptic reduction of the Benney moment equations J. Phys. A: Math. Gen. 36 8393
- [2] E D Belokolos, A I Bobenko, V Z Enolski, A R Its and V B Matveev 1994 Algebro-Geometrical Approach to Nonlinear Integrable Equations (Berlin: Springer)
- [3] D J Benney 1973 Some properties of long nonlinear waves Stud. Appl. Math 52 45
- [4] V M Buchstaber, V Z Enolski and D V Leykin 1997 Kleinian functions, hyperelliptic Jacobians and applications *Reviews in Mathematics and Mathematical Physics* **10:2** 1
- [5] V Z Enolski and J Gibbons, Addition theorems on the strata of the theta divisor of genus three hyperelliptic curves, (in preparation)
- [6] V Enolski and E Previato, On the stratification of the Θ-divisor (in preparation)
- [7] J Gibbons 1981 Collisionless Boltzmann equations and integrable moment equations Physica D 3
 503
- [8] J Gibbons and S P Tsarev 1996 Reductions of the Benney equations Phys. Lett. A 211 19
- [9] J Gibbons and S P Tsarev 1999 Conformal maps and reductions of the Benney equations Phys. Lett. A 258 263
- [10] D Grant 1991 A generalization of a formula of Eisenstein Proc. London Math. Soc. 62 121
- [11] J Jorgenson 1992 On directional derivatives of the theta function along its divisor Israel Journal of Mathematics 77 273
- [12] Y Ônishi 1998 Complex multiplication formulae for hyperelliptic curves of genus three $Tokyo\ J.$ $Math.\ \mathbf{2}\ 381$
- [13] S P Tsarev 1985 On Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type Sov. Math. Dokl **31** 488
- [14] L Yu and J Gibbons 2000 The initial value problem for reductions of Lax equations Inverse Problems 16 605
- V E Zakharov 1981 On the Benney equations Physica D 3 193;
 V E Zakharov 1980 Funct. Anal. Appl. 14 89